Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Model
2.3. Identifying Critical Source Area of TN
2.4. The Simulation and Evaluation of BMPs
3. Results and Discussion
3.1. SWAT Calibration and Validation
3.2. Spatial and Temporal Analysis of Source Contribution
3.3. Critical Source Areas Identification
3.4. Environmental Benefits of Implementing BMPs
3.5. Cost-Effectiveness of Implementing BMPs
3.6. Optimal Management Schemes Under Different Cost Ranges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giglou, A.N.; Nazari, R.; Karimi, M.; Lawrence Museru, M.; Ntow Opare, K.; Nikoo, M.R. Future eco-hydrological dynamics: Urbanization and climate change effects in a changing landscape: A case study of Birmingham’s river basin. J. Clean. Prod. 2024, 447, 141320. [Google Scholar] [CrossRef]
- Whitall, D.; Castro, M.; Driscoll, C. Evaluation of management strategies for reducing nitrogen loadings to four US estuaries. Sci. Total Environ. 2004, 333, 25–36. [Google Scholar] [CrossRef]
- Carpenter, S.; Caraco, N.F.; Correll, D.L.; Howarth, R.; Sharpley, A.N.; Smith, V. Non-Point pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Hou, X.; Qin, B.; Kuster, T.; Qu, F.; Chen, N.; Paerl, H.W.; Zheng, C. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 2024, 5, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Rong, N.; Jin, X.; Meng, X.; Han, S.; Zhang, D.; Shan, B. Dissolved oxygen variation in the North China Plain river network region over 2011–2020 and the influencing factors. Chemosphere 2022, 287, 132354. [Google Scholar] [CrossRef]
- Chu, T.-W.; Shirmohammadi, A.; Montas, H.; Sadeghi, A. Evaluation of the SWAT model’s sediment and nutrient components in the piedmont physiographic region of Maryland. Trans. ASABE 2004, 47, 1523–1538. [Google Scholar] [CrossRef]
- Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences 2020, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Chen, D.; Shen, H.; Hu, M.; Wang, J.; Zhang, Y.; Dahlgren, R.A. Legacy nutrient dynamics at the watershed scale: Principles, modeling, and implications. Adv. Agron. 2018, 149, 237–313. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, F. Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management. Stoch. Environ. Res. Risk Assess. 2016, 30, 293–308. [Google Scholar] [CrossRef]
- Cano, O.; Barkdoll, B. Multiobjective, socioeconomic, boundary-emanating, nearest distance algorithm for stormwater low-impact BMP selection and placement. J. Water Resour. Plan. Manag. 2016, 143, 05016013. [Google Scholar] [CrossRef]
- Maringanti, C.; Chaubey, I.; Popp, J. Development of a multiobjective optimization tool for the selection and placement of BMPs for nonpoint source pollution control. Water Resour. Res. 2009, 45, W06406. [Google Scholar] [CrossRef]
- McDowell, R.; Cosgrove, G.; Orchiston, T.; Chrystal, J. A cost-effective management practice to decrease phosphorus loss from dairy farms. J. Environ. Qual. 2014, 43, 2044–2052. [Google Scholar] [CrossRef]
- Xie, H.; Chen, L.; Shen, Z. Assessment of agricultural Best Management Practices using Models: Current issues and future perspectives. Water 2015, 7, 1088–1108. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Haas, M.B.; Guse, B.; Fohrer, N. Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. J. Environ. Manag. 2017, 196, 347–364. [Google Scholar] [CrossRef]
- Leta, M.K.; Waseem, M.; Rehman, K.; Tränckner, J. Sediment yield estimation and evaluating the best management practices in Nashe watershed, Blue Nile Basin, Ethiopia. Environ. Monit. Assess. 2023, 195, 716–736. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Dai, S.; Han, Y. Analysis of non-point source nitrogen pollution in watersheds based on SWAT model. Ecol. Indic. 2022, 138, 108881. [Google Scholar] [CrossRef]
- Winchell, M.F.; Folle, S.; Meals, D.; Moore, J.; Srinivasan, R.; Howe, E.A. Using SWAT for sub-field identification of phosphorus critical source areas in a saturation excess runoff region. Hydrol. Sci. J. 2015, 60, 844–862. [Google Scholar] [CrossRef]
