Tritium Transport in the Transboundary Neris River During the Routine Operation of the Belarusian Nuclear Power Plant: A Monitoring and Modeling Approach
Abstract
1. Introduction
- (1)
- To evaluate long-term trends in 3H concentrations at two key monitoring sites—near the Belarus–Lithuania border and in Vilnius;
- (2)
- To assess the relationship between observed 3H fluctuations and operational phases of the BelNPP, including scheduled maintenance periods;
- (3)
- To apply a hydrological transport model to simulate the movement and attenuation of 3H under various discharge scenarios.
2. Materials and Methods
2.1. Sampling and Analytical Methods
2.2. Hydrological Data
2.3. Tritium Transport Modeling with GoldSim
- Programming-based implementation using languages such as Fortran, R, Python, or MATLAB/Octave, which offer flexibility but require detailed manual coding and debugging;
- System dynamics modeling software, including next-generation tools such as OpenModelica, Vensim, Powersim, Stella, AnyLogic, or GoldSim, which are specifically designed for simulating time-dependent processes and allow for a modular, visually intuitive framework.
- Environmental specialization: It includes built-in objects specifically designed for environmental applications, enabling streamlined modeling of contaminant transport and decay processes;
- 3H discharge estimates from the BelNPP (approximated from observed concentrations at the border site);
- River flow velocity and cross-sectional area (estimated from available hydrological data);
- 3H half-life (4500 days);
- Travel time between the two sampling sites.
3. Results
3.1. Observed Tritium Concentrations—Experimental Approach
3.2. Modeling Results
3.2.1. The Hydrographic Results
3.2.2. Results of Reconstructed Tritium Discharges from the BelNPP
4. Discussion
4.1. Interpretation of Observed Tritium Variations in the Context of BelNPP Operations
4.2. Model Reliability and Limitations
- The model was developed as a prototype within the system dynamics simulation environment GoldSim rather than as stand-alone software. This decision was made to ensure the shortest possible development time. Although GoldSim is one of the most flexible system dynamics platforms and the model was designed using its built-in elements in a way that allows for further modification by other users, it remains less universal than a fully stand-alone product. In other words, some adjustments to the model will be necessary to apply it to other, similar problems.
- The transport model does not include diffusive transport processes and, therefore, does not account for longitudinal dispersion in the river. As previously noted, this decision was based on the hydrographic characteristics of the Neris River and the slow decay rate of 3H, both of which result in low estuary numbers, indicating that advection is the dominant process. While this simplification facilitates model development in any simulation environment, it limits the applicability of the model to rivers with relatively faster flow or to radionuclides with slower decay rates. Nevertheless, users may modify the transport model to incorporate longitudinal dispersion into the numerical solution algorithm. This addition is of moderate complexity and would require a reasonable investment of time and effort. Alternatively, users may apply the cell-link transport features provided by the radionuclide version of the GoldSim Contaminant Transport Module.
- The model is designed to simulate only the main river branch and does not explicitly include tributaries along their flow paths. This limitation can be addressed in two ways. The first option is to restructure the model so that multiple instances can be executed sequentially in an upstream-to-downstream manner, with the material flux at the downstream end of each reach serving as the upstream or tributary input for the next reach. This approach is feasible as long as diffusive transport processes are excluded, as performed in this study. The second option is to incorporate the tributaries directly into the model domain, which would require rewriting the entire numerical solution framework—either using standard GoldSim elements or the radionuclide version of the GoldSim Contaminant Transport Module. This approach allows for including diffusive processes but would require substantially more development effort.
- The model is designed for radionuclides that exist in dissolved form in water. It does not account for adsorption onto particles, settling into sediments, sedimentary processes, other stunting mechanisms, or interactions with biota.
