Manganese(II) Enhanced Ferrate(VI) Pretreatment: Effects on Membrane Fouling and Pollutants Interception
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Feed Water Sampling
2.2. Filtration Experiment
2.3. Membrane Fouling Analysis
2.4. XDLVO Theory
2.5. Analytical Methods
3. Results and Discussion
3.1. Performance of Membrane Fouling
3.2. Effects of Pretreatment on Physicochemical Properties of Influent and Effluent
3.2.1. Pollutants Removal Efficiency
3.2.2. Analysis of Fluorescence Characteristics
3.2.3. Transformation of the Characteristics of Pollutant Particles
3.3. Membrane Surface Characteristics Analysis
3.3.1. Membrane Surface Morphology Analysis
3.3.2. Analysis of Membrane Surface Roughness
3.3.3. Analysis of Hydrophilicity/Hydrophobicity of Membrane Surface
3.4. Fouling Models Fitting
3.5. Analysis of Interaction Between Membrane and Foulant During Filtration
4. Conclusions
- (1)
- The combined pretreatment with Fe(VI) and Mn(II) exhibits significantly better performance in alleviating ultrafiltration membrane fouling compared to individual Fe(VI) pretreatment, individual Mn(II) pretreatment, or no pretreatment. The optimal effect is achieved at a molar ratio of 2:3 with 30 μM Fe(VI) and 45 μM Mn(II), which increases the normalized flux to 0.66, representing a 35% improvement over the untreated group. Additionally, this ratio reduces reversible and irreversible fouling resistances by 75% and 77% compared with the filtration alone, respectively.
- (2)
- At the optimal ratio, Fe(VI) and Mn(II) react completely, and the coagulation of their reaction products serves as the core mechanism. This not only enhances the total organic carbon removal efficiency to 41.5%, an 11.3% increase compared to the untreated group, but also effectively removes the main fluorescent substances, soluble microbial products, in water without altering their structure.
- (3)
- The combined pretreatment significantly modifies pollutant properties, reducing the zeta potential to −37.03 mV to enhance inter-particle repulsion and decreasing the average particle size to 1612 nm to facilitate the formation of a loose structure. This results in a porous, hydrophilic fouling layer with a contact angle of 24° and low roughness of 39.3 nm on the membrane surface. And from the model fitting results, the main fouling pattern was cake layer fouling, therefore the formation of such a fouling layer helped alleviate membrane fouling and enhance pollutant rejection.
- (4)
- Based on the XDLVO theory, the combined pretreatment at the optimal ratio maintains a repulsive total interaction energy of pollutants-membrane and pollutants-pollutants in the filtration process, significantly reducing irreversible fouling. This further confirms the effectiveness of fouling mitigation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Zhou, Y.; Cai, S.; Zhang, D.; Ma, L.; Xie, B. Biofouling behavior and control in metallic membrane treatment of algae-laden water: Exploring the diverse impacts of oxidation. J. Colloid Interface Sci. 2025, 698, 138124. [Google Scholar] [CrossRef]
- Eng, Y.Y.; Sharma, V.K.; Ray, A.K. Ferrate(VI): Green chemistry oxidant for degradation of cationic surfactant. Chemosphere 2006, 63, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhou, Z.; Liu, C.; Yang, Y.; Li, X.; Ren, J.; Chang, H. Ultrafiltration membrane fouling mitigation mechanism induced by algal and natural organic matters: Dependence of photocatalysis pre-oxidation degree and membrane properties. Water Res. 2025, 286, 124199. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jung, B.; Park, C.; Park, C.M.; Jang, M.; Jun, B.-M.; Yoon, Y. Removal of ketoprofen and propranolol in an ultrafiltration-MXene (Ti3C2/V2C) hybrid system. Desalination 2025, 613, 119088. [Google Scholar] [CrossRef]
