Shifts in Precipitation Variability near the Danube Delta Biosphere Reserve (1965–2019)
Abstract
1. Introduction
2. Study Area and Data Series
- -
- the total annual precipitation series, denoted by ANTOT (Figure 1 (top, right));
- -
- the total monthly precipitation series that spans January 1965 to December 2019, denoted by MTOT (Figure 2a);
- -
- the monthly series recorded each month (e.g., January series, formed by the precipitation recorded in January from 1965 to 2019, February series, etc.) (Figure 2b–e).
3. Methodology
- (1)
- Computation of the basic statistics and detection of outliers.
- (2)
- Testing the hypothesis that the series is Gaussian against non-normality by the Shapiro-Wilks test [46]. This step is important when applying the CPD and trend tests, given that some of them rely on the normality hypothesis.
- (3)
- Build the autocorrelation function to evaluate the series autocorrelation.
- (4)
- (5)
- Determine the CPs.
- Compute the average of the data series, ;
- Initiate the cumulative sum by zero and compute recurrently these sums by adding to the previous one the deviation of the series value from the mean;
- Determine the range and amplitude of the series sums (i.e., the difference between the maximum and minimum sums).
- Bootstrap the data series.
- Determine the amplitude of the new sums’ series.
- Determine the confidence level of the CP apparition CL(%) as the ratio between the number of samples for which the value obtained at v. is smaller than that from iii.
- (6)
- Study of trend existence.
- (7)
- Decompose the MTOT to emphasize the trend and seasonality.
- (8)
- Decompose the MTOT into IMFs using the Empirical Mode Decomposition method, to determine the short and long-term variation in the precipitation series [60,61], by the following procedure.
- Build the lower and upper envelopes by interpolating the local minima and maxima, respectively;
- Build the average of the lower and upper envelopes;
- Compute the detail component, h, as the difference between the series and the mean envelope;
- Check if h is an IMF, i.e.,
- o
- There is an equal number of zero-crossings and extrema, or the difference between them is 1;
- o
- The average of the lower and upper envelopes of h is zero everywhere;
- If h does not fulfill the IMF conditions, repeat all stages with h instead of the raw series.
- If h fulfills the IMF conditions, stop. At that moment, the series will be written as a sum of IMFs and a residual.
4. Results
5. Discussion
5.1. Discussions of the Results
5.2. Comparative Discussions with the Results for the Monthly Sulina Series
5.3. Implications of the Study for Regional Planning
5.3.1. Implications for Planning in the Danube Delta Resulted from the Statistical Analysis
- Dynamic hydrological models that integrate local precipitation trends and Danube River discharge;
- Ecological flow maintenance policies to support wetland biodiversity during dry periods;
- Flexible flood control mechanisms that prioritize nature-based solutions over hard infrastructure alone;
- Real-time hydrometeorological monitoring systems that provide actionable intelligence for basin-scale coordination
5.3.2. Restoring and Rewilding Solutions for European River Delta
- Integrated Delta Management: Combining economic development in port areas with ecological conservation.
- Flood and Sediment Control: Restoring natural sediment flows and reducing flood risks.
- Wetland and Habitat Restoration: Reconnecting rivers to floodplains and reviving wetlands.
- Public Awareness and Policy Coordination: Engaging stakeholders and harmonizing regional strategies.
- Elbe Estuary, Germany, and Severn Estuary, UK: Developed integrated management plans that merge ecological and economic objectives.
- Ebro River, Spain: Restored sediment flux to the delta, revitalizing wetlands and river habitats.
- Danube Delta, Romania: Reconnected abandoned polders to the river, enhancing floodplain wetlands and ecological function.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANTOT | Annual total precipitation series RECORDED AT Tulcea |
CP | Change Point |
CPD | Change Point Detection |
CUSUM | Cumulative Sum |
DDBR | Danube Delta Biosphere Reserve |
ITA | Innovative trend analysis |
MK | Mann–Kendall |
MTOT | Tulcea monthly precipitation series |
SMK | Seasonal Mann–Kendall |
STOT | Sulina monthly precipitation series |
References
- IPCC Sixth Assessment Report. Impacts, Adaptation and Vulnerability. 2022. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 22 June 2025).
- The Global Water Monitor. 2024. Available online: https://www.globalwater.online/globalwater/report/index.html (accessed on 22 June 2025).