4.3. Comparison with Other River Systems Affected by Nuclear Facilities
4.4. Implications for Transboundary Water Management and for Further Studies
5. Conclusions
- Long-term, high-frequency measurements of tritium concentrations in the Neris River near the Belarus–Lithuania border and in Vilnius have revealed elevated tritium levels compared to background, with greater variability observed since the Belarusian Nuclear Power Plant (BelNPP) began operations.
- This excess tritium is attributed to routine discharges from the BelNPP, with the estimated annual tritium release reaching approximately 2.95∙1012 Bq. Observed fluctuations in tritium concentrations correspond closely with the operational schedule of the facility, particularly during and around scheduled maintenance periods. Comparisons with other river systems impacted by NPPs suggest that the tritium levels in the Neris River are within the typical range observed across Europe.
- A tritium transport model was developed to simulate the fate and timing of upstream discharges reaching downstream locations. The model provides insight into the lag time and magnitude of tritium transport under observed hydrological conditions.
- The model is adaptable to future applications, including the simulation of other water-soluble radionuclides, provided that isotope-specific parameters and hydrological data are available.
- Further studies are recommended for incorporating more complex environmental processes, including biogeochemical cycling, sediment interactions, and ecological impacts of other radionuclides. Such research would enhance our understanding of radionuclide behavior in transboundary aquatic systems.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucas, L.L.; Unterweger, M.P. Comprehensive Review and Critical Evaluation of the Half-Life of Tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, K.; Gonfiantini, R.; Araguas-Araguas, L. Tritium in the Global Atmosphere: Distribution Patterns and Recent Trends. J. Phys. G Nucl. Part. Phys. 1991, 17, S523–S536. [Google Scholar] [CrossRef]
- Mook, W.G. Environmental Isotopes in the Hydrological Cycle, Principle and Applications, I–IV; Technical document in hydrology; UNESCO: Paris, France, 2001. [Google Scholar]
- Kaufman, S.; Libby, W.F. The Natural Distribution of Tritium. Phys. Rev. 1954, 93, 1337–1344. [Google Scholar] [CrossRef]
- Gröning, M.; Rozanski, K. Uncertainty Assessment of Environmental Tritium Measurements in Water. Accred. Qual. Assur. 2003, 8, 359–366. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-0-429-06957-4. [Google Scholar]
- Juhlke, T.R.; Sültenfuß, J.; Trachte, K.; Huneau, F.; Garel, E.; Santoni, S.; Barth, J.A.C.; Van Geldern, R. Tritium as a Hydrological Tracer in Mediterranean Precipitation Events. Atmos. Chem. Phys. 2020, 20, 3555–3568. [Google Scholar] [CrossRef]
- Hanslík, E.; Ivanovová, D.; Jedináková-Křížová, V.; Juranová, E.; Šimonek, P. Concentration of Radionuclides in Hydrosphere Affected by Temelín Nuclear Power Plant in Czech Republic. J. Environ. Radioact. 2009, 100, 558–563. [Google Scholar] [CrossRef]
- Gusyev, M.A.; Toews, M.; Morgenstern, U.; Stewart, M.; White, P.; Daughney, C.; Hadfield, J. Calibration of a Transient Transport Model to Tritium Data in Streams and Simulation of Groundwater Ages in the Western Lake Taupo Catchment, New Zealand. Hydrol. Earth Syst. Sci. 2013, 17, 1217–1227. [Google Scholar] [CrossRef]
- Marang, L.; Siclet, F.; Luck, M.; Maro, D.; Tenailleau, L.; Jean-Baptiste, P.; Fourré, E.; Fontugne, M. Modelling Tritium Flux from Water to Atmosphere: Application to the Loire River. J. Environ. Radioact. 2011, 102, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Siebert, C.; Knoeller, K.; Roediger, T.; Schmidt, A.; Gilfedder, B. Investigating Groundwater Discharge into a Major River under Low Flow Conditions Based on a Radon Mass Balance Supported by Tritium Data. Water 2020, 12, 2838. [Google Scholar] [CrossRef]
- Galeriu, D.; Melintescu, A. Research and Development of Environmental Tritium Modelling. Fusion Sci. Technol. 2011, 60, 1232–1237. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, G.; Zhang, M.; Wang, G.; De With, G.; Bezhenar, R.; Maderich, V.; Xia, C.; Zhao, B.; Jung, K.T.; et al. Transport and Dispersion of Tritium from the Radioactive Water of the Fukushima Daiichi Nuclear Plant. Mar. Pollut. Bull. 2021, 169, 112515. [Google Scholar] [CrossRef] [PubMed]
- Jefanova, O.; Mažeika, J.; Petrošius, R.; Skuratovič, Ž. The Distribution of Tritium in Aquatic Environments, Lithuania. J. Environ. Radioact. 2018, 188, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lietuvos Higienos Norma HN 24:2023; Lithuanian Hygiene Standard HN 24:2023 on Drinking Water Safety and Quality Requirements. Lithuanian Ministry of Health: Vilnius, Lithuania, 2023.
