Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Database
2.3. Methodology
2.3.1. Mann–Kendall Test and Sen’s Slope Estimator Test
2.3.2. Land Use Transition Matrix
2.3.3. The PLS-SEM Model
3. Results
3.1. The Spatiotemporal Variation of the Wetlands
3.2. Changes in Driving Factors
3.3. Driving Factors of Wetland Area Dynamics
3.3.1. Correlation Diagnostics
3.3.2. Analysis of Driving Factors Based on PLS-SEM
4. Discussion
4.1. The Uniqueness of Wetland Changes in QTP
4.2. The Influence of Human Activities on the Wetland Area
4.3. Systematic Effects of Climatic Conditions
4.4. The Mechanism of Underlying Vegetation and Cryosphere Interactions
4.5. Prospects for Protecting Wetlands on the Qinghai–Tibet Plateau
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QTP | Qinghai–Tibet Plateau |
NDVI | Normalized Difference Vegetation Index |
PLS-SEM | Partial Least Squares Structural Equation Modeling |
References
- Wetlands: ‘Unsung Heroes’ of the Climate Crisis|UN News. Available online: https://news.un.org/en/story/2022/02/1111052 (accessed on 24 August 2025).
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of Wetlands in China: A Review of Extent, Degradation, Issues and Recommendations for Improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Gardner, R.C.; Finlayson, C.M. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People; Ramsar Convention Secretariat: Gland, Switzerland, 2018. [Google Scholar]
- Stewart, R.I.A.; Dossena, M.; Bohan, D.A.; Jeppesen, E.; Kordas, R.L.; Ledger, M.E.; Meerhoff, M.; Moss, B.; Mulder, C.; Shurin, J.B.; et al. Chapter Two—Mesocosm Experiments as a Tool for Ecological Climate-Change Research. In Global Change in Multispecies Systems: Part 3; Woodward, G., O’Gorman, E.J., Eds.; Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2013; Volume 48, pp. 71–181. [Google Scholar]
- Erwin, K.L. Wetlands and Global Climate Change: The Role of Wetland Restoration in a Changing World. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Roulet, N.; Moore, T.R. Environmental Chemistry—Browning the Waters. Nature 2006, 444, 283–284. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau. Glob. Change Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive Global Wetland Loss over the Past Three Centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Woodroffe, C.D.; Burkett, V.; Hay, J.; Wong, P.P.; Nurse, L. 12.14—Scenarios for Coastal Vulnerability Assessment. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D., Eds.; Academic Press: Waltham, MA, USA, 2011; pp. 289–303. ISBN 978-0-08-087885-0. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Spencer, T.; Schuerch, M.; Nicholls, R.J.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Reef, R.; McFadden, L.; Brown, S. Global Coastal Wetland Change under Sea-Level Rise and Related Stresses: The DIVA Wetland Change Model. Glob. Planet. Change 2016, 139, 15–30. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Song, C.; Tan, W.; Guo, J. Impacts of Wetland Degradation on Soil Microbial Networks and Functions in Northern China. CATENA 2025, 259, 109360. [Google Scholar] [CrossRef]
- Yan, F. Large-Scale Marsh Loss Reconstructed from Satellite Data in the Small Sanjiang Plain since 1965: Process, Pattern and Driving Force. Sensors 2020, 20, 1036. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Moore, J.N.; Kimball, J.S.; Jencso, K.; Petrie, M.; Naugle, D.E. Going, Going, Gone: Landscape Drying Reduces Wetland Function across the American West. Ecol. Indic. 2025, 171, 113172. [Google Scholar] [CrossRef]
