Study on the Adsorption Behavior and Mechanism of Nitrate Nitrogen in Sewage by Aminated Reed Straw
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Material
2.2. Material Preparation
2.3. Performance Measurement
2.3.1. Batch Adsorption and Desorption Performance
2.3.2. Dynamic Adsorption Performance
3. Results and Discussion
3.1. Material Characterization
3.2. Static Performance Analysis
3.2.1. Batch Adsorption Performance
3.2.2. Desorption Properties of Materials
3.3. Interference Studyperformance Analysis
3.3.1. Inorganic Component
3.3.2. Organic Component
3.4. Dynamic Adsorption Performance
3.4.1. Effect of Operational Parameters and Model Fitting
3.4.2. Practical Applicability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Zhang, H.; Xin, X.; Li, J.; Jia, H.; Wen, L.; Yin, W. Water Level–Driven Agricultural Nonpoint Source Pollution Dominated the Ammonia Variation in China’s Second Largest Reservoir. Environ. Res. 2022, 215, 114367. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, T.; Ma, W.; Li, Y.; Zeng, K. Impacts of Water Quality Variation and Rainfall Runoff on Jinpen Reservoir, in Northwest China. Water Sci. Eng. 2015, 8, 301–308. [Google Scholar] [CrossRef]
- Hu, F.; Ye, J.; Zhang, J.; Zhang, W.; Chen, P.; Yuan, Z.; Xu, Z. Synergistic Removal of Bio-Recalcitrant Organic Compounds and Nitrate: Coupling Photocatalysis and Biodegradation to Enhance the Bioavailability of Electron Donors. J. Hazard. Mater. 2024, 479, 135605. [Google Scholar] [CrossRef]
- Devadas, A.; Vasudevan, S.; Epron, F. Nitrate Reduction in Water: Influence of the Addition of a Second Metal on the Performances of the Pd/CeO2 Catalyst. J. Hazard. Mater. 2011, 185, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wan, H.; Wang, J.; Wan, D.; Cao, Y.; Gu, M. Sulfur Autotrophic Electrodialysis Ion Exchange Membrane Bioreactor (SEDIMB) for Nitrate Removal in Water: Synergism and Adaptability of Electrodialysis and Sulfur Autotrophy. Chem. Eng. J. 2024, 493, 152776. [Google Scholar] [CrossRef]
- Zirrahi, F.; Hadi, M.; Nabizadeh Nodehi, R.; Ghordouei Milan, E.; Bashardoust, P.; Abolli, S.; Alimohammadi, M. A Systematic Review on the Investigation of Optimal Operating Conditions of the Reverse Osmosis Process in Nitrate Removal from Drinking Water. Results Eng. 2024, 21, 101947. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Liu, C.; Zhang, H.; Qin, Z. Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems. Sustainability 2025, 17, 5301. [Google Scholar] [CrossRef]
- HJ/T 346-2007; Determination of Nitrate Nitrogen in Water by Ultraviolet Spectrophotometry (Trial). Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2007. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200703/t20070316_101688.shtml (accessed on 25 August 2025).
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing Dissolved Organic Matter in Aquatic Environments Using a New Approach to Fluorescence Spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Wang, J.; Liu, S.; Chen, C.; Xie, Y. Effects of Organic Fractions on the Formation and Control of N-Nitrosamine Precursors during Conventional Drinking Water Treatment Processes. Sci. Total Environ. 2013, 449, 295–301. [Google Scholar] [CrossRef]
- Asadnia, M.; Sadat-Shojai, M. Recent Perspective of Synthesis and Modification Strategies of Cellulose Nanocrystals and Cellulose Nanofibrils and Their Beneficial Impact in Scaffold-Based Tissue Engineering: A Review. Int. J. Biol. Macromol. 2025, 293, 139409. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, R.; Xu, X.; Li, Y.; Wang, N.; Leiviskä, T. Sorption/Desorption and Degradation of Long- and Short-Chain PFAS by Anion Exchange Resin and UV/Sulfite System. Environ. Pollut. 2024, 361, 124847. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pu, J.; Xu, C.; Yao, S.; Liu, Y.; Qin, C.; Wang, S.; Liang, C. Effects of Alkali-Soluble Hemicellulose Separation on the Structure of Bamboo Lignin and Lignin-Carbohydrate Complexes. Ind. Crops Prod. 2024, 222, 119549. [Google Scholar] [CrossRef]
- Su, Z.; Peng, Y.; Yu, Y.; Zhong, Y.; Zeng, J.; Chen, Y.; Vijayakumar, S.; Mao, Y.; Wang, L.; Xin, M.; et al. Regulatory Effects of Different Spacer Alkyl Chains on the in Vitro Antioxidant and Antibacterial Activities of Chitosan Quaternary Ammonium/Phosphonium Salt Derivatives. Int. J. Biol. Macromol. 2025, 307, 142098. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Yang, Y.; Wu, Z.; Zhang, C.; Ding, B.; Liu, W.; Zhang, Q.; Guan, B. Enhancing Oil Recovery by Alkane-Modified Molybdenum Disulfide Nanosheets with the Optimum Alkyl Chain Length: The Balance between Dispersity and Hydrophobicity to Achieve High Interfacial Activity. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132693. [Google Scholar] [CrossRef]
