Application of Artificial Intelligence in Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds: A Review
Abstract
1. Introduction
2. Materials and Methods
3. AI in Hydrology/Watershed Management
3.1. Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds
3.1.1. Distributed Hydrologic Modeling (DHM)
3.1.2. Conceptual and Lumped Hydrological Modeling
3.2. Applications and Evolution of AI in Hydrology
3.3. AI for Streamflow Prediction in Ungauged Watersheds
3.3.1. Regionalization: Transferring Models from Gauged to Ungauged Sites
3.3.2. Synthetic Generation of Data and Model Training Using Proxy Variables
3.3.3. Model Performance Assessment
3.3.4. Comparative Analysis of Advanced AI Approaches for Ungauged Basins
3.3.5. Comparative Analysis of Advanced AI Approaches for Ungauged Basins
3.4. Integration of AI in Remote Sensing for Streamflow Prediction
3.4.1. Remote Sensing Data
3.4.2. AI for Downscaling, Bias Correction, and Temporal Interpolation
3.4.3. AI-Remote Sensing Synergy in Ungauged Catchment Mapping
4. Discussion
5. Challenges and Future Directions
6. Conclusions
- Developing physics-informed AI models that enhance interpretability and maintain hydrological realism;
- Creating region-specific proxy datasets for ungauged conditions;
- Promoting open-source datasets, reproducible code, and model transparency;
- Embedding long-term robustness testing under non-stationary land use and climate conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BFI | Baseflow Index |
CAMELS | Catchment Attributes and Meteorology for Large-Sample Studies |
CNN | Convolutional Neural Network |
DEM | Digital Elevation Model |
DHM | Distributed Hydrological Model |
DL | Deep Learning |
FDC | Flow Duration Curve |
GEE | Google Earth Engine |
GPM | Global Precipitation Measurement |
GR4J | Génie Rural à 4 paramètres Journalier (GR4J rainfall-runoff model) |
GPR | Gaussian Process Regression |
HBV | Hydrologiska Byråns Vattenbalansavdelning model |
KGE | Kling–Gupta Efficiency |
LOOCV | Leave-One-Out Cross-Validation |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
ML | Machine Learning |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NAM | Nedbør-Afstrømnings-Model |
NDVI | Normalized Difference Vegetation Index |
NSE | Nash–Sutcliffe Efficiency |
PCA | Principal Component Analysis |
R2 | Coefficient of Determination |
RF | Random Forest |
RMSE | Root Mean Square Error |
RS | Remote Sensing |
RNN | Recurrent Neural Network |
SVM | Support Vector Machine |
TRMM | Tropical Rainfall Measuring Mission |
VELMA | Visualizing Ecosystem Land Management Assessments |
DHSVM | Distributed Hydrology Soil Vegetation Model |
MIKE SHE | (Commercially available) Integrated Hydrological Modeling System by DHI |
References
- Panda, C.; Panda, K.C.; Singh, R.M.; Singh, R.; Singh, V.P. A Generalised Hydrological Model for Streamflow Prediction Using Wavelet Ensembling. J. Hydrol. 2025, 655, 132883. [Google Scholar] [CrossRef]
- Dewangan, M.; Vishvakarma, P. Hydrological Modeling and Its Applications: A Review. Int. J. Early Child. Spec. Educ. 2020, 12, 966–971. [Google Scholar]
- Ibrahim, U.A.; Dan’azumi, S. An Overview of Some Hydrological Models in Water Resources Engineering Systems. Arid. Zone J. Eng. Technol. Environ. 2020, 16, 285–292. [Google Scholar]
- Baran-Gurgul, K.; Rutkowska, A. Water Resource Management: Hydrological Modelling, Hydrological Cycles, and Hydrological Prediction. Water 2024, 16, 3689. [Google Scholar] [CrossRef]
- Singson, C.L.; Alejo, L.A.; Balderama, O.F.; Bareng, J.L.R.; Kantoush, S.A. Modeling Climate Change Impact on the Inflow of the Magat Reservoir Using the Soil and Water Assessment Tool (SWAT) Model for Dam Management. J. Water Clim. Change 2023, 14, 633–650. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, S.; Ji, X.; Hong, Z.; Lu, M.; Wang, P. Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River. Land 2021, 10, 521. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; Senoro, D.B.; Tan, F.J. Flood Risk Assessment Using GIS-Based Analytical Hierarchy Process in the Municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Budhathoki, B.R.; Adhikari, T.R.; Shrestha, S.; Awasthi, R.P.; Dawadi, B.; Gao, H.; Dhital, Y.P. Application of Hydrological Models to Streamflow Estimation at Ungauged Transboundary Himalayan River Basin, Nepal. Hydrol. Res. 2024, 55, 859–872. [Google Scholar] [CrossRef]
- Belina, Y.; Kebede, A.; Masinde, M. Comparative Analysis of HEC-HMS and Machine Learning Models for Rainfall-Runoff Prediction in the Upper Baro Watershed, Ethiopia. Hydrol. Res. 2024, 55, 873–889. [Google Scholar] [CrossRef]
- de Paula Netto, M.O.; Coimbra, V.S.; Lagarez Junior, M.L.; Ferreira, A.A.; Rocha, C.H.B. Comparative Analysis of SWAT and HEC-HMS Models for Efficient Watershed Management. Rev. Gestão Soc. e Ambient. 2024, 18, e09931. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Dias, R.L.S.; de Siqueira Castro, J.; dos Santos, V.J.; Calijuri, M.L.; da Silva, D.D. Performance of Hydrological Models in Fluvial Flow Simulation. Ecol. Inform. 2021, 66, 101453. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Holden, J.; Holman, I.P.; Lane, S.N.; Connell, E.O.; et al. A Restatement of the Natural Science Evidence Concerning Flood Management in the UK. Proc. R. Soc. A 2017, 473, 20160706. [Google Scholar] [CrossRef] [PubMed]
- Beven, K. Rainfall-Runoff Modelling: The Primer, 2nd ed.; John Wiley & Sons, Ltd.: Oxford, UK; Chichester, UK; Hoboken, NJ, USA, 2012; ISBN 9781119951001. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 2007, 34, 73–89. [Google Scholar] [CrossRef]