- Niraula, R.; Kalin, L.; Srivastava, P.; Anderson, C.J. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecol. Modell. 2013, 268, 123–133. [Google Scholar] [CrossRef]
- Ahsan, A.; Das, S.K.; Khan, M.H.R.B.; Ng, A.W.M.; Al-Ansari, N.; Ahmed, S.; Imteaz, M.; Tariq, M.A.U.R.; Shafiquzzaman, M. Modeling the impacts of best management practices (BMPs) on pollution reduction in the Yarra River catchment, Australia. Appl. Water Sci. 2023, 13, 98. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Chen, J.; Li, J.; Yu, Y.; Ma, X. Efficiency assessment of best management practices in sediment reduction by investigating cost-effective tradeoffs. Agric. Water Manag. 2022, 265, 107546. [Google Scholar] [CrossRef]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Wu, H.; Wang, Y.; Zhang, Y.; Xu, J.; Wei, D.; Zhang, R.; Yu, Y.; Wu, D.; et al. Strategy for cost-effective BMPs of non-point source pollution in the small agricultural watershed of Poyang Lake: A case study of the Zhuxi River. Chemosphere 2023, 333, 138949. [Google Scholar] [CrossRef]
- Babaei, H.; Zakermoshfegh, M.; Delavar, M. Identifying critical sources and evaluate the Best Management Practices to control nutrient load of the Dez River Basin using the SWAT model. J. Watershed Manag. Res. 2020, 11, 142–154. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, T.; Wang, R.; Engel, B.A.; Flanagan, D.C.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Lee, J.G.; Wallace, C.W. A SWAT-based optimization tool for obtaining cost-effective strategies for agricultural conservation practice implementation at watershed scales. Sci. Total Environ. 2019, 691, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Arabi, M.; Govindaraju, R.S.; Hantush, M.M. Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resour. Res. 2006, 42, 2405–2411. [Google Scholar] [CrossRef]
- Babaei, H.; Nazari-Sharabian, M.; Karakouzian, M.; Ahmad, S. Identification of Critical Source Areas (CSAs) and Evaluation of Best Management Practices (BMPs) in Controlling Eutrophication in the Dez River Basin. Environments 2019, 6, 20. [Google Scholar] [CrossRef]
- Rudra, R.P.; Mekonnen, B.A.; Shukla, R.; Shrestha, N.K.; Goel, P.K.; Daggupati, P.; Biswas, A. Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions. Agriculture 2020, 10, 468. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Wu, L.; Zhang, L.; Xie, H.; Shen, Z. Review of Nonpoint Source Pollution Models: Current Status and Future Direction. Water 2022, 14, 3217. [Google Scholar] [CrossRef]
- Razavi, H.S.; Toscano, G.; Nejadhashemi, A.P.; Deb, K.; Linker, L. Next-generation techniques for parameter reduction for BMP multiobjective optimization in watershed planning. Environ. Model. Softw. 2025, 193, 106651. [Google Scholar] [CrossRef]
- Dong, L.; Xin, Z.; Song, C.; Zhang, C.; Bai, X. Applicability of statistical and modeling methods in assessing the basin-scale grey water footprint. Ecol. Indic. 2022, 143, 109345. [Google Scholar] [CrossRef]
- Luo, X.; Tang, A.; Shi, K.; Wu, L.; Li, W.; Shi, W.; Shi, X.; Erisman, J.W.; Zhang, F.; Liu, X. Chinese coastal seas are facing heavy atmospheric nitrogen deposition. Environ. Res. Lett. 2014, 9, 095007. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT 2012 Input/Output Documentation; Texas Water Resources Institute: College Station, TX, USA, 2013; pp. 1–650. [Google Scholar]
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Raman, V. Determination of parameters for watershed delineation using various satellite derived digital elevation models and its accuracy Graphical abstract. Glob. NEST J. 2023, 25, 124–137. [Google Scholar] [CrossRef]
- Her, Y.; Frankenberger, J.; Chaubey, I.; Srinivasan, R. Threshold Effects in HRU Definition of the Soil and Water Assessment Tool. Trans. ASABE 2015, 58, 367–378. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Zhang, S.; Zhang, W.; Zhang, S.; Yu, P.; Song, Z. A framework to assess spatio-temporal variations of potential non-point source pollution risk for future land-use planning. Ecol. Indic. 2022, 137, 108751. [Google Scholar] [CrossRef]