- Tobore, A.; Bamidele, S. Wetland Change Prediction of Ogun-River Basin, Nigeria: Application of Cellular Automata Markov and Remote Sensing Techniques. Watershed Ecol. Environ. 2022, 4, 158–168. [Google Scholar] [CrossRef]
- Jiao, J.; Li, S.; Degen, A.A.; Wang, W.; Qi, L.; Shang, Z. Decoupling of Alpine Wetland Degradation and Regional Development. Ecol. Indic. 2025, 176, 113706. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Z.; Zhang, L.; Song, C.; Piao, S.; Lin, J.; Peng, S.; Fang, K.; Yang, J.; Qu, Y.; et al. Rapid Expansion of Wetlands on the Central Tibetan Plateau by Global Warming and El Niño. Sci. Bull. 2023, 68, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The Imbalance of the Asian Water Tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Battisti, C.; Poeta, G.; Fanelli, G. An Introduction to Disturbance Ecology: A Road Map for Wildlife Management and Conservation; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-32475-3. [Google Scholar]
- Tian, A.; Xu, T.; Gao, J.; Liu, C.; Han, L. Multi-Scale Spatiotemporal Wetland Loss and Its Critical Influencing Factors in China Determined Using Innovative Grid-Based GWR. Ecol. Indic. 2023, 149, 110144. [Google Scholar] [CrossRef]
- Zhang, B.; Niu, Z.; Zhang, D.; Huo, X. Dynamic Changes and Driving Forces of Alpine Wetlands on the Qinghai-Tibetan Plateau Based on Long-Term Time Series Satellite Data: A Case Study in the Gansu Maqu Wetlands. Remote Sens. 2022, 14, 4147. [Google Scholar] [CrossRef]
- Bai, J.; Lu, Q.; Wang, J.; Zhao, Q.; Ouyang, H.; Deng, W.; Li, A. Landscape Pattern Evolution Processes of Alpine Wetlands and Their Driving Factors in the Zoige Plateau of China. J. Mt. Sci. 2013, 10, 54–67. [Google Scholar] [CrossRef]
- Assefa, W.W.; Eneyew, B.G. Wetland Inventory, Key Drivers of Change and Their Socioeconomic and Environmental Implications in Ethiopia. Ecol. Indic. 2025, 172, 113312. [Google Scholar] [CrossRef]
- Phillips, J.D. Landscape Change and Climate Attribution, with a Case Study of Estuarine Marshes. Geomorphology 2023, 430, 108666. [Google Scholar] [CrossRef]
- Zan, C.; Liu, T.; Huang, Y.; Bao, A.; Yan, Y.; Ling, Y.; Wang, Z.; Duan, Y. Spatial and Temporal Variation and Driving Factors of Wetland in the Amu Darya River Delta, Central Asia. Ecol. Indic. 2022, 139, 108898. [Google Scholar] [CrossRef]
- Wei, C.; Guo, B.; Fan, Y.; Zang, W.; Ji, J. The Change Pattern and Its Dominant Driving Factors of Wetlands in the Yellow River Delta Based on Sentinel-2 Images. Remote Sens. 2022, 14, 4388. [Google Scholar] [CrossRef]
- Hou, M.; Ge, J.; Gao, J.; Meng, B.; Li, Y.; Yin, J.; Liu, J.; Feng, Q.; Liang, T. Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W. Spatiotemporal Dynamics of Wetlands and Their Driving Factors Based on PLS-SEM: A Case Study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, P.; Liu, Y.; Tian, L.; Cao, Y.; Guo, Y.; Li, J.; Wang, Y.; Huang, J.; Jin, R.; et al. Study on Spatiotemporal Changes of Wetlands Based on PLS-SEM and PLUS Model: The Case of the Sanjiang Plain. Ecol. Indic. 2024, 169, 112812. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Peltier, W.R.; Wang, X. Sensitivity Studies and Comprehensive Evaluation of RegCM4.6.1 High-Resolution Climate Simulations over the Tibetan Plateau. Clim. Dyn. 2020, 54, 3781–3801. [Google Scholar] [CrossRef]