- Özdoğan-Sarıkoç, G.; Dadaser-Celik, F. Physically Based vs. Data-Driven Models for Streamflow and Reservoir Volume Prediction at a Data-Scarce Semi-Arid Basin. Environ. Sci. Pollut. Res. 2024, 31, 39098–39119. [Google Scholar] [CrossRef]
- Tran Tuan, T. Multiple Conceptual Hydrological Models for Simulating Streamflow in Data-Sparse River Basins: An Application of the Vietnamese Cau River Basin. Water Pract. Technol. 2024, 19, 2944–2958. [Google Scholar] [CrossRef]
- Monjardin, C.E.F.; Uy, F.A.A.; Tan, F.; Cruz, F.R.G. Automated Real-Time Monitoring System (ARMS) of Hydrological Parameters for Ambuklao, Binga and San Roque Dams Cascade in Luzon Island, Philippines. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability (SusTech), Phoenix, AZ, USA, 12–14 November 2017. [Google Scholar]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Loukas, A.; Vasiliades, L. Streamflow Simulation Methods for Ungauged and Poorly Gauged Watersheds. Nat. Hazards Earth Syst. Sci. 2014, 14, 1641–1661. [Google Scholar] [CrossRef]
- Fischer, S.; Dallan, E.; Fiori, A.; Grimaldi, S.; Kochanek, K.; Prieto, C.; Reis, D.S.; Volpi, E. Hydrological Design in the HELPING Decade–Inspiring the Community to Innovate the Hydrological Design Concept. Hydrol. Sci. J. 2025, 70, 375–389. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Coulibaly, P.; Samuel, J.; Pietroniro, A.; Harvey, D. Evaluation of Canadian National Hydrometric Network Density Based on WMO 2008 Standards. Can. Water Resour. J. 2013, 38, 159–167. [Google Scholar] [CrossRef]
- Kovacek, D.; Weijs, S. BCUB—A Large-Sample Ungauged Basin Attribute Dataset for British Columbia, Canada. Earth Syst. Sci. Data 2025, 17, 259–275. [Google Scholar] [CrossRef]
- Gal, L.; Grippa, M.; Hiernaux, P.; Peugeot, C.; Mougin, E.; Kergoat, L. Changes in Lakes Water Volume and Runoff over Ungauged Sahelian Watersheds. J. Hydrol. 2016, 540, 1176–1188. [Google Scholar] [CrossRef]
- Tourian, M.J.; Papa, F.; Elmi, O.; Sneeuw, N.; Kitambo, B.; Tshimanga, R.M.; Paris, A.; Calmant, S. Current Availability and Distribution of Congo Basin’s Freshwater Resources. Commun. Earth Environ. 2023, 4, 174. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an Exciting Future for the Hydrological Sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A Decade of Predictions in Ungauged Basins (PUB)-a Review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W.R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S. Majority of Global River Flow Sustained by Groundwater. Nat. Geosci. 2024, 17, 770–777. [Google Scholar] [CrossRef]
- Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; et al. Global Prediction of Extreme Floods in Ungauged Watersheds. Nature 2024, 627, 559–563. [Google Scholar] [CrossRef]
- Huang, P.; Wang, G.; Guo, L.; Mello, C.R.; Li, K.; Ma, J.; Sun, S. Most Global Gauging Stations Present Biased Estimations of Total Catchment Discharge. Geophys. Res. Lett. 2023, 50, e2023GL104253. [Google Scholar] [CrossRef]
- Monjardin, C.E.F.; Transfiguracion, K.M.; Mangunay, J.P.J.; Paguia, K.M.; Uy, F.A.A.; Tan, F.J. Determination of River Water Level Triggering Flood in Manghinao River in Bauan, Batangas, Philippines. J. Mech. Eng. 2021, 18, 181–192. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Le, M.H.; Zhang, R.; Nguyen, B.Q.; Bolten, J.D.; Lakshmi, V. Robustness of Gridded Precipitation Products for Vietnam Basins Using the Comprehensive Assessment Framework of Rainfall. Atmos. Res. 2023, 293, 106923. [Google Scholar] [CrossRef]
- Lu, Z.; Kim, J. A Framework for Studying Hydrology-Driven Landslide Hazards in Northwestern US Using Satellite InSAR, Precipitation and Soil Moisture Observations: Early Results and Future Directions. GeoHazards 2021, 2, 17–40. [Google Scholar] [CrossRef]
- Idowu, D.; Peter, B.G.; Boakye, J.; Cohen, S.; Carter, E. Evaluating Earth Observation Products for Catchment-Scale Operational Flood Monitoring and Risk Management in a Sparsely Gauged to Ungauged River Basin in Nigeria. Int. J. Appl. Earth Obs. Geoinf. 2025, 138, 104445. [Google Scholar] [CrossRef]
- Dembélé, M.; Hrachowitz, M.; Savenije, H.H.G.; Mariéthoz, G.; Schaefli, B. Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resour. Res. 2020, 56, e2019WR026085. [Google Scholar] [CrossRef]
- Feng, D.; Lawson, K.; Shen, C. Mitigating Prediction Error of Deep Learning Streamflow Models in Large Data-Sparse Regions With Ensemble Modeling and Soft Data. Geophys. Res. Lett. 2021, 48, e2021GL092999. [Google Scholar] [CrossRef]
- Arsenault, R.; Brissette, F.; Martel, J.L.; Troin, M.; Lévesque, G.; Davidson-Chaput, J.; Gonzalez, M.C.; Ameli, A.; Poulin, A. A Comprehensive, Multisource Database for Hydrometeorological Modeling of 14,425 North American Watersheds. Sci. Data 2020, 7, 243. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High-Resolution Fields of Global Runoff Combining Observed River Discharge and Simulated Water Balances. Glob. Biogeochem. Cycles 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.; Hay, L.E.; Bock, A.; Viger, R.J.; Blodgett, D.; Brekke, L.; Arnold, J.R.; et al. Development of a Large-Sample Watershed-Scale Hydrometeorological Data Set for the Contiguous USA: Data Set Characteristics and Assessment of Regional Variability in Hydrologic Model Performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef]
- Ouyang, W.; Ye, L.; Chai, Y.; Ma, H.; Chu, J.; Peng, Y.; Zhang, C. A Differentiable, Physics-Based Hydrological Model and Its Evaluation for Data-Limited Basins. J. Hydrol. 2025, 649, 132471. [Google Scholar] [CrossRef]