- Do, H.X.; Mei, Y.; Gronewold, A.D. To what extent are changes in flood magnitude related to changes in precipitation extremes? Geophys. Res. Lett. 2020, 47, e2020GL088684. [Google Scholar] [CrossRef]
- Impact of Climate Change on Water Availability and Quality. Available online: https://www.unicef.org/serbia/en/impact-of-climate-change-on-water-availability-and-quality (accessed on 22 June 2025).
- van Vliet, M.T.H.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Macedo, H.E.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- Barbulescu, A.; Barbes, L.; Dumitriu, C.S. Assessing the Water Pollution of the Brahmaputra River Using Water Quality Indexes. Toxics 2021, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Sjerps, R.M.A.; ter Laak, T.L.; Zwolsman, G.J.J.G. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective. Sci. Total Environ. 2017, 601–602, 1682–1694. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Maftei, C. Modeling the climate in the area of Techirghiol Lake (Romania). Rom. J. Phys. 2015, 60, 1163–1170. [Google Scholar]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; Van Den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Brunner, M.I.; Hingray, B.; Zappa, M.; Favre, A.-C. Future Trends in the Interdependence Between Flood Peaks and Volumes: Hydro-Climatological Drivers and Uncertainty. Water Resour. Res. 2019, 55, 4745–4759. [Google Scholar] [CrossRef]
- Slater, L.J.; Anderson, B.; Buechel, M.; Dadson, S.; Han, S.; Harrigan, S.; Kelder, T.; Kowal, K.; Lees, T.; Matthews, T.; et al. Nonstationary weather and water extremes: A review of methods for their detection, attribution, and management. Hydrol. Earth Syst. Sci. 2021, 25, 3897–3935. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Maftei, C. Evaluating the Probable Maximum Precipitation. Rom. Rep. Phys. 2023, 75, 704. [Google Scholar] [CrossRef]
- Sun, W.; Li, J.; Yu, R.; Li, N.; Zhang, Y. Exploring changes of precipitation extremes under climate change through global variable-resolution modeling. Sci. Bull. 2024, 69, 237–247. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Raman, A.; Gründemann, G.J.; Kumar, M.; Pietroniro, A.; Shen, C.; Song, Y.; Thébault, C.; van Werkhoven, K.; Wood, A.W.; et al. Technical note: How many models do we need to simulate hydrologic processes across large geographical domains? Hydrol. Earth Syst. Sci. 2025, 29, 2361–2375. [Google Scholar] [CrossRef]
- Alifujiang, Y.; Abuduwaili, J.; Maihemuti, B.; Emin, B.; Groll, M. Innovative Trend Analysis of Precipitation in the Lake Issyk-Kul Basin, Kyrgyzstan. Atmosphere 2020, 11, 332. [Google Scholar] [CrossRef]
- Cao, S.; Li, X.; You, R.; Diao, Y.; Wang, J.; Liu, Y. Investigation of the trend and cycles using the long-term records of annual precipitation in Shandong, China. J. Water Clim. Change 2022, 13, 3761–3775. [Google Scholar]
- Bărbulescu, A.; Deguenon, J. Change point detection and models for precipitation evolution. Case study. Rom. J. Phys. 2014, 59, 590–600. [Google Scholar]
- Conte, L.C.; Bayer, M.D.; Bayer, F.M. Bootstrap Pettitt test for detecting change points in hydroclimatological data: Case study of Itaipu Hydroelectric Plant, Brazil. Hydrol. Sci. J. 2019, 64, 1312–1326. [Google Scholar] [CrossRef]
- Valderrama Balaguera, J.C. Precipitation forecast estimation applying the change point method and ARIMA. Cogent Eng. 2024, 11, 2340191. [Google Scholar] [CrossRef]
- Getahun, Y.S.; Li, M.-H.; Pun, I.-F. Trend and change-point detection analyses of rainfall and temperature over the Awash River basin of Ethiopia. Heliyon 2021, 7, e08024. [Google Scholar] [CrossRef] [PubMed]
- Fotoohinasab, A.; Hocking, T.; Afghah, F. A Graph-constrained Changepoint Detection Approach for ECG Segmentation. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 332–336. [Google Scholar]
- Shvetsov, N.; Buzun, N.; Dylov, D.V. Unsupervised Non-Parametric Change Point Detection in Quasi-Periodic Signals. 2020. Available online: https://arxiv.org/abs/2002.02717 (accessed on 22 June 2020).