- Wei, P.; Ouyang, W.; Gao, X.; Hao, F.; Hao, Z.; Liu, H. Modified control strategies for critical source area of nitrogen (CSAN) in a typical freeze-thaw watershed. J. Hydrol. 2017, 551, 518–531. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, H.; Wu, H.; Xie, Z.; Liu, H.; Zhang, J.; Zhu, J.; Zheng, B.; Wan, W. Application of improved risk assessment methods to best management practices research for non-point source pollution: From a hilly mountainous-dominated region of Southern China. Ecol. Indic. 2024, 165, 112223. [Google Scholar] [CrossRef]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Prioritization of Sub-Watersheds to Sediment Yield and Evaluation of Best Management Practices in Highland Ethiopia, Finchaa Catchment. Land 2021, 10, 650. [Google Scholar] [CrossRef]
- Li, H.; Zhu, N.; Qiao, J.; Tang, J. Evaluating the long-term effects of best management practices on pollution reduction and soil quality improvement in sloping farmland of the Three Gorges Reservoir area. Agric. Water Manag. 2024, 297, 108844. [Google Scholar] [CrossRef]
- Zettam, A.; Briak, H.; Kebede, F.; Ouallali, A.; Hallouz, F.; Taleb, A. Efficiencies of best management practices in reducing nitrate pollution of the Sebdou River, a semi-arid Mediterranean agricultural catchment (North Africa). River Res. Appl. 2022, 38, 613–624. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Huang, K. Research on Non-Point Source Pollution Management Measures of Danjiang River Basin Based on SWAT Mdoel. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2020. [Google Scholar]
- Huang, W. Research on Characteristics and Control of Non-Point Source Pollution in Zhupi River Basin Based on SWAT Model. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2022. [Google Scholar]
- Kaini, P.; Artita, K.; Nicklow, J.W. Optimizing structural Best Management Practices using SWAT and genetic algorithm to improve water quality goals. Water Resour. Manag. 2012, 26, 1827–1845. [Google Scholar] [CrossRef]
- Ruan, B.; Wu, L.; Guo, J.; Du, B. Assessment and selection of the best management practices for the Jinghe River Basin considering the comprehensive benefits of environmental costs. China Environ. Sci. 2024, 44, 319–328. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed. Sci. Total Environ. 2017, 607–608, 1188–1200. [Google Scholar] [CrossRef]
- Xin, W.; Fengyan, W.; Tiesong, H.; Xiang, Z.; Xiang, L.; Jie, H. Modeling competitive-cooperative relationship between flood control and hydropower generation within hierarchical gaming structure of reservoir operation. J. Hydrol. 2023, 620, 129429. [Google Scholar] [CrossRef]
- Du, J.; Li, H.; Zhao, X.; Li, J. Simulation of pollution control effect in the Weihe River Valley with SWAT model. J. Ecol. Rural. Environ. 2016, 32, 563–569. [Google Scholar] [CrossRef]
- Jia, A.; Wang, H.; Xu, S. Purification Effect of Composite Constructed Wetland on Polluted River Water in Dalian Area. Water Resour. Power 2017, 35, 26–29. [Google Scholar]
- Zheng, R. Nitrogen Pollution Investigation and Study on Water Purification Technology in the Upper Fuzhou River. Master’s Thesis, Dalian Univeristy of Technology, Dalian, China, 2018. [Google Scholar]
- Li, Z.; Xue, W.; Sereewatthanawut, I. Evaluation of best management practices (BMPs) for mitigating non-point source pollution in the Wang River Basin of Thailand based on the SWAT Model. Environ. Technol. Innov. 2025, 39, 104327. [Google Scholar] [CrossRef]
- Chen, J. National-Scale Environmental and Economic Comprehensiv Eassessment of Tailwater Constructed Wetlands for Wastewater Treatment. Master’s Thesis, Chinese Academy of Environmental Sciences, Beijing, China, 2023. [Google Scholar]
- Chen, Z.M.; Chen, B.; Zhou, J.B.; Li, Z.; Zhou, Y.; Xi, X.R.; Lin, C.; Chen, G.Q. A vertical subsurface-flow constructed wetland in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1986–1997. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ou, Y.; Duan, S. Optimization and economic evaluation on cost-benefit of Best Management Practices in nonpoint source pollution control. Ecol. Environ. 2009, 18, 540–548. [Google Scholar] [CrossRef]