- Leeming, K.A.; Bloomfield, J.P.; Coxon, G.; Zheng, Y. Functional Data Analysis to Investigate Controls on and Changes in the Seasonality of UK Baseflow. Hydrol. Sci. J. 2025, 70, 522–534. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.K.; Hochreiter, S.; Nearing, G.S. Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Palmer, D.; Koubli, E.; Cole, I.; Betts, T.; Gottschalg, R. Satellite or Ground-Based Measurements for Production of Site Specific Hourly Irradiance Data: Which Is Most Accurate and Where? Sol. Energy 2018, 165, 240–255. [Google Scholar] [CrossRef]
- Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrol. Earth Syst. Sci. 2021, 25, 2045–2062. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. Super Ensemble Learning for Daily Streamflow Forecasting: Large-Scale Demonstration and Comparison with Multiple Machine Learning Algorithms. Neural Comput. Appl. 2021, 33, 3053–3068. [Google Scholar] [CrossRef]
- Li, W.; Kiaghadi, A.; Dawson, C. High Temporal Resolution Rainfall–Runoff Modeling Using Long-Short-Term-Memory (LSTM) Networks. Neural Comput. Appl. 2021, 33, 1261–1278. [Google Scholar] [CrossRef]
- Farfán-Durán, J.F.; Cea, L. Streamflow Forecasting with Deep Learning Models: A Side-by-Side Comparison in Northwest Spain. Earth Sci. Inform. 2024, 17, 5289–5315. [Google Scholar] [CrossRef]
- Arsenault, R.; Martel, J.L.; Brunet, F.; Brissette, F.; Mai, J. Continuous Streamflow Prediction in Ungauged Basins: Long Short-Term Memory Neural Networks Clearly Outperform Traditional Hydrological Models. Hydrol. Earth Syst. Sci. 2023, 27, 139–157. [Google Scholar] [CrossRef]
- Alipour, M.H. Streamflow Prediction in Ungauged Basins Located within Data-Scarce Areas Using XGBoost: Role of Feature Engineering and Explainability. Int. J. River Basin Manag. 2025, 23, 71–92. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; Mangulabnan, R.G.T.; Pugat, G.C.E.; Solmerin, J.G. Artificial Intelligence (AI) in Surface Water Management: A Comprehensive Review of Methods, Applications, and Challenges. Water 2025, 17, 1707. [Google Scholar] [CrossRef]
- Rahman, A.; Jahan, S.; Yildirim, G.; Alim, M.A.; Haque, M.; Rahman, M.M.; Kausher, A.H.M. A Review and Analysis of Water Research, Development, and Management in Bangladesh. Water 2022, 2022, 1834. [Google Scholar] [CrossRef]
- Kamyab, H.; Khademi, T.; Chelliapan, S.; SaberiKamarposhti, M.; Rezania, S.; Yusuf, M.; Farajnezhad, M.; Abbas, M.; Hun Jeon, B.; Ahn, Y. The Latest Innovative Avenues for the Utilization of Artificial Intelligence and Big Data Analytics in Water Resource Management. Results Eng. 2023, 20, 101566. [Google Scholar] [CrossRef]
- Biazar, S.M.; Golmohammadi, G.; Nedhunuri, R.R.; Shaghaghi, S.; Mohammadi, K. Artificial Intelligence in Hydrology: Advancements in Soil, Water Resource Management, and Sustainable Development. Sustainability 2025, 17, 2250. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Wijayarathne, D.; Boodoo, S.; Coulibaly, P.; Sills, D. Evaluation of Radar Quantitative Precipitation Estimates (Qpes) as an Input of Hydrological Models for Hydrometeorological Applications. J. Hydrometeorol. 2020, 21, 1847–1864. [Google Scholar] [CrossRef]
- Thorndahl, S.; Einfalt, T.; Willems, P.; Ellerbæk Nielsen, J.; Ten Veldhuis, M.C.; Arnbjerg-Nielsen, K.; Rasmussen, M.R.; Molnar, P. Weather Radar Rainfall Data in Urban Hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 1359–1380. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Mascaro, G.; Mniszewski, S.; Fasel, P.; Springer, E.P.; Ivanov, V.Y.; Bras, R.L. Real-World Hydrologic Assessment of a Fully-Distributed Hydrological Model in a Parallel Computing Environment. J. Hydrol. 2011, 409, 483–496. [Google Scholar] [CrossRef]
- Sezen, C.; Šraj, M. Improving the Simulations of the Hydrological Model in the Karst Catchment by Integrating the Conceptual Model with Machine Learning Models. Sci. Total Environ. 2024, 926, 171684. [Google Scholar] [CrossRef]
- Lee, J.; Chung, E.S.; Kim, S.; Kim, D. Streamflow Forecasting in Ungauged Basins with CNN-LSTM and Radar-Based Precipitation. J. Hydro-Environ. Res. 2025, 60–61, 100666. [Google Scholar] [CrossRef]
- Gui, Z.; Zhang, F.; Chang, D.; Xie, A.; Yue, K.; Wang, H. A General Method to Improve Runoff Prediction in Ungauged Basins Based on Remotely Sensed Actual Evapotranspiration Data. Water 2023, 15, 3307. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Vieux, B.E. Distributed Hydrologic Modeling Using GIS; Springer: Dordrecht, The Netherlands, 2001; pp. 1–17. [Google Scholar] [CrossRef]
- Islam, Z. A Review on Physically Based Hydrologic Modeling; Department of Civil and Environmental Engineering, University of Alberta: Edmonton, AB, Canada, 2011; p. 46. [Google Scholar] [CrossRef]
- Sidle, R.C. Strategies for Smarter Catchment Hydrology Models: Incorporating Scaling and Better Process Representation. Geosci. Lett. 2021, 8, 24. [Google Scholar] [CrossRef]
- Ibrahim, A.B.; Cordery, I. Estimation of Recharge and Runoff Volumes from Ungauged Catchments in Eastern Australia. Hydrol. Sci. J. 1995, 40, 499–515. [Google Scholar] [CrossRef]
- Nyabeze, W.R. Calibrating a Distributed Model to Estimate Runoff for Ungauged Catchments in Zimbabwe. Phys. Chem. Earth 2005, 30, 625–633. [Google Scholar] [CrossRef]
- Razavi, T.; Coulibaly, P. Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods. J. Hydrol. Eng. 2013, 18, 958–975. [Google Scholar] [CrossRef]