- Momoshima, N.; Okai, T.; Inoue, M.; Takashima, Y. Tritium Monitoring around a Nuclear Power Station in Normal Operation. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1987, 38, 263–267. [Google Scholar] [CrossRef]
- Jean-Baptiste, P.; Baumier, D.; Fourré, E.; Dapoigny, A.; Clavel, B. The Distribution of Tritium in the Terrestrial and Aquatic Environments of the Creys-Malville Nuclear Power Plant (2002–2005). J. Environ. Radioact. 2007, 94, 107–118. [Google Scholar] [CrossRef]
- International Atomic Energy Agency, Division of Nuclear Power, Vienna (Austria). Nuclear Power Reactors in the World, September 1981 ed.; IAEA: Vienna, Austria, 1981. [Google Scholar]
- IAEA Energy. Electricity and Nuclear Power Estimates for the Period up to 2050, 1st ed.; 2024 Edition; Reference Data Series No Series; International Atomic Energy Agency: Vienna, Austria, 2024; ISBN 9789201234247. [Google Scholar]
- Gosatomnadzor, Ministry of Emergency Situations of Belarus. Belarusian AES. Available online: https://svisloch.gov.by/uploads/files/Rochs/Belorusskaja-AES.pdf (accessed on 5 March 2025).
- Adamovich, B.; Mikheeva, T.; Sorokovikova, E.; Belykh, O.; Paškauskas, R.; Kuzmin, A.; Fedorova, G.; Zhukava, H.; Karosienė, J. Phytoplankton of the transboundary River Viliya (Neris): Community structure and toxic cyanobacterial blooms. Baltica 2021, 34, 174–184. [Google Scholar] [CrossRef]
- Passo, C.J.; Cook, G.T. Handbook of Environmental Liquid Scintillation Spectrometry: A Compilation of Theory and Methods; Packard Instrument Company: Downers Grove, IL, USA, 1994. [Google Scholar]
- Rozanski, K.; Gröning, M. Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry. In Quantifying Uncertainty in Nuclear Analytical Measurements; IAEA-TECDOC-1401; IAEA: Vienna, Austria, 2004; pp. 195–217. [Google Scholar]
- ISO 9698:2010; Water Quality—Determination of Tritium Activity Concentration—Liquid Scintillation Counting Method. International Organization for Standardization: Geneva, Switzerland, 2010.