- Alizadeh Tabatabai, S.A.; Schippers, J.C.; Kennedy, M.D. Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis. Water Res. 2014, 59, 283–294. [Google Scholar] [CrossRef]
- Li, K.; Qu, F.; Liang, H.; Shao, S.; Han, Z.-S.; Chang, H.; Du, X.; Li, G. Performance of mesoporous adsorbent resin and powdered activated carbon in mitigating ultrafiltration membrane fouling caused by algal extracellular organic matter. Desalination 2014, 336, 129–137. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, C.; Gao, H.; Li, P.; Zhu, X.; Luo, C.; Zhang, L.; Jin, Y.; Wu, D.; Liang, H. Synergistic process using calcium peroxide and ferrous iron for enhanced ultrafiltration of Microcystis aeruginosa-laden water. Water Res. 2022, 211, 118067. [Google Scholar] [CrossRef]
- Qiu, L.; Meng, F.; Qiu, Q.; Kang, X.; Gong, S.; Zhang, F.; Xu, J.; Wang, F.; Wu, D.; Zhu, X. PVDF@CoFe2O4 nanoconfined catalytic membrane for natural surface water treatment: Efficient NOM degradation and membrane fouling mitigation. J. Water Process Eng. 2025, 70, 107005. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, T.; Graham, N.; Sun, K.; Mozia, S.; Yu, W. Effect of seasonal variation of natural organic matter on the fouling of hydrophilic ultrafiltration membranes. J. Water Process Eng. 2025, 70, 107125. [Google Scholar] [CrossRef]
- Yu, R.; Yang, Y.; Tian, L.; Li, X.; Liu, C.; Sun, T.; Chang, H.; Zhou, Z. Revealing the membrane fouling behavior and interfacial interaction mechanism in a combined visible light photocatalysis-ultrafiltration system for advanced purification of NOM. J. Water Process Eng. 2024, 57, 104723. [Google Scholar] [CrossRef]
- Peters, C.D.; Rantissi, T.; Gitis, V.; Hankins, N.P. Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning—A review. J. Water Process Eng. 2021, 44, 102374. [Google Scholar] [CrossRef]
- Kamarudin, D.; Hashim, N.A.; Ong, B.H.; Faried, M.; Suga, K.; Umakoshi, H.; Wan Mahari, W.A. Alternative fouling analysis of PVDF UF membrane for surface water treatment: The credibility of silver nanoparticles. J. Membr. Sci. 2022, 661, 120865. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Liang, H.; Ying, L.; Xiangxu, M.; Sharma, V.K. Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol. J. Hazard. Mater. 2016, 319, 130–136. [Google Scholar] [CrossRef]
- Chen, J.; Qi, Y.; Pan, X.; Wu, N.; Zuo, J.; Li, C.; Qu, R.; Wang, Z.; Chen, Z. Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products. Water Res. 2019, 158, 338–349. [Google Scholar] [CrossRef]
- Jiao, Y.; Jia, J.; Zhou, C.; Gu, J.; Li, H.; Zhou, Q.; Xiao, Y.; Li, L. Synergistic degradation of phenanthrene by birnessite-Fe (VI) system: Mechanism, kinetics and environmental risk assessment. Colloids Surf. A Physicochem. Eng. Asp. 2025, 725, 137515. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Li, H.; Li, M.; Wang, Y.; Zhao, Q.; Wang, N. Aqueous cadmium removal with ferrate: Influencing factors, removal mechanism, and effect of coexisting ions. Water Environ. Res. 2019, 91, 628–633. [Google Scholar] [CrossRef]
- Gunawan, G.; Haris, A.; Prasetya, N.B.A.; Pratista, E.; Amrullah, A. Ferrate(VI) Synthesis Using Fe(OH)3 from Waste Iron Electrolysis and Its Application for the Removal of Metal Ions and Anions in Water. Indones. J. Chem. 2021, 21, 1397–1407. [Google Scholar] [CrossRef]
