Spatial–Temporal Change and Dominant Factors of Coastline in Zhuhai City from 1987 to 2022
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Coastline Classification System
2.4. Visual Interpretation
2.5. Methods
2.5.1. Coastline Utilization Index
2.5.2. DSAS Analysis
2.5.3. Gray Correlation Analysis
3. Results
3.1. Spatial–Temporal Change in Coastline
3.2. Dynamic Changes in Coastline Utilization and Location
3.3. Influencing Factors of Spatial–Temporal Change in Coastline
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GDP | Gross Domestic Product |
Ftov | The total output value of fishery |
PRP | Permanent Residents Population |
MF | Mobile Fishermen |
TFT | Turnover of Foreign Trade |
El | Electricity of agriculture, forestry, animal husbandry and fishery |
Ex | Expenditures in local government general public budgets/Agriculture, forestry and water affairs |
APO | Aquatic Product Output |
AA | Aquaculture Area |
PT | Port Throughput |
QL | Quay Length |
Nb | Number of Berths in Main Ports |
AP | Annual Precipitation |
MAT | Mean Annual Temperature |
References
- Luo, Y.; Han, G.; Qin, W.; Chen, L.; Gao, Z. Eco-Environment and Sustainable Management in the Coastal Zone; Science Press: Beijing, China, 2021. [Google Scholar]
- Liu, L.; Xu, W.; Yue, Q.; Teng, X.; Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean. Coast. Manag. 2018, 153, 124–130. [Google Scholar] [CrossRef]
- Hou, X.; Wu, T.; Hou, W.; Chen, J.; Wang, Y.; Yu, L. Characteristics of coastline changes in mainland China since the early 1940s. Sci. China Earth Sci. 2016, 59, 1791–1802. [Google Scholar] [CrossRef]
- Boye, C.; Appeaning Addo, K.; Wiafe, G.; Dzigbodi-Adjimah, K. Spatio-temporal analyses of shoreline change in the Western Region of Ghana. J. Coast. Conserv. 2018, 22, 769–776. [Google Scholar] [CrossRef]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean. Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Celata, F.; Gioia, E. Resist or retreat? Beach erosion and the climate crisis in Italy: Scenarios, impacts and challenges. Appl. Geogr. 2024, 169, 103335. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.; Chen, B.; Zuo, J.; Yang, F.; Li, L. Analysis of China’s coastline changes during 1990–2020. Remote Sens. 2023, 15, 981. [Google Scholar] [CrossRef]
- Liang, L.; Liu, Q.; Liu, G.; Li, X.; Huang, C. Review of coastline extraction methods based on remote sensing images. J. Geo-Inf. Sci. 2018, 20, 1745–1755. [Google Scholar]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline detection using optical remote sensing: A review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef]
- Ohenhen, L.O.; Shirzaei, M.; Ojha, C.; Sherpa, S.F.; Nicholls, R. Disappearing cities on US coasts. Nat. Commun. 2024, 627, 108–115. [Google Scholar] [CrossRef]
- Sunny, D.S.; Islam, K.A.; Mullick, M.R.A.; Ellis, J.T. Performance study of imageries from MODIS, Landsat 8 and Sentinel-2 on measuring shoreline change at a regional scale. Remote Sens. Appl. Soc. Environ. 2022, 28, 100816. [Google Scholar] [CrossRef]
- Rostami, E.; Sharifi, M.; Hasanlou, M. Shoreline extraction using time series of sentinel-2 Satellite images by google earth engine platform. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 653–659. [Google Scholar] [CrossRef]
- Zuo, J.; Zhang, L.; Xiao, J.; Chen, B.; Zhang, B.; Hu, Y.; Mamun, M.A.A.; Wang, Y.; Li, K. GCL_FCS30: A global coastline dataset with 30-m resolution and a fine classification system from 2010 to 2020. Sci. Data 2025, 12, 129. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Xu, N.; Li, Y. Fully automatic training sample collection for detecting multi-decadal inland/seaward urban sprawl. Remote Sens. Environ. 2023, 298, 113801. [Google Scholar] [CrossRef]
- Wang, H. Research on Land Use Spatial-time Evolution Based on Geographical Conditions Monitoring in Development Zone. Geomat. Spat. Inf. Technol. 2018, 41, 151–159. [Google Scholar]
- Lin, J.; Tang, D.; Gao, Y.; Li, X. Remote Sensing of the Classification, Development and Utilization of Coastline in Zhuhai City. Ocean. Dev. Manag. 2019, 36, 69–73, 93. [Google Scholar]
- Yang, L.; Sun, W.; Ma, Y.; Ren, G. Remote Sensing Analyses of the Spatial and Temporal Changes in Zhuhai Shoreline. Mar. Sci. 2017, 41, 20–28. [Google Scholar]