- Alawadhi, F.A.; Alhulail, D. Bayesian change points analysis for earthquakes body wave magnitude. J. Appl. Stat. 2016, 43, 1567–1582. [Google Scholar] [CrossRef]
- Jiqin, H.; Gelata, F.T.; Gemeda, S.C. Application of MK trend and test of Sen’s slope estimator to measure impact of climate change on the adoption of conservation agriculture in Ethiopia. J. Water Clim. Change 2023, 14, 977–988. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Mingkhwan, R.; Kiangkoo, N.; Suwanmanee, S.; Sahanavin, N.; Kongpran, J.; WaiAung, H.; Tantrakarnapa, K. Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Sci. Rep. 2024, 14, 7800. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I.J. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–33. [Google Scholar]
- Bush, E.R.; Abernethy, K.A.; Jeffery, K.; Tutin, C.; White, L.; Dimoto, E.; Dikangadissi, J.-T.; Jump, A.S.; Bunnefeld, N. Fourier analysis to detect phenological cycles using long-term tropical field data and simulations. Methods Ecol. Evol. 2017, 8, 530–540. [Google Scholar]
- Bandoc, G.; Prăvălie, R. Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea. J. Geogr. Sci. 2015, 25, 1307–1327. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Birsan, M.-V. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Bădăluță, C.A.; Haliuc, A.; Bădăluță, G.; Scriban, R.E. Spatiotemporal variability of drought in Romania during 1901–2021 using the Standardized Precipitation Evapotranspiration Index (SPEI). Ann. Univ. Oradea Ser. Geogr. 2024, 34, 33–44. [Google Scholar]
- Petre, M.J. Assessment of the UTCI and HSI Biometeorological Indices for Constanța and Tulcea. Available online: https://riscurisicatastrofe.reviste.ubbcluj.ro/Volume/XXIV_Nr_34_2024/PetreMJ_RCJ2024_5.pdf (accessed on 20 June 2025).
- Deguenon, J.; Bărbulescu, A.; Sarr, M. GPD Models for extreme rainfall with cyclic trend detection over ten stations in Dobrudja. Comput. Eng. Syst. Appl. 2011, 2, 131–136. [Google Scholar]
- Deguenon, J.; Bărbulescu, A. Trends of extreme precipitation events in Dobrudja. Ovidius Univ. Ann. Ser. Civ. Eng. 2011, 7, 73–80. [Google Scholar]
- Maftei, C.; Dobrica, G.; Cerneaga, C.; Buzgaru, N. Drought Land Degradation and Desertification—Case Study of Nuntasi-Tuzla Lake in Romania. In Water Safety, Security and Sustainability. Advanced Sciences and Technologies for Security Applications; Vaseashta, A., Maftei, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 583–597. [Google Scholar] [CrossRef]
- Preoteasa, L.; Vespremeanu-Stroe, A.; Hanganu, D.; Katona, O.; Timar-Gabor, A. Coastal changes from open coast to present lagoon system in Histria region (Danube delta). J. Coast. Res. 2013, 65, 564–569. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Ionita, M.; Roibu, C.-C. Extreme Aridity in the South-Eastern Part of Romania. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Băutu, E. Mathematical models of climate evolution in Dobrudja. Theor. Appl. Climatol. 2010, 100, 29–44. [Google Scholar]
- Bărbulescu, A.; Dumitriu, C.S.; Dragomir, F. Detecting Aberrant Values and Their Influence on the Time Series Forecast. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, 7–8 October 2021. [Google Scholar] [CrossRef]
- Saliba, Y.; Bărbulescu, A. A Multi-Method Approach to Analyzing Precipitation Series and Their Change Points in Semi-Arid Climates: The Case of Dobrogea. Water 2025, 17, 391. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Maftei, C.; Dumitriu, C.S. The modeling of the climatic process that participates at the sizing of an irrigation system. Bull. Appl. Comput. Math. 2002, CII-2048, 11–20. [Google Scholar]
- Trif, A.; Mihai, D. Effect of climate change on Dobrogea agricultural area. Sci. Pap. Ser. E. Land Reclam. Earth Obs. Surv. Environ. Eng. 2014, 3, 137–140. [Google Scholar]
- Bărbulescu, A.; Dumitriu, C.S.; Maftei, C. On the Probable Maximum Precipitation Method. Rom. J. Phys. 2022, 67, 801. [Google Scholar]
- Prăvălie, R.; Bandoc, G. Aridity Variability in the Last Five Decades in the Dobrogea Region, Romania. Arid Land Res. Manag. 2015, 29, 265–287. [Google Scholar] [CrossRef]
- RESTORE4CS. Available online: https://www.restore4cs.eu/case-pilots/danube-delta/ (accessed on 27 July 2025).
