Morphodynamic Controls on Thermal Plume Dispersion at River Mouths: Insights from Field Data and Numerical Modeling
Abstract
1. Introduction
2. Methodology
2.1. Case Study
2.2. Field Measurements
2.3. Numerical Model
2.4. Initial and Boundary Conditions
3. Results
3.1. Field Study Observations
3.1.1. Morphometry of River Mouth Spit
3.1.2. Bathymetry
3.1.3. Oceanography
3.2. Thermal Discharge Dispersion
Calibration and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodds, W.K.; Whiles, M.R. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Micheletti, W.; Burns, J.M. Emerging issues and needs in power plant cooling systems. In Proceedings of the Workshop “Electric Utilities and Water: Emerging Issues and R&D Needs”; Electric Power Research Institute: Pittsburgh, PA, USA, 2002; pp. 1–5. [Google Scholar]
- de Souza, J.N.M.; da C. Souza, A.R.; Melo, L.; Costa, A. The dynamic behavior of once-through cooling water systems under fouling phenomena. Heat Transf. Eng. 2021, 43, 1271–1279. [Google Scholar] [CrossRef]
- Jovčevski, M.; Paunović, M.L.; Stojkovski, F.; Marko, M. Thermal pollution of a thermal power plant with once-through cooling systems: A numerical study. Innov. Mech. Eng. 2022, 1, 128–138. [Google Scholar]
- Wang, H.; Qiu, B.; Zhao, F.; Yan, T.; Li, C. Research on enhancing power plant net power by integrating modeling heat transfer and operation optimization of once-through cooling water system. Case Stud. Therm. Eng. 2024, 61, 104966. [Google Scholar] [CrossRef]
- Huang, Q.; Zhi, Y.; Zhang, R.; Du, X.; Zhang, J.; Wang, J. Flow heat transfer characteristics and dynamic response of once-through cooling water system in nuclear power plants under complex operating conditions. Energies 2025, 18, 1207. [Google Scholar] [CrossRef]
- Gaeta, M.G.; Samaras, A.G.; Archetti, R. Numerical investigation of thermal discharge to coastal areas: A case study in South Italy. Environ. Model. Softw. 2020, 124, 104596. [Google Scholar] [CrossRef]
- Bleninger, T.; Jirka, G.H. Mixing zone regulation for effluent discharges into EU waters. Water Manag. 2011, 164, 395–406. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Water Quality Standards Handbook: Second Edition (Chapter 5: Mixing Zones); Technical Report; U.S. EPA, Office of Water: Washington, DC, USA, 1994. [Google Scholar]
- Marmorino, G.; Savelyev, I.; Smith, G.B. Surface thermal structure in a shallow-water, vertical discharge from a coastal power plant. Environ. Fluid Mech. 2015, 15, 207–229. [Google Scholar] [CrossRef]
- Kong, G.; Guan, W. Diffusion characteristics and mechanisms of thermal plumes from coastal power plants: A numerical simulation study. J. Mar. Sci. Eng. 2024, 12, 429. [Google Scholar] [CrossRef]
- Braunschweig, F.; Chambel, P.; Martins, F.; Neves, R. A methodology to estimate the residence time of estuaries. Ocean Dyn. 2003, 53, 137–145. [Google Scholar] [CrossRef]
- Salgueiro, D.V.; de Pablo, H.; Neves, R.; Mateus, M. Modelling the Thermal Effluent of a Near Coast Power Plant (Sines, Portugal). Rev. Gestão Costeira Integr. 2015, 15, 533–544. [Google Scholar] [CrossRef]
- Thai, T.H.; Tri, D.Q. Modeling the Effect of Thermal Diffusion Process from Nuclear Power Plants in Vietnam. Energy Power Eng. 2017, 9, 403–418. [Google Scholar] [CrossRef]