- Lan, B.; Hao, C.; Zhang, M.; Yan, X. Diverse performances for Pb(II) adsorption by in situ formed Fe(III) oxyhydroxide derived from ferrate(VI) reduction and ferrous oxidation. Environ. Sci. Pollut. Res. 2023, 30, 77488–77498. [Google Scholar] [CrossRef] [PubMed]
- Boczek, L.A.; Ware, M.W.; Rodgers, M.R.; Ryu, H. Potassium ferrate’s disinfecting ability: A study on human adenovirus, Giardia duodenalis, and microbial indicators under varying pH and water temperature conditions. J. Water Health 2024, 22, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Z.; Liu, Z.; Zhang, X. Integration of ferrate (VI) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment. J. Membr. Sci. 2018, 552, 315–325. [Google Scholar] [CrossRef]
- Yang, B.; Wen, Q.; Chen, Z.; Tang, Y. Potassium ferrate combined with ultrafiltration for treating secondary effluent: Efficient removal of antibiotic resistance genes and membrane fouling alleviation. Water Res. 2022, 217, 118374. [Google Scholar] [CrossRef]
- Tang, P.; Liu, B.; Xie, W.; Wang, P.; He, Q.; Bao, J.; Zhang, Y.; Zhang, Z.; Li, J.; Ma, J. Synergistic mechanism of combined ferrate and ultrafiltration process for shale gas wastewater treatment. J. Membr. Sci. 2022, 641, 119921. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Ma, J.; Zhao, X.; Huang, Z.; Mahadevan, G.D.; Qi, J. Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution. Chem. Eng. J. 2016, 287, 11–18. [Google Scholar] [CrossRef]
- He, H.; Liu, Y.; Wang, L.; Qiu, W.; Li, D.; Liu, Z.; Ma, J. Improvements of ferrate(VI) pretreatment on membrane flux and membrane rejection using cheap NaClO reagent. Water Res. 2023, 229, 119520. [Google Scholar] [CrossRef]
- Zheng, R.; Xu, Z.; Qiu, Q.; Sun, S.; Li, J.; Qiu, L. Iron-doped carbon nanotubes with magnetic enhanced Fe(VI) degradation of arsanilic acid and inorganic arsenic: Role of intermediate iron species and electron transfer. Environ. Res. 2024, 244, 117849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-N.; Huang, Z.-S.; Wang, G.-J.; Liu, Y.-L.; Song, W.-W.; Ma, J.; Wang, L. Highly Efficient Utilization of Ferrate(VI) Oxidation Capacity Initiated by Mn(II) for Contaminant Oxidation: Role of Manganese Species. Environ. Sci. Technol. 2023, 57, 2527–2537. [Google Scholar] [CrossRef]
- Cheng, X.; Lian, J.; Liu, B.; Zhu, X.; Jin, Y.; Zhang, L.; Tan, F.; Wu, D.; Liang, H. Integrated ferrate and calcium sulfite to treat algae-laden water for controlling ultrafiltration membrane fouling: High-efficiency oxidation and simultaneous cell integrity maintaining. Chem. Eng. J. 2023, 461, 141880. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Wang, Q.; Fu, Y.; Lu, X.; Bai, X. The self-catalysis of ferrate (VI) by its reactive byproducts or reductive substances for the degradation of diclofenac: Kinetics, mechanism and transformation products. Sep. Purif. Technol. 2018, 192, 412–418. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Q.; Fu, Y.; Peng, B.; Zhou, G. Kinetics and mechanism of diclofenac removal using ferrate(VI): Roles of Fe3+, Fe2+, and Mn2+. Environ. Sci. Pollut. Res. 2018, 25, 22998–23008. [Google Scholar] [CrossRef]
- Goodwill, J.E.; Mai, X.; Jiang, Y.; Reckhow, D.A.; Tobiason, J.E. Oxidation of manganese(II) with ferrate: Stoichiometry, kinetics, products and impact of organic carbon. Chemosphere 2016, 159, 457–464. [Google Scholar] [CrossRef]