- Tătui, F. Potential usage of met mast datasets for climatic parameters monitoring in Tulcea County, Romania. Forum Geogr. 2015, 14, 22–29. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [PubMed]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econ. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Buishand, T.A. Tests for detecting a shift in the mean of hydrological time series. J. Hydrol. 1984, 73, 51–69. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change point problem. J. R. Stat. Soc. Ser. C. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Lee, A.F.S.; Heghinian, S.M. A Shift of the Mean Level in a Sequence of Independent Normal Random Variables—A Bayesian Approach. Technometrics 1977, 19, 503–506. [Google Scholar] [CrossRef]
- Hubert, P. Segmentation Procedure as a Tool for Discrete Modeling of Hydro-Meteorological Regimes. Stoch. Environ. Res. Risk Assess. 2000, 14, 297–304. [Google Scholar]
- Stapenhurst, T. Mastering Statistical Process Control, 1st ed.; Routledge: London, UK, 2005. [Google Scholar] [CrossRef]
- Scheffe, H. The Analysis of Variance; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Taylor, W.A. Change-Point Analysis: A Powerful New Tool for Detecting Changes. 2000. Available online: https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf (accessed on 4 June 2025).
- Hirsch, R.M.; Slack, J.R. A Nonparametric Trend Test for Seasonal Data With Serial Dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Company: New York, NY, USA, 1987. [Google Scholar]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia, 2021; Available online: https://otexts.com/fpp3/ (accessed on 25 June 2025).
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar]
- Kim, D.; Kim, K.-O.; Oh, H.-S. Extending the Scope of Empirical Mode Decomposition using Smoothing. EURASIP J. Adv. Signal Process. 2012, 168, 168. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, H.; Wu, Y.; Feng, Y.; Pu, Q. New Techniques for the Detection and Adjustment of Shifts in Daily Precipitation Data Series. J. Appl. Meteor. Climatol. 2010, 49, 2416–2436. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European Seasonal Trends and Variability of Precipitation and Temperature in Europe (1951–2010). Glob. Planet. Change 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theor. Appl. Climatol. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- Birsan, M.V. Trends in Monthly Natural Streamflow in Romania and Linkages to Atmospheric Circulation in the North Atlantic. Water Resour. Manag. 2015, 29, 3305–3313. [Google Scholar] [CrossRef]
- Meredith, E.; Semenov, V.; Maraun, D.; Park, W.; Chernokulsky, A. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. Nat. Geosci. 2015, 8, 615–619. [Google Scholar] [CrossRef]
- Mohamed, B.; Ibrahim, O.; Nagy, H. Sea Surface Temperature Variability and Marine Heatwaves in the Black Sea. Remote Sens. 2022, 14, 2383. [Google Scholar]
- Gavrikov, A.V.; Zolina, O.G.; Razorenova, O.A.; Aleksandrova, M.P.; Gulev, S.K.; Stenchikov, G.L. Extreme Precipitation in June 2021 over the Black Sea in the Context of Long-Term Climate Change. Oceanology 2022, 62, 303–309. [Google Scholar] [CrossRef]
- Irașoc, A.; Ionac, N.Ș.; Dumitrescu, A.; Beteringhe, A. Extreme Rainfall Intensities at Sub-Hourly Temporal Scale in Dobrudja, Romania. Geogr. Tech. 2024, 19, 103–122. [Google Scholar] [CrossRef]
- Zaharia, L.; Ioana-Toroimac, G.; Perju, E.R. Hydrological Impacts of Climate Changes in Romania. In Water Resources Management in Romania; Negm, A., Romanescu, G., Zeleňáková, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 309–351. [Google Scholar] [CrossRef]
- Ionita, M.; Chelcea, S.; Rimbu, N.; Adler, M.-J. Spatial and temporal variability of winter streamflow over Romania and its relationship to large-scale atmospheric circulation. J. Hydrol. 2014, 519, 1339–1349. [Google Scholar] [CrossRef]
- Ioniță, M.; Lohmann, G.; Rimbu, N.; Chelcea, S.; Dima, M. Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Clim. Dyn. 2012, 38, 363–377. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.–P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Danilovich, I.S.; Loginov, V.F.; Groisman, P.Y. Changes of Hydrological Extremes in the Center of Eastern Europe and Their Plausible Causes. Water 2023, 15, 2992. [Google Scholar] [CrossRef]
- Zampieri, M.; Toreti, A.; Schindler, A.; Scoccimarro, E.; Gualdi, S. Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer. Glob. Planet. Change 2017, 151, 92–100. [Google Scholar] [CrossRef]
- Network of European Delta Regions-Sustainable Delta Governance. Available online: https://keep.eu/projects/423/Network-of-European-Delta-Reg-EN/ (accessed on 8 September 2025).