- Zhang, H. Monitoring of Coastline Change in Zhuhai Based on High Resolution Remote Sensing. Bull. Surv. Mapp. 2016, 11, 55–59, 71. [Google Scholar]
- Yin, N.; Tang, J.; Yang, Y.; Gao, X.; Song, S.; Hu, Q. Variations of shoreline and land use in Guangdong-Hong Kong-Macao Greater Bay Area from 1989 to 2021. Mar. Geol. Front. 2023, 39, 1–11. [Google Scholar]
- Huang, Z.; Fang, L.; Wen, H.; Zhang, K.; Wang, X.; Chen, T. Responses of Indo-Pacific humpback dolphins (Sousa chinensis) to construction of the Hong Kong–Zhuhai–Macao Bridge. Front. Mar. Sci. 2024, 11, 1407937. [Google Scholar] [CrossRef]
- Hu, R.; Yao, L.; Yu, J.; Chen, P.; Wang, D. Remote sensing of the coastline variation of the guangdong–hongkong–macao greater bay area in the past four decades. J. Mar. Sci. Eng. 2021, 9, 1318. [Google Scholar] [CrossRef]
- Almar, R.; Boucharel, J.; Graffin, M.; Abessolo, G.O.; Thoumyre, G.; Papa, F.; Ranasinghe, R.; Montano, J.; Bergsma, E.W.; Baba, M.W. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 2023, 14, 3133. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Fan, C.; Xu, H.; Hou, X. Southeast Asia island coastline changes and driving forces from 1990 to 2015. Ocean Coast. Manag. 2021, 215, 105967. [Google Scholar] [CrossRef]
- Amrouni, O.; Hzami, A.; Heggy, E. Photogrammetric assessment of shoreline retreat in North Africa: Anthropogenic and natural drivers. ISPRS J. Photogramm. Remote Sens. 2019, 157, 73–92. [Google Scholar] [CrossRef]
- Lansu, E.M.; Reijers, V.C.; Höfer, S.; Luijendijk, A.; Rietkerk, M.; Wassen, M.J.; Lammerts, E.J.; van der Heide, T. A global analysis of how human infrastructure squeezes sandy coasts. Nat. Commun. 2024, 15, 432. [Google Scholar] [CrossRef]
- Yang, G.; Huang, K.; Zhu, L.; Sun, W.; Chen, C.; Meng, X.; Wang, L.; Ge, Y. Spatio-temporal changes in China’s mainland shorelines over 30 years using Landsat time series data (1990–2019). Earth Syst. Sci. Data Discuss. 2024, 2024, 1–26. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Zhang, K.; Fu, Q. Dynamic changes of the Huizhou Coastline in nearly 50 years based on Landsat images and DSAS. Natl. Remote Sens. Bull. 2024, 28, 689–703. [Google Scholar] [CrossRef]
- Ai, B.; Lai, Z.; Zeng, J.; Jian, Z.; Zhao, J.; Sun, S. Detection of wetland degradation and restoration in urbanizing Zhuhai City based on google earth engine. Ocean Coast. Manag. 2025, 261, 107518. [Google Scholar] [CrossRef]
- Zeng, Z.; Lai, C.; Wang, Z.; Chen, Y.; Chen, X. Future sea level rise exacerbates compound floods induced by rainstorm and storm tide during super typhoon events: A case study from Zhuhai, China. Sci. Total Environ. 2024, 911, 168799. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, Y.; Yang, G.; Sun, W.; Chen, C.; Huang, K. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology. Remote Sens. Nat. Resour. 2023, 35, 50–60. [Google Scholar]
- Wang, J.; Wu, Z.; Li, S.; Wang, S.; Zhang, X.; Gao, Q. Coastline and Land Use Change Detection and Analysis with Remote Sensing in the Pearl River Estuary Gulf. Sci. Geogr. Sin. 2016, 36, 1903–1911. [Google Scholar]
- Wu, T. Analysis of Spatio-Temporal Characteristics of Mainland Coastline Changes in China in Nearly 70 Years. Ph.D. Thesis, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China, 2015. [Google Scholar]
- Wu, T.; Hou, X.; Xu, X. Spatio-temporal characteristics of the mainland coastline utilization degree over the last 70 years in China. Ocean Coast. Manag. 2014, 98, 150–157. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Chen, B.; Li, K.; Liao, J.; Mahmood, R.; Hasan, M.E.; Mamun, M.A.A.; Raza, S.A.; Sutrisno, D. Long-term change of coastline length along selected coastal countries of Eurasia and African continents. Remote Sens. 2023, 15, 2344. [Google Scholar] [CrossRef]
- Ning, Z.; Jiang, C.; Chen, J.; Wu, Z.; Yao, Z.; Ma, Y.; Deng, T.; Chen, Y. Long-term spatiotemporal analysis of coastline morphological evolutions and their underlying mechanisms in the Pearl River Delta region of China. Ocean Coast. Manag. 2024, 258, 107426. [Google Scholar] [CrossRef]
- Crowell, M.; Honeycutt, M.; Hatheway, D. Coastal erosion hazards study: Phase one mapping. J. Coast. Res. 1999, 10–20. [Google Scholar]