- Morgenstern, U.; Taylor, C.B. Ultra Low-Level Tritium Measurement Using Electrolytic Enrichment and LSC. Isot. Environ. Health Stud. 2009, 45, 96–117. [Google Scholar] [CrossRef]
- Copia, L.; Wassenaar, L.I.; Terzer-Wassmuth, S.; Hillegonds, D.J.; Klaus, P.M.; Araguás-Araguás, L.J. Proficiency Testing of 78 International Laboratories Measuring Tritium in Environmental Waters by Decay Counting and Mass Spectrometry for Age Dating and Water Resources Assessment. Rapid Comm Mass Spectrom. 2020, 34, e8832. [Google Scholar] [CrossRef]
- Lithuanian Hydrometeorological Service. Hidrologijos Metraštis; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2019; ISSN 1822-2897. [Google Scholar]
- Lithuanian Hydrometeorological Service. Hidrologijos Metraštis; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2020; ISSN 1822-2897. [Google Scholar]
- Lithuanian Hydrometeorological Service. Hidrologijos Metraštis; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2021; ISSN 1822-2897. [Google Scholar]
- Lithuanian Hydrometeorological Service. Hidrologijos Metraštis; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2022; ISSN 1822-2897. [Google Scholar]
- Lithuanian Hydrometeorological Service. Hidrologijos Metraštis; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2023; ISSN 1822-2897. [Google Scholar]
- Lithuanian Hydrometeorological Service. Hidrologijos Metraštis; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2024; ISSN 1822-2897. [Google Scholar]
- Baltakis, V.; Beconis, M.; Česnulevičius, A.; Dicevičienė, L.; Dvareckas, V.; Juozapavičius, G.; Jurgaitis, A.; Masiliūnas, L.; Mardosienė, D.; Mikalauskas, A.; et al. Geodynamic Processes of the Neris Valley. Geogr. Metraštis 1982, 20, 5–64. [Google Scholar]
- Modelica Association. Modelica®—A Unified Object-Oriented Language for Systems Modeling, Version 2023; Modelica Association: Linköping, Sweden, 2023; Available online: https://www.modelica.org (accessed on 5 March 2025).
- Powersim Software. Powersim Studio User’s Guide; Powersim Software: Bergen, Norway, 2003. [Google Scholar]
- Borshchev, A.; Grigoryev, I. The Big Book of Simulation Modeling; Multimethod Modeling with AnyLogic 8; The AnyLogic Company: Oakbrook Terrace, IL, USA, 2020. [Google Scholar]
- Cao, X.; Temple, T.; Li, X.; Coulon, F.; Sui, H. Influence of particle size and organic carbon content on distribution and fate of aliphatic and aromatic hydrocarbon fractions in chalks. Environ. Technol. Innov. 2015, 4, 227–239. [Google Scholar] [CrossRef]
- Edifor, E.E.; Brown, R.; Smith, P.; Kossik, R. Non-Adherence Tree Analysis (NATA)—An Adherence Improvement Framework: A COVID-19 Case Study. PLoS ONE 2021, 16, e0247109. [Google Scholar] [CrossRef]
- Carter, A.; Kelly, M.; Bailey, L. Radioactive high level waste insight modelling for geological disposal facilities. Phys. Chem. Earth Parts A/B/C 2013, 64, 1–11. [Google Scholar] [CrossRef]
- Esh, D.W.; Bradford, A.H.; Banovac, K.L.; Davis, B.J. Risks and Uncertainties Associated With High-Level Waste Tank Closure. MRS Online Proc. Libr. 2002, 757, 112. [Google Scholar] [CrossRef]
- Pensado, O.; Mohanty, S.; Kanno, T.; Tochigi, Y. Use of Simplified Models in the Performance Assessment of a High-Level Waste Repository System in Japan; Academia: Prague, Czechoslovakia, 2005. [Google Scholar]