- Asadi, S.; Jimeno-Sáez, P.; López-Ballesteros, A.; Senent-Aparicio, J. Comparison and Integration of Physical and Interpretable AI-Driven Models for Rainfall-Runoff Simulation. Results Eng. 2024, 24, 103048. [Google Scholar] [CrossRef]
- Ng, K.W.; Huang, Y.F.; Koo, C.H.; Chong, K.L.; El-Shafie, A.; Najah Ahmed, A. A Review of Hybrid Deep Learning Applications for Streamflow Forecasting. J. Hydrol. 2023, 625, 130141. [Google Scholar] [CrossRef]
- Souffront Alcantara, M.A.; Nelson, E.J.; Shakya, K.; Edwards, C.; Roberts, W.; Krewson, C.; Ames, D.P.; Jones, N.L.; Gutierrez, A. Hydrologic Modeling as a Service (HMaaS): A New Approach to Address Hydroinformatic Challenges in Developing Countries. Front. Environ. Sci. 2019, 7, 158. [Google Scholar] [CrossRef]
- Clark, M.P.; Rupp, D.E.; Woods, R.A.; Zheng, X.; Ibbitt, R.P.; Slater, A.G.; Schmidt, J.; Uddstrom, M.J. Hydrological Data Assimilation with the Ensemble Kalman Filter: Use of Streamflow Observations to Update States in a Distributed Hydrological Model. Adv. Water Resour. 2008, 31, 1309–1324. [Google Scholar] [CrossRef]
- Wang, X.; Babovic, V. Application of Hybrid Kalman Filter for Improving Water Level Forecast. J. Hydroinformatics 2016, 18, 773–790. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Hu, Y.; Cui, W. Improving the Distributed Hydrological Model Performance in Upper Huai River Basin: Using Streamflow Observations to Update the Basin States via the Ensemble Kalman Filter. Adv. Meteorol. 2016, 2016, 4921616. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, M.; Tao, M.; Zhou, W.; Lu, X.; Xiong, Y.; Li, F.; Wang, Q. The Role of Satellite Remote Sensing in Mitigating and Adapting to Global Climate Change. Sci. Total Environ. 2023, 904, 166820. [Google Scholar] [CrossRef]
- Mu, Y.; Biggs, T.; Shen, S.S.P. Satellite-Based Precipitation Estimates Using a Dense Rain Gauge Network over the Southwestern Brazilian Amazon: Implication for Identifying Trends in Dry Season Rainfall. Atmos. Res. 2021, 261, 105741. [Google Scholar] [CrossRef]
- Aryastana, P.; Liu, C.Y.; Jong-Dao Jou, B.; Cayanan, E.; Punay, J.P.; Chen, Y.N. Assessment of Satellite Precipitation Data Sets for High Variability and Rapid Evolution of Typhoon Precipitation Events in the Philippines. Earth Space Sci. 2022, 9, e2022EA002382. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, T.; Yin, W.; Bateni, S.M.; Jun, C.; Kim, D.; Liu, S.; Xu, Z.; Ming, W.; Wang, J. A Machine Learning Downscaling Framework Based on a Physically Constrained Sliding Window Technique for Improving Resolution of Global Water Storage Anomaly. Remote Sens. Environ. 2024, 313, 114359. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; de Roo, A.; Miralles, D.G.; McVicar, T.R.; Schellekens, J.; Bruijnzeel, L.A. Global-Scale Regionalization of Hydrologic Model Parameters. Water Resour. Res. 2016, 52, 3599–3622. [Google Scholar] [CrossRef]
- Dal Molin, M.; Kavetski, D.; Albert, C.; Fenicia, F. Exploring Signature-Based Model Calibration for Streamflow Prediction in Ungauged Basins. Water Resour. Res. 2023, 59, e2022WR031929. [Google Scholar] [CrossRef]
- El Garnaoui, M.; Boudhar, A.; Nifa, K.; El Jabiri, Y.; Karaoui, I.; El Aloui, A.; Midaoui, A.; Karroum, M.; Mosaid, H.; Chehbouni, A. Nested Cross-Validation for HBV Conceptual Rainfall–Runoff Model Spatial Stability Analysis in a Semi-Arid Context. Remote Sens. 2024, 16, 3756. [Google Scholar] [CrossRef]
- Kim, D.; Jung, I.W.; Chun, J.A. A Comparative Assessment of Rainfall-Runoff Modelling against Regional Flow Duration Curves for Ungauged Catchments. Hydrol. Earth Syst. Sci. 2017, 21, 5647–5661. [Google Scholar] [CrossRef]
- Song, Z.; Xia, J.; Wang, G.; She, D.; Hu, C.; Hong, S. Regionalization of Hydrological Model Parameters Using Gradient Boosting Machine. Hydrol. Earth Syst. Sci. 2022, 26, 505–524. [Google Scholar] [CrossRef]
- Kuana, L.A.; Almeida, A.S.; Mercuri, E.G.F.; Noe, S.M. Regionalization of GR4J Model Parameters for River Flow Prediction in Paraná, Brazil. Hydrol. Earth Syst. Sci. 2024, 28, 3367–3390. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; De Roo, A.; Dutra, E.; Fink, G.; Orth, R.; Schellekens, J. Global Evaluation of Runoff from 10 State-of-the-Art Hydrological Models. Hydrol. Earth Syst. Sci. 2017, 21, 2881–2903. [Google Scholar] [CrossRef]
- Parajka, J.; Merz, R.; Blöschl, G. A Comparison of Regionalisation Methods for Catchment Model Parameters. Hydrol. Earth Syst. Sci. 2005, 9, 157–171. [Google Scholar] [CrossRef]
- Papacharalampous, G.; Tyralis, H. Time Series Features for Supporting Hydrometeorological Explorations and Predictions in Ungauged Locations Using Large Datasets. Water 2022, 14, 1657. [Google Scholar] [CrossRef]
- Bastola, S. The Regionalization of a Parameter of HYMOD, a Conceptual Hydrological Model, Using Data from across the Globe. HydroResearch 2022, 5, 13–21. [Google Scholar] [CrossRef]
- Lan, T.; Zhang, J.; Li, H.; Zhang, H.; Gong, X.; Sun, J.; Chen, Y.D.; Xu, C.Y. Flow Duration Curve Prediction: A Framework Integrating Regionalization and Copula Model. J. Hydrol. 2025, 647, 132364. [Google Scholar] [CrossRef]
- Kiraz, M.; Coxon, G.; Wagener, T. A Signature-Based Hydrologic Efficiency Metric for Model Calibration and Evaluation in Gauged and Ungauged Catchments. Water Resour. Res. 2023, 59, e2023WR035321. [Google Scholar] [CrossRef]
- Ridolfi, E.; Kumar, H.; Bárdossy, A. A Methodology to Estimate Flow Duration Curves at Partially Ungauged Basins. Hydrol. Earth Syst. Sci. 2020, 24, 2043–2060. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Zhang, L.; Wang, Z. Regionalization of Hydrological Modeling for Predicting Streamflow in Ungauged Catchments: A Comprehensive Review. Wiley Interdiscip. Rev. Water 2021, 8, e1487. [Google Scholar] [CrossRef]