- Keyes, T.K. Applied regression analysis and multivariable methods. Technometrics 2001, 43, 101. [Google Scholar] [CrossRef]
- Deng, J. Introduction to grey systems theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Han, Z.; Wang, H.; Xie, H.; Li, H.; Li, W. How Does Human Activity Shape the Largest Estuarine Bay of the Pearl River Estuary, South China (1964–2019). Water 2023, 15, 4143. [Google Scholar] [CrossRef]
- Li, T.; Dong, Y. Phased and polarized development of ecological quality in the rapidly-urbanized Pearl River Delta, China. Environ. Sci. Pollut. Res. 2023, 30, 36176–36189. [Google Scholar] [CrossRef]
- Cai, H.; Li, C.; Luan, X.; Ai, B.; Yan, L.; Wen, Z. Analysis of the spatiotemporal evolution of the coastline of Jiaozhou Bay and its driving factors. Ocean Coast. Manag. 2022, 226, 106246. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, J.; Cheng, Q.; Tsou, J.Y.; Huang, B.; Ji, C.; Yang, Y.; Zhang, Y. Investigating spatiotemporal coastline changes and impacts on coastal zone management: A case study in Pearl River Estuary and Hong Kong’s coast. Ocean Coast. Manag. 2024, 257, 107354. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
No. | Remote Sensing Data Type | Time |
---|---|---|
1 | Landsat5 TM | 8 December 1987 |
2 | Landsat5 TM | 1 November 1997 |
3 | Landsat5 TM | 29 January 2007 |
4 | Landsat7 ETM | 18 December 2017 |
5 | GF-2, GF-7 | 3 February 2022 |
Category | Class | Description | Image Example |
---|---|---|---|
Natural | Bedrock | Bedrock coastlines typically follow the water’s edge line as the shoreline reference, which is often irregular and jagged due to the resistance of exposed rock formations. On remote sensing imagery, the bedrock appears light-toned with striping patterns, and the shores are frequently dotted with reefs, boulders, sea cliffs, and other erosional landforms. | |
Sandy | Sandy coastlines are typically delineated using the upper beach ridge line or the vegetation line as the shoreline reference. They exhibit a smoother water’s edge line; bright white, uniform hue in areas not reached by the tide, and a darker hue in areas wetted by the tide. Beaches often show striping patterns on remote sensing imagery. | ||
Biological | Biological coastline is a special kind of coastal space formed by the special development of a certain kind of organism. Among the types of biological coastlines visible in Zhuhai City, mangrove coastlines are generally mangrove forests, which are distributed in numerous independent patches in the intertidal zone and are dark green in true-color images and red in false-color images. | ||
Artificial | Industrial | Industrial: Coastline used for waterfront industries for port construction development. | |
Port Terminal | Coastline means coastline used for the construction of port terminals, including coastline used for piers, jetties, and other construction function uses. | ||
Road | Coastline used to connect land-linked islands, generally straight in shape. | ||
Breeding | Breeding generally refers to the use of aquaculture, fisheries production pond dike coastline, generally located in estuaries, shallow, fish ponds around the perimeter, mostly regular block target. | ||
Island | The water–land boundary of atoll far from land or an island. |
Class | Island | Bedrock | Sandy | Biological | Artificial | Breeding |
---|---|---|---|---|---|---|
Weight | 1 | 1 | 2 | 3 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Li, H.; She, Y.; Zhao, Y.; Feng, X.; Zhang, F. Spatial–Temporal Change and Dominant Factors of Coastline in Zhuhai City from 1987 to 2022. Water 2025, 17, 2569. https://doi.org/10.3390/w17172569
Ma T, Li H, She Y, Zhao Y, Feng X, Zhang F. Spatial–Temporal Change and Dominant Factors of Coastline in Zhuhai City from 1987 to 2022. Water. 2025; 17(17):2569. https://doi.org/10.3390/w17172569
Chicago/Turabian StyleMa, Tao, Haolin Li, Yandi She, Yuanyuan Zhao, Xueke Feng, and Feng Zhang. 2025. "Spatial–Temporal Change and Dominant Factors of Coastline in Zhuhai City from 1987 to 2022" Water 17, no. 17: 2569. https://doi.org/10.3390/w17172569
APA StyleMa, T., Li, H., She, Y., Zhao, Y., Feng, X., & Zhang, F. (2025). Spatial–Temporal Change and Dominant Factors of Coastline in Zhuhai City from 1987 to 2022. Water, 17(17), 2569. https://doi.org/10.3390/w17172569