- European Commission: Directorate-General for Research and Innovation. Evaluating the Impact of Nature-Based Solutions—A Handbook for Practitioners; Publications Office of the European Union: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2777/244577 (accessed on 15 May 2025).
- Natural Water Retention Measures. The Babina Restoration Project (Danube Delta, Romania). 2014. Available online: https://www.nwrm.eu (accessed on 8 September 2025).
- Rewilding Danube Delta. Available online: https://rewilding-danube-delta.com/ (accessed on 8 September 2025).
- Spanish Climate Change Adaption Platform. Habitat Restoration and Management in the Ebro Delta Coastal Lagoons. Available online: https://adaptecca.es/en/casos-practicos/habitat-restoration-and-management-ebro-delta-coastal-lagoons (accessed on 8 September 2025).
- Rodríguez-Santalla, I.; Navarro, N. Main Threats in Mediterranean Coastal Wetlands. The Ebro Delta Case. J. Mar. Sci. Eng. 2021, 9, 1190. [Google Scholar] [CrossRef]
- Conservation Programme for the Po Delta Park Geographical Areas (Second Phase). Available online: https://econservation.jrc.ec.europa.eu/project/2000338 (accessed on 8 September 2025).
- Project LIFE4DELTA_PL. Available online: https://life4delta.pl/?lang=en (accessed on 8 September 2025).
- DaWetRest. Available online: https://dawetrest.eu/ (accessed on 8 September 2025).
Jan. | Febr. | March | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | 1.20 | 1.00 | 1.90 | 1.60 | 3.50 | 2.80 | 1.20 | 0.00 | 0.40 | 1.10 | 3.00 | 0.70 |
max | 158.10 | 107.00 | 109.50 | 120.00 | 115.00 | 160.90 | 191.10 | 168.60 | 149.80 | 113.00 | 113.00 | 151.20 |
mean | 35.64 | 30.77 | 32.59 | 36.86 | 42.04 | 58.73 | 55.24 | 31.92 | 44.23 | 35.46 | 39.63 | 41.09 |
stdev | 29.11 | 23.07 | 24.79 | 24.08 | 26.97 | 37.66 | 43.12 | 31.76 | 38.86 | 29.55 | 29.28 | 31.84 |
skew | 1.67 | 1.17 | 1.11 | 1.03 | 0.71 | 0.91 | 1.22 | 2.05 | 1.13 | 1.06 | 0.76 | 1.25 |
kurt | 4.69 | 1.27 | 1.29 | 1.42 | 0.05 | 0.16 | 1.33 | 5.70 | 0.73 | 0.10 | −0.43 | 1.55 |
Autocorrelation | Normality-Transformation | ADF | KPSS-Level | KPSS-Trend | |
---|---|---|---|---|---|
January | no | Box–Cox 0.77 | Yes (0.0208) | No (0.1000) | Yes (0.0254) |
February | no | Box–Cox 0.62 | No (0.1391) | No (0.1000) | Yes (0.0442) |
March | no | Box–Cox 0.81 | Yes (0.0100) | No (0.1000) | No (0.1000) |
April | no | Box–Cox 0.92 | No (0.1154) | No (0.1000) | No (0.1000) |
May | no | Box–Cox 0.97 | Yes (0.0100) | No (0.1000) | No (0.1000) |
June | no | Box–Cox 0.65 | Yes (0.0107) | No (0.1000) | No (0.1000) |
July | no | Box–Cox 0.67 | Yes (0.0181) | No (0.1000) | No (0.1000) |
August | no | Logarithm | No (0.3191) | No (0.1000) | No (0.1000) |
September | no | Box–Cox 0.71 | No (0.1558) | No (0.1000) | No (0.1000) |
October | yes | Logarithm | Yes (0.0100) | Yes (0.0100) | No (0.1000) |
November | no | Box–Cox 0.64 | Yes (0.0265) | No (0.1000) | No (0.1000) |