- Seleem, O.; Ayzel, G.; de Souza, A.C.T.; Bronstert, A.; Heistermann, M. Towards Urban Flood Susceptibility Mapping Using Data-Driven Models in Berlin, Germany. Geomat. Nat. Hazards Risk 2022, 13, 1640–1662. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wu, X.; Xu, C.Y.; Guo, S.; Chen, X.; Zhang, Z. Robust Meteorological Drought Prediction Using Antecedent SST Fluctuations and Machine Learning. Water Resour. Res. 2021, 57, e2020WR029413. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Chen, J.; Adams, B.J. Integration of Artificial Neural Networks with Conceptual Models in Rainfall-Runoff Modeling. J. Hydrol. 2006, 318, 232–249. [Google Scholar] [CrossRef]
- Bhasme, P.; Vagadiya, J.; Bhatia, U. Enhancing Predictive Skills in Physically-Consistent Way: Physics Informed Machine Learning for Hydrological Processes. J. Hydrol. 2022, 615, 128618. [Google Scholar] [CrossRef]
- Núñez, J.; Cortés, C.B.; Yáñez, M.A. Explainable Artificial Intelligence in Hydrology: Interpreting Black-Box Snowmelt-Driven Streamflow Predictions in an Arid Andean Basin of North-Central Chile. Water 2023, 15, 3369. [Google Scholar] [CrossRef]
- Lipton, Z.C. The Mythos of Model Interpretability. Commun. ACM 2018, 61, 35–43. [Google Scholar] [CrossRef]
- Wilbrand, K.; Taormina, R.; ten Veldhuis, M.C.; Visser, M.; Hrachowitz, M.; Nuttall, J.; Dahm, R. Predicting Streamflow with LSTM Networks Using Global Datasets. Front. Water 2023, 5, 1166124. [Google Scholar] [CrossRef]
- Zhong, L.; Lei, H.; Li, Z.; Jiang, S. Advancing Streamflow Prediction in Data-Scarce Regions through Vegetation-Constrained Distributed Hybrid Ecohydrological Models. J. Hydrol. 2024, 645, 132165. [Google Scholar] [CrossRef]
- Eythorsson, D.; Clark, M. Toward Automated Scientific Discovery in Hydrology: The Opportunities and Dangers of AI Augmented Research Frameworks. Hydrol. Process. 2025, 39, e70065. [Google Scholar] [CrossRef]
- Monjardin, C.E.F.; Uy, F.A.A.; Tan, F.J.; Carpio, R.C.; Javate, K.C.P.; Laquindanum, J.P. Application of Artificial Neuro-Fuzzy Interference System in Rainfall-Runoff Modelling at Imus River, Cavite. In Proceedings of the 2020 IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Deng, Y.; Pan, D.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Daily Streamflow Forecasting Using Networks of Real-Time Monitoring Stations and Hybrid Machine Learning Methods. Water 2024, 16, 1284. [Google Scholar] [CrossRef]
- Nogueira Filho, F.J.M.; Souza Filho, F.D.A.; Porto, V.C.; Rocha, R.V.; Estácio, Á.B.S.; Martins, E.S.P.R. Deep Learning for Streamflow Regionalization for Ungauged Basins: Application of Long-Short-Term-Memory Cells in Semiarid Regions. Water 2022, 14, 1318. [Google Scholar] [CrossRef]
- Singh, L.; Mishra, P.K.; Pingale, S.M.; Khare, D.; Thakur, H.P. Streamflow Regionalisation of an Ungauged Catchment with Machine Learning Approaches. Hydrol. Sci. J. 2022, 67, 886–897. [Google Scholar] [CrossRef]
- Kratzert, F.; Gauch, M.; Klotz, D.; Nearing, G. HESS Opinions: Never Train a Long Short-Term Memory (LSTM) Network on a Single Basin. Hydrol. Earth Syst. Sci. 2024, 28, 4187–4201. [Google Scholar] [CrossRef]
- Ayzel, G.; Kurochkina, L.; Abramov, D.; Zhuravlev, S. Development of a Regional Gridded Runoff Dataset Using Long Short-Term Memory (LSTM) Networks. Hydrology 2021, 8, 6. [Google Scholar] [CrossRef]
- Rouse, R.E.; Khamis, D.; Hosking, S.; McRobie, A.; Shuckburgh, E. Streamflow Prediction Using Artificial Neural Networks and Soil Moisture Proxies. Environ. Data Sci. 2025, 4, e5. [Google Scholar] [CrossRef]
- Wanders, N.; Bierkens, M.F.P.; de Jong, S.M.; de Roo, A.; Karssenberg, D. The Benefits of Using Remotely Sensed Soil Moisture in Parameter Identification of Large-Scale Hydrological Models. Water Resour. Res. 2014; 50, 6874–6891. [Google Scholar] [CrossRef]
- Sun, W.C.; Ishidaira, H.; Bastola, S. Towards Improving River Discharge Estimation in Ungauged Basins: Calibration of Rainfall-Runoff Models Based on Satellite Observations of River Flow Width at Basin Outlet. Hydrol. Earth Syst. Sci. 2010, 14, 2011–2022. [Google Scholar] [CrossRef]
- Li, D.; Marshall, L.; Liang, Z.; Sharma, A.; Zhou, Y. Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process-Based Hydrological Models. Water Resour. Res. 2021, 57, e2021WR029772. [Google Scholar] [CrossRef]
- Ghobadi, F.; Kang, D. Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study. Water 2022, 14, 3672. [Google Scholar] [CrossRef]
- Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS Data Set: Catchment Attributes and Meteorology for Large-Sample Studies. Hydrol. Earth Syst. Sci. 2017, 21, 5293–5313. [Google Scholar] [CrossRef]
- Liu, S.; Lu, D.; Painter, S.L.; Griffiths, N.A.; Pierce, E.M. Uncertainty Quantification of Machine Learning Models to Improve Streamflow Prediction under Changing Climate and Environmental Conditions. Front. Water 2023, 5, 1150126. [Google Scholar] [CrossRef]
- Di, D.; Bai, Y.; Fang, H.; Sun, B.; Wang, N.; Li, B. Intelligent Siltation Diagnosis for Drainage Pipelines Using Weak-Form Analysis and Theory-Guided Neural Networks in Geo-Infrastructure. Autom. Constr. 2025, 176, 106246. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, Q.; Luo, J.; Ma, X.; Liu, G. Characterizing Subsurface Structures From Hard and Soft Data With Multiple-Condition Fusion Neural Network. Water Resour. Res. 2024, 60, e2024WR038170. [Google Scholar] [CrossRef]