- Zhang, Y. Observation and Simulation for Soil Fertility and Crop Yield Effects of Long-Term Rotational Conservation Tillage Andfertilization on Winter Wheat-Spring Maize Rotation Field of Loess Plateau. Ph.D. Thesis, North West Agriculture and Forestry University, Yangling, China, 2018. [Google Scholar]
- Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Raaj, S.; Gupta, V.; Singh, V.; Shukla, D. A novel framework for peak flow estimation in the himalayan river basin by integrating SWAT model with machine learning based approach. Earth Sci. Inform. 2024, 17, 211–226. [Google Scholar] [CrossRef]
- Fan, L.; Yuan, Y.; Ying, Z.; Lam, S.K.; Liu, L.; Zhang, X.; Liu, H.; Gu, B. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 464–472. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Xin, Z.; Han, F.; Xu, B.; Wang, L.; Zhang, C.; Zheng, Y. Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management. Environ. Pollut. 2021, 279, 116885. [Google Scholar] [CrossRef]
- Fu, D.; Gong, Y.; Chen, C.; Gui, X.; Liu, H.; Chen, S.; Ren, J.; Hou, B. Nitrogen and Phosphorus Loading Characteristics of Agricultural Non-Point Sources in the Tuojiang River Basin. Water 2023, 15, 3503. [Google Scholar] [CrossRef]
- Franco, A.A.; Iglesias-Arroyo, D.; Egea-Corbacho, Á.; Martín-García, A.P.; Quiroga, J.M.; Coello, M.D. Influence of tourism on microplastic contamination at wastewater treatment plants in the coastal municipality of Chiclana de la Frontera. Sci. Total Environ. 2023, 900, 165573. [Google Scholar] [CrossRef]
- Feng, W.; Wang, S.; Tan, K.; Ma, L.; Hu, C. Simulation of spatial and temporal variation of nitrate leaching in the vadose zone of alluvial regions on a large regional scale. Sci. Total Environ. 2024, 916, 170114. [Google Scholar] [CrossRef]
- Chen, M.; Lei, Q.; Chen, L.; Du, X.; Liu, H.; Luo, J. Best management practices for reducing nutrient loads under diverge hydrological conditions: A case study in an agricultural watershed in Southwest China. Ecol. Indic. 2025, 176, 113631. [Google Scholar] [CrossRef]
- Jamshidi, S.; Imani, S.; Delavar, M. Impact assessment of Best Management Practices on the water footprint of agricultural productions. Int. J. Environ. Res. 2020, 14, 641–652. [Google Scholar] [CrossRef]
- Pongpetch, N.; Suwanwaree, P.; Yossapol, C.; Dasananda, S.; Kongjun, T. Using SWAT to assess the critical areas and nonpoint source pollution reduction Best Management Practices in Lam Takong River Basin, Thailand. EnvironmentAsia 2015, 8, 41–52. [Google Scholar] [CrossRef]
- Uniyal, B.; Jha, M.K.; Verma, A.K.; Anebagilu, P.K. Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management. Sci. Total Environ. 2020, 744, 140737. [Google Scholar] [CrossRef]
- Shen, W.; Chen, R.; Zhao, X.; Lu, X.; Yan, H.; Wang, L. Implementing Best Management Practices in Complex Agricultural Watersheds: Insights from High-Resolution Nitrogen Load Dynamics Analysis. Water 2025, 17, 821. [Google Scholar] [CrossRef]
- Wigington Jr, P.; Griffith, S.; Field, J.; Baham, J.; Horwath, W.; Owen, J.; Davis, J.; Rain, S.; Steiner, J. Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in western Oregon. J. Environ. Qual. 2003, 32, 162–170. [Google Scholar] [CrossRef]
- Haycock, N.E.; Pinay, G. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. J. Environ. Qual. 1993, 22, 273–278. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W. Evaluating efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using integrated SWAT and cost evaluation tool. J. Hydrol. 2019, 577, 123965. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Mimikou, M. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales. J. Environ. Manag. 2011, 92, 2823–2835. [Google Scholar] [CrossRef]
- Pionke, H.B.; Gburek, W.J.; Sharpley, A.N. Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin. Ecol. Eng. 2000, 14, 325–335. [Google Scholar] [CrossRef]