- Yao, T.; Wu, F.; Ding, L.; Sun, J.; Zhu, L.; Piao, S.; Deng, T.; Ni, X.; Zheng, H.; Ouyang, H. Multispherical Interactions and Their Effects on the Tibetan Plateau’s Earth System: A Review of the Recent Researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, F.; Liu, H.; Li, M.; Sun, Y.; Wang, Q.; Yu, L. Identification of Key Priority Areas under Different Ecological Restoration Scenarios on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 323, 116174. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2024 [Data Set], version 1.0.4; Zenodo: Geneva, Switzerland, 2025. [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, W.; Zhang, Y.; Zhao, Z.; Qin, G.; Chen, H.; Wang, L.; Yang, S.; Wang, J.; Pei, Q.; et al. Spatiotemporal Variation and Driving Forces of Soil Salinization in the Lower Reach of Arid Endorheic Basins: Critical Role of Lake System and Groundwater Overflow. Agric. Water Manag. 2025, 315, 109568. [Google Scholar] [CrossRef]
- Zhang, A.; Yu, X. Development of a Land–River–Ocean Coupled Model for Compound Floods Jointly Caused by Heavy Rainfall and Storm Surges in Large River Delta Regions. Hydrol. Earth Syst. Sci. 2025, 29, 2505–2520. [Google Scholar] [CrossRef]
- Shi, M.; Xue, Q.; Wang, Y.; Liu, X.; Wang, L.; Li, H. Modeling Species-Specific Migration to Enhance Climate Connectivity under Climate and Anthropogenic Stressors. Landsc. Urban Plan. 2025, 264, 105468. [Google Scholar] [CrossRef]
- Peng, S. 1-Km Monthly Mean Temperature Dataset for China (1901–2024); National Tibetan Plateau Data Center: Beijing, China, 2025. [Google Scholar]
- Peng, S. 1-Km Monthly Precipitation Dataset for China (1901–2024); National Tibetan Plateau Data Center: Beijing, China, 2025. [Google Scholar]
- Peng, S. 1-Km Monthly Potential Evapotranspiration Dataset for China (1901–2024); National Tibetan Plateau Data Center: Beijing, China, 2025. [Google Scholar]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Fu, H.; Xu, B. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar]
- Liu, L.; Cao, X.; Li, S.; Jie, N. A 31-Year (1990–2020) Global Gridded Population Dataset Generated by Cluster Analysis and Statistical Learning. Sci. Data 2024, 11, 124. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Mann, H. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Serrano, A.; Mateos, V.L.; Garcia, J.A. Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921–1995. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 1999, 24, 85–90. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zhou, K. Wetland Landscape Pattern Evolution and Prediction in the Yellow River Delta. Appl. Water Sci. 2022, 12, 190. [Google Scholar] [CrossRef]
- Kline, R.B. Response to Leslie Hayduk’s Review of Principles and Practice of Structural Equation Modeling, 4th Edition. Can. Stud. Popul. 2018, 45, 188–195. [Google Scholar] [CrossRef]
- Stein, C.M.; Morris, N.J.; Nock, N.L. Structural Equation Modeling. In Statistical Human Genetics; Methods in Molecular Biology; Humana Press: Clifton NJ, USA, 2012; Volume 850, pp. 495–512. [Google Scholar] [CrossRef]
- Job, N.M.; Sieben, E.J.J. Chapter 2—Factors Controlling Wetland Formation. In Fundamentals of Tropical Freshwater Wetlands; Dalu, T., Wasserman, R.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 25–41. ISBN 978-0-12-822362-8. [Google Scholar]