- Jiang, S.; Sweet, L.B.; Blougouras, G.; Brenning, A.; Li, W.; Reichstein, M.; Denzler, J.; Shangguan, W.; Yu, G.; Huang, F.; et al. How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences. Earth’s Futur. 2024, 12, e2024EF004540. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, E.; Li, D.; Li, J.; Wang, Y.; Zhao, W.; Yang, Z. Annual Multi-Objective Optimization Model and Strategy for Scheduling Cascade Reservoirs on the Yellow River Mainstream. J. Hydrol. 2025, 659, 133306. [Google Scholar] [CrossRef]
- Song, J.; Ma, C.; Ran, M. AirGPT: Pioneering the Convergence of Conversational AI with Atmospheric Science. npj Clim. Atmos. Sci. 2025, 8, 179. [Google Scholar] [CrossRef]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning Yarin. Proc. 33rd Int. Conf. Mach. Learn. 2016, 48, 1050–1059. [Google Scholar]
- Farzana, S.Z. Uncertainty in Hydrological Modelling: A Review. Int. J. Hydrol. Res. 2023, 8, 1–13. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a Parsimonious Model for Streamflow Simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Janga, B.; Asamani, G.P.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Tursun, A.; Xie, X.; Wang, Y.; Peng, D.; Liu, Y.; Zheng, B.; Wu, X.; Nie, C. Streamflow Prediction in Human-Regulated Catchments Using Multiscale Deep Learning Modeling With Anthropogenic Similarities. Water Resour. Res. 2024, 60, e2023WR036853. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Zhou, L.; Ma, C.; Sun, W. Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input. Remote Sens. 2025, 17, 967. [Google Scholar] [CrossRef]
- Gado, T.A.; Zamzam, D.H.; Guo, Y.; Zeidan, B.A. Evaluation of Satellite-Based Rainfall Estimates in the Upper Blue Nile Basin. J. Earth Syst. Sci. 2024, 133, 27. [Google Scholar] [CrossRef]
- Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Evaluation of Global Terrestrial Evapotranspiration Using State-of-the-Art Approaches in Remote Sensing, Machine Learning and Land Surface Modeling. Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [Google Scholar] [CrossRef]
- Liou, Y.A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms-a Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Hu, Z.; Zhang, J. Remote Sensing of Watershed: Towards a New Research Paradigm. Remote Sens. 2023, 15, 2569. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Huang, Y.; Chen, X.; Chen, S.; Duan, Z. Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China. Remote Sens. 2019, 11, 431. [Google Scholar] [CrossRef]
- Monjardin, C.E.; Cabundocan, C.; Ignacio, C.; Tesnado, C.J. Impact of Climate Change on the Frequency and Severity of Floods in the Pasig-Marikina River Basin. E3S Web Conf. 2019, 117, 5. [Google Scholar] [CrossRef]
- Lufi, S.; Ery, S.; Rispiningtati, R. Hydrological Analysis of TRMM (Tropical Rainfall Measuring Mission) Data in Lesti Sub Watershed. Civ. Environ. Sci. 2020, 3, 18–30. [Google Scholar] [CrossRef]
- Sun, T.; Yan, N.; Zhu, W.; Zhuang, Q. Assessing a Machine Learning-Based Downscaling Framework for Obtaining 1km Daily Precipitation from GPM Data. Heliyon 2024, 10, e36368. [Google Scholar] [CrossRef]
- Meema, T.; Wattanasetpong, J.; Wichakul, S. Integrating Machine Learning and Zoning-Based Techniques for Bias Correction in Gridded Precipitation Data to Improve Hydrological Estimation in the Data-Scarce Region. J. Hydrol. 2025, 646, 132356. [Google Scholar] [CrossRef]
- Gyasi-Agyei, Y.; Obuobie, E.; Yu, B.; Addi, M.; Yahaya, B. Optimal Selection of Daily Satellite Precipitation Product Based on Structural Similarity Index at 1 Km Resolution for the Pra Catchment, Ghana. Sci. Rep. 2023, 13, 16702. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Ahmed, M.; Murgulet, D.; Wiese, D. Filling Temporal Gaps Within and Between GRACE and GRACE-FO Records: Advances, Challenges, and Future Opportunities. Earth Sci. Rev. 2021. in review. [Google Scholar] [CrossRef]
- Siabi, N.; Sanaeinejad, S.H.; Ghahraman, B. Effective Method for Filling Gaps in Time Series of Environmental Remote Sensing Data: An Example on Evapotranspiration and Land Surface Temperature Images. Comput. Electron. Agric. 2022, 193, 106619. [Google Scholar] [CrossRef]
- Dasgupta, R.; Das, S.; Banerjee, G.; Mazumdar, A. Revisit Hydrological Modeling in Ungauged Catchments Comparing Regionalization, Satellite Observations, and Machine Learning Approaches. HydroResearch 2024, 7, 15–31. [Google Scholar] [CrossRef]
- Mumtaz, M.; Jahanzaib, S.H.; Hussain, W.; Khan, S.; Youssef, Y.M.; Qaysi, S.; Abdelnabi, A.; Alarifi, N.; Abd-Elmaboud, M.E. Synergy of Remote Sensing and Geospatial Technologies to Advance Sustainable Development Goals for Future Coastal Urbanization and Environmental Challenges in a Riverine Megacity. ISPRS Int. J. Geo-Information 2025, 14, 30. [Google Scholar] [CrossRef]
- Pellet, V.; Aires, F.; Yamazaki, D.; Zhou, X.; Paris, A. A First Continuous and Distributed Satellite-Based Mapping of River Discharge over the Amazon. J. Hydrol. 2022, 614, 128481. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood Inundation Mapping at Ungauged Basins Using Coupled Hydrometeorological-Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood in Volos City, Greece. Water 2019, 11, 2328. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Du, T.L.T.; Park, H.; Chang, C.H.; Choi, S.; Chae, H.; Nelson, E.J.; Hossain, F.; Kim, D.; Lee, H. Estimating the Impacts of Ungauged Reservoirs Using Publicly Available Streamflow Simulations and Satellite Remote Sensing. Remote Sens. 2023, 15, 4563. [Google Scholar] [CrossRef]