- Lin, C.F.; Yu-Chen Lin, A.; Sri Chandana, P.; Tsai, C.Y. Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline. Water Res. 2009, 43, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Liang, H.; Ding, A.; Zhu, X.; Tang, X.; Gan, Z.; Xing, J.; Wu, D.; Li, G. Application of Fe(II)/peroxymonosulfate for improving ultrafiltration membrane performance in surface water treatment: Comparison with coagulation and ozonation. Water Res. 2017, 124, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.S.; Wang, L.; Liu, Y.L.; Jiang, J.; Xue, M.; Xu, C.B.; Zhen, Y.F.; Wang, Y.C.; Ma, J. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant. Environ. Sci. Technol. 2018, 52, 13897–13907. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lin, Y.; Ma, W.; Wang, X. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. J. Membr. Sci. 2021, 639, 119759. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Cho, J.; Hoek, E.M.V. Natural organic matter fouling due to foulant–membrane physicochemical interactions. Desalination 2007, 202, 377–384. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhu, C.; Mei, X.; Wu, Z. Assessment of SMP fouling by foulant–membrane interaction energy analysis. J. Membr. Sci. 2013, 446, 154–163. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, D.; Cao, Y.; Luo, S.; Zhao, Q.; Yang, M.; Xu, C.; Ma, J. Interaction Analysis between Gravity-Driven Ceramic Membrane and Smaller Organic Matter: Implications for Retention and Fouling Mechanism in Ultralow Pressure-Driven Filtration System. Environ. Sci. Technol. 2018, 52, 13718–13727. [Google Scholar] [CrossRef]
- Chen, M.; Nan, J.; Ji, X.; Wu, F.; Ye, X.; Ge, Z. Effect of adsorption and coagulation pretreatment sequence on ultrafiltration membrane fouling: Process study and targeted prediction. Desalination 2022, 540, 115967. [Google Scholar] [CrossRef]
- Liu, J.; He, K.; Tang, S.; Wang, T.; Zhang, Z. A comparative study of ferrous, ferric and ferrate pretreatment for ceramic membrane fouling alleviation in reclaimed water treatment. Sep. Purif. Technol. 2019, 217, 118–127. [Google Scholar] [CrossRef]
- Lee, S.-J.; Dilaver, M.; Park, P.-K.; Kim, J.-H. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci. 2013, 432, 97–105. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, D.; Xu, C.; Zhong, J.; Chen, M.; Xu, S.; Cao, Y.; Zhao, Q.; Yang, M.; Ma, J. Synergistic oxidation-filtration process analysis of catalytic CuFe2O4-Tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment. Water Res. 2020, 171, 115–387. [Google Scholar] [CrossRef]
- Ho, C.C.; Zydney, A.L. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration. J Colloid Interface Sci. 2000, 232, 389–399. [Google Scholar] [CrossRef]
- Van Oss, C.J. Acid-base interfacial interactions in aqueous media. Colloids Surf. A Physicochem. Eng. Asp. 1993, 78, 1–49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Wang, L.; Ma, J.; Liu, Y. Manganese(II) Enhanced Ferrate(VI) Pretreatment: Effects on Membrane Fouling and Pollutants Interception. Water 2025, 17, 2757. https://doi.org/10.3390/w17182757
Xu C, Wang L, Ma J, Liu Y. Manganese(II) Enhanced Ferrate(VI) Pretreatment: Effects on Membrane Fouling and Pollutants Interception. Water. 2025; 17(18):2757. https://doi.org/10.3390/w17182757
Chicago/Turabian StyleXu, Chengbiao, Lu Wang, Jun Ma, and Yulei Liu. 2025. "Manganese(II) Enhanced Ferrate(VI) Pretreatment: Effects on Membrane Fouling and Pollutants Interception" Water 17, no. 18: 2757. https://doi.org/10.3390/w17182757
APA StyleXu, C., Wang, L., Ma, J., & Liu, Y. (2025). Manganese(II) Enhanced Ferrate(VI) Pretreatment: Effects on Membrane Fouling and Pollutants Interception. Water, 17(18), 2757. https://doi.org/10.3390/w17182757