- Aljohani, N.S.; Kavil, Y.N.; Shanas, P.R.; Al-Farawati, R.K.; Shabbaj, I.I.; Aljohani, N.H.; Turki, A.J.; Abdel Salam, M. Environmental impacts of thermal and brine dispersion using hydrodynamic modelling for Yanbu desalination plant, on the eastern coast of the Red Sea. Sustainability 2022, 14, 4389. [Google Scholar] [CrossRef]
- Durán-Colmenares, A.; Barrios-Piña, H.; Ramírez-León, H. Numerical modeling of water thermal plumes emitted by thermal power plants. Water 2016, 8, 482. [Google Scholar] [CrossRef]
- Laguna-Zarate, L.; Barrios-Piña, H.; Ramírez-León, H.; García-Díaz, R.; Becerril-Piña, R. Analysis of thermal plume dispersion into the sea by remote sensing and numerical modeling. J. Mar. Sci. Eng. 2021, 9, 1437. [Google Scholar] [CrossRef]
- Salehi, M. Thermal recirculation modeling for power plants in an estuarine environment. J. Mar. Sci. Eng. 2017, 5, 5. [Google Scholar] [CrossRef]
- Petersen, D.; Deigaard, R.; Fredsøe, J. Modelling the morphology of sandy spits. Coast. Eng. 2008, 55, 671–684. [Google Scholar] [CrossRef]
- Qi, Y.; Yu, Q.; Gao, S.; Li, Z.; Fang, X.; Guo, Y. Morphological evolution of river mouth spits: Wave effects and self-organization patterns. Estuar. Coast. Shelf Sci. 2021, 262, 107567. [Google Scholar] [CrossRef]
- Anthony, E.J. Wave influence in the construction, shaping and destruction of river deltas: A review. Mar. Geol. 2015, 361, 53–78. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Hao, Q.Z.H.J. Effects of topography on diffusion of thermal discharge in power plant. Procedia Environ. Sci. 2011, 11, 618–623. [Google Scholar] [CrossRef]
- Dan, S.; Walstra, D.J.R.; Stive, M.J.F.; Panin, N. Processes controlling the development of a river mouth spit. Mar. Geol. 2011, 280, 116–129. [Google Scholar] [CrossRef]
- Saengsupavanich, C. Morphological evolution of sand spits in Thailand. Mar. Geod. 2021, 44, 432–453. [Google Scholar] [CrossRef]
- Taveneau, A.; Almar, R.; Bergsma, E.W. On the cyclic behavior of wave-driven sandspits with implications for coastal zone management. Estuar. Coast. Shelf Sci. 2024, 303, 108798. [Google Scholar] [CrossRef]
- Kouwen, N.C.; Ton, A.M.; Vos, S.E.; Vijverberg, T.; Reniers, A.J.H.M.; Aarninkhof, S.G.J. Quantifying spit growth and its hydrodynamic drivers in wind-dominated lake environments. Geomorphology 2023, 437, 1–18. [Google Scholar] [CrossRef]
- Pradhan, U.; Mishra, P.; Mohanty, P.K.; Behera, B. Formation, growth and variability of sand spit at Rushikulya River mouth, South Odisha Coast, India. Procedia Eng. 2015, 116, 963–970. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, C.; Zhou, F. Ocean Observation System Design of Mooring Buoy and Benthic Node with Electro-Optical-Mechanical Cable. Front. Mar. Sci. 2022, 9, 1018751. [Google Scholar] [CrossRef]
- Leeder, M.R.; Bridges, P.H. Flow separation in meander bends. Nature 1975, 253, 338–339. [Google Scholar] [CrossRef]
- Heidari, N.; Yagci, O.; Aksel, M. Midchannel islands in lowland river corridors and their impacts on flow structure and morphology: A numerical based conceptual analysis. Ecol. Eng. 2022, 173, 106419. [Google Scholar] [CrossRef]