- Adeyinka Idowu, A.; Olamide Abigael, A.; Babatunde Kazeem, A.; Modupe Beatrice, O. Design, Fabrication and Evaluation of Electrically-Operated Groundnut Roasting Machine. Am. J. Eng. Technol. Manag. 2020, 5, 48. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Bates, P.; Neal, J.; Tooth, S.; Hawker, L.; Maffei, C. Digital Elevation Models for Topographic Characterisation and Flood Flow Modelling along Low-Gradient, Terminal Dryland Rivers: A Comparison of Spaceborne Datasets for the Río Colorado, Bolivia. J. Hydrol. 2020, 591, 125617. [Google Scholar] [CrossRef]
- Santillan, J.R.; Makinano-Santillan, M.; Makinano, R.M. Vertical Accuracy Assessment of ALOS World 3D—30M Digital Elevation Model over Northeastern Mindanao, Philippines. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5374–5377. [Google Scholar] [CrossRef]
- Chatrabhuj; Meshram, K.; Mishra, U.; Omar, P.J. Integration of Remote Sensing Data and GIS Technologies in River Management System. Discov. Geosci. 2024, 2, 67. [Google Scholar] [CrossRef]
- Islam, N.; Irshad, K. Artificial Ecosystem Optimization with Deep Learning Enabled Water Quality Prediction and Classification Model. Chemosphere 2022, 309, 136615. [Google Scholar] [CrossRef]
- Gacul, L.-A.; Ferrancullo, D.; Gallano, R.; Fadriquela, K.J.; Mendez, K.J.; Morada, J.R.; Morgado, J.K.; Gacu, J. GIS-Based Identification of Flood Risk Zone in a Rural Municipality Using Fuzzy Analytical Hierarchy Process (FAHP). Rev. Int. Géomatique 2024, 33, 295–320. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; de Jesus, K.L.M.; Senoro, D.B. GIS-Based Risk Assessment of Structure Attributes in Flood Zones of Odiongan, Romblon, Philippines. Buildings 2023, 13, 506. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Kisi, O.; Demir, V. Enhancing Long-Term Streamflow Forecasting and Predicting Using Periodicity Data Component: Application of Artificial Intelligence. Water Resour. Manag. 2016, 30, 4125–4151. [Google Scholar] [CrossRef]
Model Type | Key Characteristics | Strengths | Limitations | Key References |
---|---|---|---|---|
Distributed Models | Physically based; spatially explicit (e.g., MIKE SHE, DHSVM) | High accuracy; captures heterogeneity | Data- and compute-intensive | [8,41,65,66,67,68] |
Data Assimilation | Real-time updating (e.g., EnKF, variational) | Improve short-term forecasts | Requires real-time data, high complexity | [73,74,75] |
Remote Sensing Integration | Uses satellite data (e.g., rainfall, NDVI) for calibration | Enhances model realism in data-scarce areas | Data conflicts; equifinality issues | [66,75] |
Lumped Models | Simplified, catchment-scale (e.g., HBV, GR4J) | Low data needs; widely used | Ignores spatial variability | [80,81,82,83,85,93] |
Regionalization Methods | Parameter transfer using proximity or similarity | Enables lumped models in ungauged basins | Less accurate in heterogeneous regions | [85,88] |
Signature Transfer | Aligns flow metrics (e.g., FDC, BFI) across basins | Improves behavioral realism | Sensitive to timing mismatches | [81,90,91,92] |
Aspect | Details/Highlights | Research Remarks | References |
---|---|---|---|
AI Evolution in Hydrology | From early use of ANNs to advanced ML (e.g., RF, SVM, GBM) and DL (e.g., LSTM, CNN), a growing trend toward hybrid and physics-informed models. | Demonstrates the trajectory from empirical black-box learning to physically constrained approaches, highlighting the need for model frameworks that balance accuracy and interpretability. | [19,44] |
Machine Learning (ML) | Includes RF, SVM, GBM; used for flood prediction, drought forecasting, evapotranspiration estimation; interpretable but limited in extrapolation. | Robust for pattern recognition and moderately interpretable, but struggles with extrapolation under non-stationary climate conditions. | [94,95] |
Deep Learning (DL) | RNN, LSTM, and CNN dominate; excellent for time-series rainfall-runoff modeling and learning long-term dependencies. | LSTM models outperform many benchmarks but remain sensitive to hyperparameter tuning (sequence length, learning rate) and require large datasets for reliable generalization. | [43] |
Hybrid/Physics-Informed AI | Combines data-driven methods with physical laws; more robust and physically consistent; bridges empirical and mechanistic modeling. | Offers stronger robustness and physical consistency, promising direction to mitigate black-box limitations while maintaining predictive power. | [96,97] |
Comparison of Physical Models | AI models like LSTM outperform SWAT or VIC in ungauged basins but lack transparency and physical realism; physically based models remain more interpretable but data-intensive. | Reveals trade-offs: AI excels in accuracy but lacks physical transparency; physically based models remain more interpretable but demand high-quality input data. | [38,98] |
Explainable AI (XAI) | XAI improves the interpretability of black-box models; interpretable networks and frameworks are emerging. | Essential for bridging trust gaps between stakeholders and model users, emerging tools allow the identification of influential hydrological drivers in predictions. | [99,100] |
Challenges in AI Hydrology | Overfitting, poor extrapolation in climate-change contexts, and large data requirements, mitigated by standardized datasets. | Persistent limitations necessitate standardized datasets, benchmarking protocols, and improved regularization for operational deployment. | [42,101] |
Future Directions | Emphasis on hybrid models that merge AI with physics; caution against overreliance on black-box models. | Encourages blending AI’s predictive power with hydrological reasoning; cautions against blind reliance on data-driven models without physical grounding. | [102,103] |