December | no | Box–Cox 0.65 | No (0.1399) | No (0.1000) | No (0.1000) |
MTOT | yes | Box–Cox 0.41 | Yes (0.0100) | Yes (0.0100) | No (0.1000) |
ANTOT | yes | Square root | Yes (0.03691) | Yes (0.0236) | No (0.1000) |
Pettitt | Buishand | Lee & Heghinian | Hubert | |
---|---|---|---|---|
January | 2002 | yes | 2011 | 1965, 1966, 2009 |
February | - | - | 2017 | 2017 |
March | - | - | 2013 | - |
April | - | - | 2013 | 2013 |
May | - | - | 1965 | - |
June | - | - | 1977 | - |
July | - | - | 2016 | 2016 |
August | - | - | 2007 | - |
September | - | - | 1965 | - |
October | 1985 | yes | 1965 | 2012, 2017 |
November | - | - | 2013 | - |
December | - | - | 1969 | 1970 |
Monthly | July 1996 | yes | July 1996 | June 1991, July 1991 |
Annual | 1995 | yes | 2012 | 2012 |
CP in Mean | CP in Variance | |||||||
---|---|---|---|---|---|---|---|---|
Month | Year or Month | Confidence Level | From | To | Year or Month | Confidence Level | From | To |
January | 1969 | 96% | 74.325 | 25.325 | ||||
2009 | 100% | 25.325 | 59.091 | |||||
March | 2003 | 93% | 25.790 | 8.596 | ||||
2013 | 90% | 8.596 | 34.596 | |||||
August | 1999 | 96% | 28.411 | 88.691 | ||||
2005 | 91% | 88.691 | 11.532 | |||||
October | 2007 | 94% | 28.198 | 58.923 | 2007 | 95% | 28.198 | 58.923 |
December | 1970 | 98% | 86.740 | 36.524 | ||||
MTOT | August 1996 | 100% | 36.394 | 45.684 | March 2017 | 97% | 25.161 | 72.337 |
ANTOT | 1996 | 94% | 438.93 | 513.67 | ||||
2014 | 94% | 513.67 | 629.58 |
CP in Mean | CP in Standard Deviation | ||||||
---|---|---|---|---|---|---|---|
Month | Confidence Level | From | To | Month | Confidence Level | From | To |
August 1982 | 96% | 26.13 | 19.57 | November 1972 | 98% | 23.80 | 11.64 |
January 2000 | 96% | 19.57 | 15.64 | July 2009 | 99% | 11.64 | 17.82 |
October 2006 | 100% | 15.64 | 28.59 |
Month | January | February | March | April | May | June | July | August | September | October | November | December | Annual Series |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sulina | 1969 2003 | 1972 | 1981 | 1973 | 2009 | 1970 | 1982 2013 | ||||||
Tulcea | 1969 2009 | 2007 | 1970 | 1996 2014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Dumitriu, C.Ș. Shifts in Precipitation Variability near the Danube Delta Biosphere Reserve (1965–2019). Water 2025, 17, 2692. https://doi.org/10.3390/w17182692
Bărbulescu A, Dumitriu CȘ. Shifts in Precipitation Variability near the Danube Delta Biosphere Reserve (1965–2019). Water. 2025; 17(18):2692. https://doi.org/10.3390/w17182692
Chicago/Turabian StyleBărbulescu, Alina, and Cristian Ștefan Dumitriu. 2025. "Shifts in Precipitation Variability near the Danube Delta Biosphere Reserve (1965–2019)" Water 17, no. 18: 2692. https://doi.org/10.3390/w17182692
APA StyleBărbulescu, A., & Dumitriu, C. Ș. (2025). Shifts in Precipitation Variability near the Danube Delta Biosphere Reserve (1965–2019). Water, 17(18), 2692. https://doi.org/10.3390/w17182692