- Luan, G.; Zhao, F.; Xia, J.; Huang, Z.; Feng, S.; Song, C.; Dong, P.; Zhou, X. Analysis of Long-Term Spatio-Temporal Changes of Plateau Urban Wetland Reveals the Response Mechanisms of Climate and Human Activities: A Case Study from Dianchi Lake Basin 1993–2020. Sci. Total Environ. 2024, 912, 169447. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Human-Induced Grassland Degradation/Restoration in the Central Tibetan Plateau: The Effects of Ecological Protection and Restoration Projects. Ecol. Eng. 2015, 83, 112–119. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, T.; Han, Q.; Li, X. Vegetation Dynamics Induced by Climate Change and Human Activities: Implications for Coastal Wetland Restoration. J. Environ. Manag. 2025, 384, 125594. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Rabatel, A.; Kraemer, M.; Zeballos, G.; Soruco, A.; Jacobsen, D.; Anthelme, F. Ecosystem Sentinels for Climate Change? Evidence of Wetland Cover Changes over the Last 30 Years in the Tropical Andes. PLoS ONE 2017, 12, e0175814. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Classroom Companion: Business; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-80518-0. [Google Scholar]
- Liu, Y.; Zhao, M. Coupling Coordination between Carbon Storage Protection in Alpine Wetlands and SDGs: A Case Study of the Qinghai-Tibet Plateau, China. J. Clean. Prod. 2024, 483, 144260. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Zhu, C.; Bao, A.; Frankl, A.; Maeyer, P.D.; Voorde, T.V. de A Comprehensive Environmental Index for Monitoring Ecological Quality of Typical Alpine Wetlands in Central Asia. Ecol. Indic. 2025, 171, 113216. [Google Scholar] [CrossRef]
- Zhao, Z.; Fu, B.; Lü, Y.; Li, T.; Deng, L.; Wang, Y.; Lü, D.; Wang, Y.; Wu, X. Variable Climatic Conditions Dominate Decreased Wetland Vulnerability on the Qinghai–Tibet Plateau: Insights from the Ecosystem Pattern-Process-Function Framework. J. Clean. Prod. 2024, 458, 142496. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Feng, X.; Wang, X.; Zhou, J.; Yao, W.; Tu, Y. Optimizing Nature Reserve System to Address Climate Change in the Qinghai-Tibet Plateau. J. Clean. Prod. 2025, 519, 145936. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Wu, J.; Ding, Q.; Niu, B.; He, Y. Declining Human Activity Intensity on Alpine Grasslands of the Tibetan Plateau. J. Environ. Manag. 2021, 296, 113198. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Zhang, B.; Li, Z. Changes in Runoff from Major Alpine Watersheds on the Qinghai-Tibetan Plateau: A Review. J. Hydrol. Reg. Stud. 2025, 60, 102514. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Yue, C.; Ma, S.; Hou, L.; Wang, L.-J. Impact of Wetland Change on Ecosystem Services in Different Urbanization Stages: A Case Study in the Hang-Jia-Hu Region, China. Ecol. Indic. 2023, 153, 110382. [Google Scholar] [CrossRef]
- Yue, C.; Wang, Z.; Wang, J. Spatio-Temporal Change and Driving Mechanisms of Land Use/Cover in Qarhan Salt Lake Area during from 2000 to 2020, Based on Machine Learning. Res. Cold Arid Reg. 2024, 16, 239–249. [Google Scholar] [CrossRef]
- Timms, B.V. Salt Lakes. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 141–156. ISBN 978-0-12-822041-2. [Google Scholar]
- Xu, H.; Xu, F.; Lin, T.; Xu, Q.; Yu, P.; Wang, C.; Aili, A.; Zhao, X.; Zhao, W.; Zhang, P.; et al. A Systematic Review and Comprehensive Analysis on Ecological Restoration of Mining Areas in the Arid Region of China: Challenge, Capability and Reconsideration. Ecol. Indic. 2023, 154, 110630. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J. Review on Climate Change on the Tibetan Plateau during the Last Half Century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Chang, Y.; Ding, Y.; Zhang, S.; Zhao, Q.; Jin, Z.; Qin, J.; Shangguan, D. Quantifying the Response of Runoff to Glacier Shrinkage and Permafrost Degradation in a Typical Cryospheric Basin on the Tibetan Plateau. CATENA 2024, 242, 108124. [Google Scholar] [CrossRef]