- Vopálka, D.; Lukin, D.; Vokál, A. Modelling of Processes Occurring in Deep Geological Repository—Development of New Modules in the GoldSim Environment. Czech. J. Phys. 2006, 56, D623–D628. [Google Scholar] [CrossRef]
- Markley, C.; Pensado, O.; Gwo, J.P.; Winterle, J.; Ahn, T.; Benke, R.; Cao, T.; González, H.; Gray, A.; He, X.; et al. SOAR: A Model for Scoping of Options and Analyzing Risk, Version 1.0; User Guide. ML112440119; Center for Nuclear Waste Regulatory Analyses: San Antonio, TX, USA, 2011. [Google Scholar]
- Havlová, V.; Večerník, P.; Najser, J.; Sosna, K.; Breiter, K. Radionuclide Diffusion into Undisturbed and Altered Crystalline. Rocks. Mineral. Mag. 2012, 76, 3191–3201. [Google Scholar] [CrossRef]
- Panik, M.; Necas, V. GOLDSIM models of long-term radiation impact of conditionally cleared radioactive material. Prog. Nucl. Energy 2013, 67, 88–97. [Google Scholar] [CrossRef]
- Felipe-Sotelo, M.; Hinchliff, J.; Drury, D.; Evans, N.D.M.; Williams, S.; Read, D. Radial Diffusion of Radiocaesium and Radioiodide through Cementitious Backfill. Phys. Chem. Earth Parts A/B/C 2014, 70–71, 60–70. [Google Scholar] [CrossRef]
- Jolin, W.C.; Kaminski, M. Sorbent Materials for Rapid Remediation of Wash Water during Radiological Event Relief. Chemosphere 2016, 162, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.G.; Smith, F.; Flach, G. Goldsim dynamic-link library (dll) interface for cementitious barriers partnership (cbp) code integration–11444. In Proceedings of the 37th Annual Radioactive Waste Management Symposium 2011 Conference, Phoenix, AZ, USA, 27 February–3 March 2011. [Google Scholar]
- Landa, J.; Hokr, M. Contaminant Transport from a Deep Geological Repository: Lumped Parameters Derived from a 3D Hydrogeological Model. Energies 2022, 15, 6602. [Google Scholar] [CrossRef]
- Lillington, J.N.P.; Goût, T.L.; Harrison, M.T.; Iwalewa, T.M.; Farnan, I. Assessing the Effect of Radioactive Waste Glass Dissolution on Early-Stage Radionuclide Migration Using Simplified Geological Repository Monte Carlo Transport Models. MRS Adv. 2021, 6, 73–79. [Google Scholar] [CrossRef]
- Lee, Y.M.; Hwang, Y. A comparative study between GoldSim and AMBER based biosphere assessment models for an HLW repository. In Proceedings of the Korean Nuclear Society Autumn Meeting, Changwon, Republic of Korea, 23–25 October 2024. [Google Scholar]
- Hiergesell, R.A.; Taylor, G.A. Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models Using a Simple 1-D Domain-11191. Savannah River Site (SRS). In Proceedings of the WM2011 Conference, Aiken, SC, USA, 27 February–3 March 2011. [Google Scholar]
- Cunge, J.A. On The Subject of a Flood Propagation Computation Method (Musklngum Method). J. Hydraul. Res. 1969, 7, 205–230. [Google Scholar] [CrossRef]
- Hydrological Engineering Center. HEC-1 Flood Hydrograph Package: User’s Manual; U.S. Army Corps of Engineers: Davis, CA, USA, 1998. [Google Scholar]
- Nature Reseach Center Vilnius. Neris River Tritium Model; Zenodo: Geneva, Switzerland, 2025. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. WISER: Water Isotope System for Data Analysis, Visualization and Electronic Retrieval. Available online: https://nucleus.iaea.org/wiser (accessed on 10 May 2025).
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- РУП «Белoрусская Атoмная Электрoстанция»—Главная. Available online: https://www.belaes.by/ru/ (accessed on 9 July 2025).