Approach | Strengths | Weaknesses | Applicability in Ungauged Basins |
---|---|---|---|
PINNs | Physically consistent; reduces equifinality | High computational cost; complex PDE integration | Suitable for data-scarce basins requiring process fidelity |
GNNs | Captures spatial connectivity; scalable for large networks | Needs accurate static descriptors; interpretability issues | Effective for regionalization and routing |
Foundation Models | Transferable across basins; reduces training effort | Requires large pretraining datasets; ethical concerns | Emerging for global hydrology |
UQ Frameworks | Provides predictive uncertainty; supports decision-making | Computationally demanding; lacks standardization | Essential for flood/drought risk forecasting |
Dimension | Traditional Models | AI-Based Models |
---|---|---|
Theoretical Basis | Based on physical or conceptual equations of hydrology | Data-driven; may integrate physics (PINNs) |
Interpretability | High (parameters linked to physical processes) | Low to Moderate (often black-box; improved in hybrid/physics-guided models) |
Data Requirements | Moderate (needs discharge & climate inputs; limited spatial resolution) | High (requires large datasets for training; sensitive to input quality) |
Calibration Effort | Significant manual calibration; sensitive to initial parameters | Automated optimization; less reliance on manual calibration |
Uncertainty Handling | Handled via probabilistic calibration (GLUE, Bayesian) | Advanced UQ via Bayesian DL, ensembles, stochastic LSTMs |
Transferability | Limited (requires recalibration for new basin) | High (with pretraining or transfer learning); strong for regionalization |
Computational Demand | Low to Moderate | High (depending on model architecture and training resources) |
Scalability | Moderate (constrained by physical assumptions) | High (suitable for global/regional datasets) |
Adaptability to Ungauged Basins | Moderate; relies on parameter regionalization | High with GNNs, foundation models, and hybrid AI |
Dataset | Provider | Key Variables | Spatial Resolution | Temporal Resolution | Common Hydrological Applications |
---|---|---|---|---|---|
MODIS (Terra & Aqua) | NASA | NDVI, EVI, LST, albedo, LAI, land cover | 250 m–1 km | Daily | ET estimation, vegetation dynamics, drought detection, runoff partitioning |
TRMM (3B42) | NASA & JAXA | Precipitation (3 h) | ~0.25° (~25 km) | 3 hourly | Rainfall-runoff modeling, flood analysis, and model forcing in ungauged basins |
GPM (IMERG) | NASA & JAXA | Precipitation (half-hourly) | ~0.1° (~10 km) | 30 min | Real-time flood forecasting, streamflow simulation, precipitation downscaling |
Task | Remote Sensing Inputs | AI Techniques | Hydrological Outcome | Reference |
---|---|---|---|---|
Catchment boundary mapping | DEM (SRTM/ALOS) | Convolutional Neural Networks (CNN) | Automatic delineation of drainage networks | [146,147,148] |
Catchment classification | NDVI, precipitation proxies, elevation, land cover | PCA, clustering, k-means | Grouping of catchments by hydrologic similarity | [141,142] |
Streamflow estimation | Satellite rainfall, NDVI, LST, DEM slopes | LSTM, SVR, Random Forest | Discharge simulation without gauge station data | [70,142] |
Flood mapping | Precipitation, DEM, land cover, hydraulic parameters | Hybrid ML + hydrodynamic modeling | Event-scale inundation mapping in ungauged watersheds | [144,149] |
Aspect | Observations | References |
---|---|---|
Evaluation Metrics | Standard metrics include NSE, R2, RMSE, and MAE; however, use is inconsistent and not always tied to hydrological significance. | [67,92,107,143] |
Uncertainty and Bias Assessment | Rarely addressed; only a few studies report confidence intervals or probabilistic outputs in ungauged basins. | [130,137] |
Validation Techniques | LOOCV and k-fold are used inconsistently; limited transparency in split strategies and validation logic. | [113,130] |
Comparative Benchmarks | Lack of systematic comparison between AI and traditional models under identical conditions. | [58,109,143] |
Interpretability and Explainability | Rare reporting of SHAP values, feature attribution, or model interpretability measures. | [79,130] |
Reproducibility of Evaluation | Few studies provide access to datasets, code, or model parameters used in evaluation. | [75,111,137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gacu, J.G.; Monjardin, C.E.F.; Mangulabnan, R.G.T.; Mendez, J.C.F. Application of Artificial Intelligence in Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds: A Review. Water 2025, 17, 2722. https://doi.org/10.3390/w17182722
Gacu JG, Monjardin CEF, Mangulabnan RGT, Mendez JCF. Application of Artificial Intelligence in Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds: A Review. Water. 2025; 17(18):2722. https://doi.org/10.3390/w17182722
Chicago/Turabian StyleGacu, Jerome G., Cris Edward F. Monjardin, Ronald Gabriel T. Mangulabnan, and Jerime Chris F. Mendez. 2025. "Application of Artificial Intelligence in Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds: A Review" Water 17, no. 18: 2722. https://doi.org/10.3390/w17182722
APA StyleGacu, J. G., Monjardin, C. E. F., Mangulabnan, R. G. T., & Mendez, J. C. F. (2025). Application of Artificial Intelligence in Hydrological Modeling for Streamflow Prediction in Ungauged Watersheds: A Review. Water, 17(18), 2722. https://doi.org/10.3390/w17182722