- Biskop, S.; Maussion, F.; Krause, P.; Fink, M. Differences in the Water-Balance Components of Four Lakes in the Southern-Central Tibetan Plateau. Hydrol. Earth Syst. Sci. 2016, 20, 209–225. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhong, X.; Yao, T.; Qi, J.; Wang, Y.; Xue, Y. Quantifying the Major Drivers for the Expanding Lakes in the Interior Tibetan Plateau. Sci. Bull. 2022, 67, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.M.; Camarero, J.J.; Beguería, S.; Trigo, R.M.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proc. Natl. Acad. Sci. USA 2012, 110, 52–57. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, K.; Jiang, Q.; Chen, F. RS Based Evaporation Estimation of Three River Sources in Qinghai-Tibet Plateau and Its Response to Lakes and Wetlands. J. Jilin Univ. Sci. Ed. 2009, 39, 507–513. [Google Scholar]
- Zhu, L.; Ju, J.; Qiao, B.; Liu, C.; Wang, J.; Yang, R.; Ma, Q.; Guo, L.; Pang, S. Physical and Biogeochemical Responses of Tibetan Plateau Lakes to Climate Change. Nat. Rev. Earth Environ. 2025, 6, 284–298. [Google Scholar] [CrossRef]
- Li, Z.; Dong, L.; Xu, L.; Wang, L.; Yuan, Z. Evaluation of Vegetation-Wetland-Soil Ecological Water Retention Capacity in the Source Region of the Yangtze and Yellow Rivers (SRYY). Watershed Ecol. Environ. 2025, 7, 260–273. [Google Scholar] [CrossRef]
- Yang, W.; Tanner, C.C.; Holland, P.; Qu, Z. Dynamic Economic Valuation of Coastal Wetland Restoration: A Nature-Based Solution for Climate and Biodiversity. Environ. Chall. 2025, 20, 101182. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Changes in Active Layer Thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and Spatial Variations of the Active Layer along the Qinghai-Tibet Highway in a Permafrost Region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef]
Factor | Factor |
---|---|
Wetland (km2/a) | 538.7188 *** |
TEM (°C/a) | 0.0248 *** |
PRE (mm/a) | 0.0580 |
ET (mm/a) | 0.0602 *** |
POP (pop/km2/a) | 0.0553 *** |
NL (/a) | 0.0006 *** |
NDVI (/a) | 0.3835 * |
Snow/ice (km2/a) | −13.0228 |
Factor | Outer Loadings | Cronbach’s Alpha | AVE | CR (rho_c) | HTMT |
---|---|---|---|---|---|
Climate | 0.669 | 0.649 | 0.832 | 0.699 | |
Temperature | 0.981 | ||||
Precipitation | 0.397 | ||||
Evapotranspiration | 0.908 | ||||
Human Activity | 0.977 | 0.977 | 0.988 | 0.979 | |
Nighttime Lights | 0.989 | ||||
Population Density | 0.988 | ||||
NDVI | 0.712 | ||||
Snow/ice | 0.061 |
Factor | Path Coefficients (α) | Total Effects (β) |
---|---|---|
Climate | 0.056 | 0.095 |
Human Activity | 0.918 | 0.917 |
NDVI | 0.044 | |
Snow/ice | 0.138 |
Path | Effects (γ) |
---|---|
Climate → Ice/snow | 0.271 |
Climate → NDVI | 0.030 |
Human Activity → Ice/snow | −0.242 |
Human Activity → NDVI | 0.555 |
Path | Specific Indirect Effects (δ) |
---|---|
Climate → Ice/snow → Wetland | 0.037 |
Climate → NDVI → Wetland | 0.001 |
Human Activity → Ice/snow → Wetland | −0.032 |
Human Activity → NDVI → Wetland | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Guan, Y. Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau. Water 2025, 17, 2746. https://doi.org/10.3390/w17182746
Zheng H, Guan Y. Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau. Water. 2025; 17(18):2746. https://doi.org/10.3390/w17182746
Chicago/Turabian StyleZheng, Haoyuan, and Yinghui Guan. 2025. "Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau" Water 17, no. 18: 2746. https://doi.org/10.3390/w17182746
APA StyleZheng, H., & Guan, Y. (2025). Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau. Water, 17(18), 2746. https://doi.org/10.3390/w17182746