- Heidari, N.; Aksel, M.; Yağci, O.; Valyrakis, M. A numerical study of the flow patterns around midchannel islands in lowland rivers and their possible biogeomorphological impacts. Int. J. Environ. Geoinformatics 2023, 10, 154–175. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Technical Guidance Manual for Performing Waste Load Allocations; Technical Report; USEPA: Washington, DC, USA, 2001. [Google Scholar]
- Prats, J.; Val, R.; Dolz, J.; Armengol, J. Water temperature modeling in the Lower Ebro River (Spain): Heat fluxes, equilibrium temperature, and magnitude of alteration caused by reservoirs and thermal effluent. Water Resour. Res. 2012, 48, W05523. [Google Scholar] [CrossRef]
- Marques, F.; Lopez, J.M. Impact of nonuniform ambient stratification on thermal plume dynamics. Phys. Fluids 2013, 25, 043602. [Google Scholar] [CrossRef]
- Moulton, M.; Chickadel, C.C.; Thomson, J. Warm and cool nearshore plumes connecting the surf zone to the inner shelf. Geophys. Res. Lett. 2021, 48, e2020GL091675. [Google Scholar] [CrossRef]
- Hao, R.; Qiao, L.; Han, L.; Tian, C. Experimental study on the effect of heat-retaining and diversion facilities on thermal discharge from a power plant. Water 2020, 12, 2267. [Google Scholar] [CrossRef]
- Langford, T.E. Ecological Effects of Thermal Discharges; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
Buoy | Planar Distance (m) | Depth (m) | Latitude (°N) | Longitude (°E) |
---|---|---|---|---|
b0 | 0 | 0.5 | 37.0242 | 27.9107 |
b50 | 50 | 2.5 | 37.0236 | 27.9108 |
b100 | 100 | 8.5 | 37.0230 | 27.9111 |
b500 | 500 | 39.5 | 37.0213 | 27.9152 |
Scenario | Direction | Height (m) | Period (s) |
---|---|---|---|
1 | South | 0.5 | 4 |
2 | South | 1.0 | 4 |
3 | South | 1.5 | 4 |
4 | Southwest | 0.5 | 4 |
5 | Southwest | 1.0 | 4 |
6 | Southwest | 1.5 | 4 |
Parameter | Value |
---|---|
Water level | 0 m |
Ambient sea water temperature (summer condition) | 27 °C |
Discharge temperature | 31 °C |
Salinity | 39 PSU |
Domain features | High-resolution |
Boundary condition (seabed) | No-slip wall |
L (m) | w (m) | s (m) | (m) | |
---|---|---|---|---|
June 2004 | 39.415 | 5.832 | 6.902 | 12.734 |
March 2009 | 88.158 | 17.924 | 4.703 | 22.627 |
April 2013 | 61.305 | 17.907 | 5.111 | 23.018 |
April 2016 | 75.768 | 6.902 | 9.883 | 16.785 |
November 2020 | 77.143 | 16.524 | 9.039 | 25.563 |
March 2021 | 65.758 | 17.049 | N/A | 17.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari, N.; Aksel, M.; Yagci, O.; Erbisim, M.Y.; Cokgor, S.; Valyrakis, M. Morphodynamic Controls on Thermal Plume Dispersion at River Mouths: Insights from Field Data and Numerical Modeling. Water 2025, 17, 2721. https://doi.org/10.3390/w17182721
Heidari N, Aksel M, Yagci O, Erbisim MY, Cokgor S, Valyrakis M. Morphodynamic Controls on Thermal Plume Dispersion at River Mouths: Insights from Field Data and Numerical Modeling. Water. 2025; 17(18):2721. https://doi.org/10.3390/w17182721
Chicago/Turabian StyleHeidari, Naghmeh, Murat Aksel, Oral Yagci, Mehmet Yusuf Erbisim, Sevket Cokgor, and Manousos Valyrakis. 2025. "Morphodynamic Controls on Thermal Plume Dispersion at River Mouths: Insights from Field Data and Numerical Modeling" Water 17, no. 18: 2721. https://doi.org/10.3390/w17182721
APA StyleHeidari, N., Aksel, M., Yagci, O., Erbisim, M. Y., Cokgor, S., & Valyrakis, M. (2025). Morphodynamic Controls on Thermal Plume Dispersion at River Mouths: Insights from Field Data and Numerical Modeling. Water, 17(18), 2721. https://doi.org/10.3390/w17182721