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 47162–47181. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yu, Q.; Wang, F.; Yan, W.; Wang, J. Nitrogen removal in the Chaohu Lake, China: Implication in estimating lake N uptake velocity and modelling N removal efficiency of large lakes and reservoirs in the Changjiang River network. Ecol. Indic. 2021, 124, 107353. [Google Scholar] [CrossRef]
- Rabotyagov, S.S.; Campbell, T.D.; White, M.; Arnold, J.G.; Atwood, J.; Norfleet, M.L.; Kling, C.L.; Gassman, P.W.; Valcu, A.; Richardson, J.; et al. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proc. Natl. Acad. Sci. USA 2014, 111, 18530–18535. [Google Scholar] [CrossRef] [PubMed]
BMPs | Parameters Setting | Unit Costs |
---|---|---|
PR | Adjust point source emissions (wastewater treatment plants and direct industrial emissions) to 70% of original emissions. | 0.23 CYN/t point source sewage |
FR (10, 25, 50) | Modify parameters in the fertilizer database: nitrogen content in fertilizer reduced to 90%, 75%, and 50% of original value, respectively. | 204.1, 510.2, 1020.2 CYN/hm2 |
SC | Adjust STRIP_N to 0.19, STRIP_CN to original CN2 value-3, STRIP_C to 0.2. | 375 CYN/hm2 |
FS | Set FILTER_RATIO to 5, FILTER_CON to 0, FILTER_CH to 0, and filterw parameters to default values. | 1150 CYN/hm2 |
TR | Set TERR_CN to original CN2 value-5. | 760 CYN/hm2 |
CT | Adjust CONT_CN to original CN2 value-2. | 750 CYN/hm2 |
Watershed | CSAs | ||||
---|---|---|---|---|---|
Types of BMPs | BMPs | TN Load (t) | Reduction Rate (%) | TN Load (t) | Reduction Rate (%) |
BAS | 1523.4 | 0.0 | 1523.4 | 0.0 | |
Non-engineering measures | CT | 1407.3 | 7.6 | 1462.3 | 4.0 |
SC | 1337.6 | 12.2 | 1424.3 | 6.5 | |
FR10 | 1448.2 | 4.9 | 1475.9 | 3.1 | |
FR25 | 1341.4 | 12.0 | 1410.7 | 7.4 | |
FR50 | 1153.8 | 24.3 | 1292.3 | 15.2 | |
Engineering measures | PR | 1405.3 | 7.8 | 1433.6 | 5.9 |
TR | 1287.0 | 15.5 | 1397.3 | 8.3 | |
FS | 1334.4 | 12.4 | 1423.5 | 6.6 |
Types of BMPs | BMPs | Watershed | CSAs |
---|---|---|---|
Non-engineering measures | CT | 24.3 | 22.0 |
SC | 38.8 | 71.3 | |
FR10 | 57.8 | 62.8 | |
FR25 | 55.9 | 59.6 | |
FR50 | 56.8 | 61.1 | |
Engineering measures | PR | 129.9 | 121.4 |
TR | 48.8 | 44.7 | |
FS | 219.5 | 234.2 |
Total Cost Range (Million CNY) | Selection Criteria | Point Number | BMPs Combinations | Implementation Area | TN Reduction Rate (%) | Total Cost (Million CNY) | CE (kg/104 CNY·Year) |
---|---|---|---|---|---|---|---|
<30 | The highest CE | 1 | FR10+FS+PR | CSAs | 15.6 | 19.2 | 123.0 |
The highest EB | 2 | FR10+FS+PR | Watershed | 23.3 | 29.0 | 122.1 | |
30–50 | The highest CE | 3 | FR25+FS+PR | CSAs | 20.0 | 30.6 | 98.6 |
The highest EB | 4 | FR25+FS+PR | Watershed | 30.2 | 48.6 | 94.9 | |
50–70 | The highest CE | 5 | FR50+FS+PR | CSAs | 27.8 | 59.2 | 71.1 |
The highest EB | 6 | FR50+FS+PR+SC | CSAs | 29.8 | 63.4 | 71.1 | |
70–90 | The highest CE | 7 | FR50+FS+PR | Watershed | 42.5 | 81.1 | 79.9 |
The highest EB | 7 | FR50+FS+PR | Watershed | 42.5 | 81.1 | 79.9 | |
90–110 | The highest CE | 8 | FR25+FS+PR+TR | Watershed | 34.8 | 97.0 | 54.6 |
The highest EB | 8 | FR25+FS+PR+TR | Watershed | 34.8 | 97.0 | 54.6 | |
>110 | The highest CE | 9 | FR50+PR+TR | Watershed | 46.1 | 121.0 | 58.0 |
The highest EB | 10 | FR50+FS+PR+TR+SC+CT | Watershed | 47.5 | 225.3 | 32.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhang, H.; Yu, B.; Cong, M.; Xin, Z. Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction. Water 2025, 17, 2651. https://doi.org/10.3390/w17172651
Fan Y, Zhang H, Yu B, Cong M, Xin Z. Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction. Water. 2025; 17(17):2651. https://doi.org/10.3390/w17172651
Chicago/Turabian StyleFan, Yunkai, Huazhi Zhang, Bing Yu, Ming Cong, and Zhuohang Xin. 2025. "Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction" Water 17, no. 17: 2651. https://doi.org/10.3390/w17172651
APA StyleFan, Y., Zhang, H., Yu, B., Cong, M., & Xin, Z. (2025). Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction. Water, 17(17), 2651. https://doi.org/10.3390/w17172651