- World Health Organization. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- EUROPA—RADD—Home. Available online: https://europa.eu/radd/ (accessed on 4 June 2025).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Fernandes, A.P.; Fonseca, A.R.; Pacheco, F.A.; Fernandes, L.S. Water quality predictions through linear regression-A brute force algorithm approach. MethodsX 2023, 10, 102153. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, S.E.; Kim, Y.D. Prediction of Surface Water Quality by Artificial Neural Network Model Using Probabilistic Weather Forecasting. Water 2021, 13, 2392. [Google Scholar] [CrossRef]
- Jean-Baptiste, P.; Fontugne, M.; Fourré, E.; Marang, L.; Antonelli, C.; Charmasson, S.; Siclet, F. Tritium and Radiocarbon Levels in the Rhône River Delta and along the French Mediterranean Coastline. J. Environ. Radioact. 2018, 187, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Eyrolle, F.; Lepage, H.; Antonelli, C.; Morereau, A.; Cossonnet, C.; Boyer, P.; Gurriaran, R. Radionuclides in Waters and Suspended Sediments in the Rhone River (France)—Current Contents, Anthropic Pressures and Trajectories. Sci. Total Environ. 2020, 723, 137873. [Google Scholar] [CrossRef]
- Bodereau, N.; Eyrolle, F.; Copard, Y.; Dumoulin, J.-P.; Lepage, H.; Giner, F.; Mourier, D.; Gurriaran, R. Carbon-14 Cycling in a Nuclearized River: A First Study in the Downstream Part of the Rhône River (France). Sci. Total Environ. 2024, 954, 176502. [Google Scholar] [CrossRef]
- Siclet, F.; Luck, M.; Le Dortz, J.G.; Damois, C.; Ciffroy, P.; Hendrickx, F.; Courivaud, J.R. Radionuclides Concentrations in the Loire River System Resulting from Routine Discharges of Five Nuclear Power Plants: Assessment of Dose to Man. Radioprotection 2002, 37, 399–410. [Google Scholar] [CrossRef]
- Goutal, N.; Luck, M.; Boyer, P.; Monte, L.; Siclet, F.; Angeli, G. Assessment, Validation and Intercomparison of Operational Models for Predicting Tritium Migration from Routine Discharges of Nuclear Power Plants: The Case of Loire River. J. Environ. Radioact. 2008, 99, 367–382. [Google Scholar] [CrossRef]
- Sizonenko, V.; Sinitsyn, I. Application of a Modified Aggregated Dead Zone Model to Estimate Radionuclide Transport in Running Surface Water Bodies. Ecol. Model. 2025, 507, 111187. [Google Scholar] [CrossRef]
- Pujol, L.; Sanchez-Cabeza, J.A. Natural and Artificial Radioactivity in Surface Waters of the Ebro River Basin (Northeast Spain). J. Environ. Radioact. 2000, 51, 181–210. [Google Scholar] [CrossRef]
- Baeza, A.; Brogueira, A.M.; Carreiro, M.C.V.; Garcĺa, E.; Gil, J.M.; Miró, C.; Sequeira, M.M.; Teixeira, M.M.R. Spatial and Temporal Evolution of the Levels of Tritium in the Tagus River in Its Passage through Caceres (Spain) and the Alentejo (Portugal). Water Res. 2001, 35, 705–714. [Google Scholar] [CrossRef]
- Baeza, A.; García, E.; Miró, C.; Periáñez, R. Modelling the Spatio-Temporal Evolution of 3H in the Waters of the River Tagus. J. Environ. Radioact. 2006, 86, 367–383. [Google Scholar] [CrossRef]
- Grahek, Ž.; Breznik, B.; Stojković, I.; Coha, I.; Nikolov, J.; Todorović, N. Measurement of Tritium in the Sava and Danube Rivers. J. Environ. Radioact. 2016, 162–163, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Hanslík, E.; Ivanovová, D.; Juranová, E.; Šimonek, P.; Jedináková-Křížová, V. Monitoring and Assessment of Radionuclide Discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic). J. Environ. Radioact. 2009, 100, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hanslík, E.; Marešová, D.; Juranová, E.; Sedlářová, B. Comparison of Balance of Tritium Activity in Waste Water from Nuclear Power Plants and at Selected Monitoring Sites in the Vltava River, Elbe River and Jihlava (Dyje) River Catchments in the Czech Republic. J. Environ. Manag. 2017, 203, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Simek, P.; Kořínková, T.; Svetlik, I.; Povinec, P.P.; Fejgl, M.; Malátová, I.; Tomaskova, L.; Stepan, V. The Valley System of the Jihlava River and Mohelno Reservoir with Enhanced Tritium Activities. J. Environ. Radioact. 2017, 166, 83–90. [Google Scholar] [CrossRef]
- Hanslík, E.; Marešová, D.; Juranová, E.; Sedlářová, B. Kinetics of 3 H, 90 Sr and 137 Cs Content Changes in Hydrosphere in the Vltava River System (Czech Republic). J. Environ. Radioact. 2018, 188, 1–10. [Google Scholar] [CrossRef]
- Panov, A.; Trapeznikov, A.; Trapeznikova, V.; Korzhavin, A. Influence of Operation of Thermal and Fast Reactors of the Beloyarsk NPP on the Radioecological Situation in River Ecosystems. J. Environ. Radioact. 2023, 264, 107209. [Google Scholar] [CrossRef] [PubMed]
- Chapra, S.C. Surface Water-Quality Modeling; Waveland Press: Long Grove, IL, USA, 2008. [Google Scholar]
- Punys, P.; Adamonyte, I.; Kvaraciejus, A.; Martinaitis, E.; Vyciene, G.; Kasiulis, E. Riverine Hydrokinetic Resource Assessment. A Case Study of a Lowland River in Lithuania. Renew. Sustain. Energy Rev. 2015, 50, 643–652. [Google Scholar] [CrossRef]
- Fischer, H.B.; List, E.J.; Koh, R.C.Y.; Imberger, J.; Brooks, N.H. Mixing in Inland and Coastal Waters; Academic Press: New York, NY, USA, 1979; pp. 104–138. [Google Scholar]
- Punys, P.; Adamonytė, I.; Kvaraciejus, A. Hydraulic Geometry of the River Neris for the Assessment of Hydrokinetic Resources. Rural. Dev. 2013, 6, 418–423. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; U.S. Geological Survey Professional Paper 252; US Government Printing Office: Washington, DC, USA, 1953.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skuratovič, Ž.; Mažeika, J.; Petrošius, R.; Jefanova, O.; Romanenko, V.; Paškauskas, R.; Adamovich, B.; Erturk, A. Tritium Transport in the Transboundary Neris River During the Routine Operation of the Belarusian Nuclear Power Plant: A Monitoring and Modeling Approach. Water 2025, 17, 2580. https://doi.org/10.3390/w17172580
Skuratovič Ž, Mažeika J, Petrošius R, Jefanova O, Romanenko V, Paškauskas R, Adamovich B, Erturk A. Tritium Transport in the Transboundary Neris River During the Routine Operation of the Belarusian Nuclear Power Plant: A Monitoring and Modeling Approach. Water. 2025; 17(17):2580. https://doi.org/10.3390/w17172580
Chicago/Turabian StyleSkuratovič, Žana, Jonas Mažeika, Rimantas Petrošius, Olga Jefanova, Vitaliy Romanenko, Ričardas Paškauskas, Boris Adamovich, and Ali Erturk. 2025. "Tritium Transport in the Transboundary Neris River During the Routine Operation of the Belarusian Nuclear Power Plant: A Monitoring and Modeling Approach" Water 17, no. 17: 2580. https://doi.org/10.3390/w17172580
APA StyleSkuratovič, Ž., Mažeika, J., Petrošius, R., Jefanova, O., Romanenko, V., Paškauskas, R., Adamovich, B., & Erturk, A. (2025). Tritium Transport in the Transboundary Neris River During the Routine Operation of the Belarusian Nuclear Power Plant: A Monitoring and Modeling Approach. Water, 17(17), 2580. https://doi.org/10.3390/w17172580