- Gao, R.; Wang, R.; Wang, Y.; Liu, X.; Zheng, X.; Liu, X.; Ding, J.; Song, S.; Ma, Z.; Zhang, Q.; et al. NaCl-Templated Hierarchical Porous Carbons Enhanced Removal of Tetracycline and Ciprofloxacin: Mechanistic Insights from Site Energy Distribution and Competitive Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2025, 726, 137758. [Google Scholar] [CrossRef]
- Cui, K.; Sui, N.; Huang, K. Enhanced Separation via Confined Shear Flow in Microchannel: A Novel Insight into the Role of Confined Hydrogen Bonds in Microfluid and Its Effect on Competitive Mass Transfer of Hydrated Ions. Chem. Eng. J. 2024, 487, 150464. [Google Scholar] [CrossRef]
- Sun, J.; Etcheverry, L.; Bergel, A. Revisiting Basic Assumptions of the Hydrogen Evolution Reaction (HER) for Water Electrolysis at near-Neutral pH. Chem. Eng. J. 2025, 507, 160490. [Google Scholar] [CrossRef]
- Chu, K.H.; Bollinger, J.-C.; Kierczak, J. Pseudo-First-Order Kinetics in Environmental Adsorption: Why Are There Two Distinct Equations? Environ. Surf. Interfaces 2025, 3, 191–195. [Google Scholar] [CrossRef]
- Equilibrium and Kinetic Adsorption Study of the Adsorptive Removal of Cr (VI) Using Modified Wheat Residue. J. Colloid Interface Sci. 2010, 349, 256–264. [CrossRef]
- Jeppu, G.P.; Clement, T.P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-Dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129–130, 46–53. [Google Scholar] [CrossRef]
- Ezzati, R.; Azizi, M.; Ezzati, S. A Theoretical Approach for Evaluating the Contributions of Pseudo-First-Order and Pseudo-Second-Order Kinetics Models in the Langmuir Rate Equation. Vacuum 2024, 222, 113018. [Google Scholar] [CrossRef]
- Chung, H.-K.; Kim, W.-H.; Park, J.; Cho, J.; Jeong, T.-Y.; Park, P.-K. Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Elanchezhiyan, S.S.D.; Preethi, J.; Meenakshi, S.; Park, C.M. Mechanistic Performance of Polyaniline-Substituted Hexagonal Boron Nitride Composite as a Highly Efficient Adsorbent for the Removal of Phosphate, Nitrate, and Hexavalent Chromium Ions from an Aqueous Environment. Appl. Surf. Sci. 2020, 511, 145543. [Google Scholar] [CrossRef]
- Al-Hazeef, M.S.F.; Aidi, A.; Hecini, L.; Hasan, G.G.; Hu, J.; Althamthami, M. Unveiling the Efficiency of Peanut Shell-Derived Porous Composite for Water Denitrification: Characterization, Kinetic, Isotherm and Thermodynamic Studies. J. Mol. Liq. 2024, 410, 125668. [Google Scholar] [CrossRef]
- Ren, Y.; Ye, Y.; Zhu, J.; Hu, K.; Wang, Y. Characterization and Evaluation of a Macroporous Anion Exchange Resin for Nitrate Removal from Drinking Water. Desalination Water Treat. 2016, 57, 17430–17439. [Google Scholar] [CrossRef]
- Stragliotto, M.F.; Fernández, J.L.; Dassie, S.A.; Giacomelli, C.E. An Integrated Experimental-Theoretical Approach to Understand the Electron Transfer Mechanism of Adsorbed Ferrocene-Terminated Alkanethiol Monolayers. Electrochim. Acta 2018, 265, 303–315. [Google Scholar] [CrossRef]
- Hekmatzadeh, A.A.; Karimi-Jashani, A.; Talebbeydokhti, N.; Kløve, B. Modeling of Nitrate Removal for Ion Exchange Resin in Batch and Fixed Bed Experiments. Desalination 2012, 284, 22–31. [Google Scholar] [CrossRef]
- Wiriyathamcharoen, S.; Sarkar, S.; Jiemvarangkul, P.; Nguyen, T.T.; Klysubun, W.; Padungthon, S. Synthesis Optimization of Hybrid Anion Exchanger Containing Triethylamine Functional Groups and Hydrated Fe(III) Oxide Nanoparticles for Simultaneous Nitrate and Phosphate Removal. Chem. Eng. J. 2020, 381, 122671. [Google Scholar] [CrossRef]
- Gong, B.; Chen, W.; Qian, C.; Yu, H.-Q. Evaluating Excitation-Emission Matrix for Characterization of Dissolved Organic Matter in Natural and Engineered Water Systems: Unlocking Submerged Secrets. TrAC Trends Anal. Chem. 2024, 181, 118045. [Google Scholar] [CrossRef]
- Yusup Rosadi, M.; Maysaroh, S.; Diva Sagita, N.; Anggreini, S.; Desmiarti, R.; Deng, Z.; Li, F. Fluorescence-Based Indicators Predict the Performance of Conventional Drinking Water Treatment Processes: Evaluation Based on the Changes in the Compositions of Dissolved Organic Matter. Chemosphere 2023, 337, 139410. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Angove, M.J. Adsorption of Humic and Fulvic Acids onto a Range of Adsorbents in Aqueous Systems, and Their Effect on the Adsorption of Other Species: A Review. Sep. Purif. Technol. 2020, 247, 116949. [Google Scholar] [CrossRef]
- Arroyave, J.M.; Waiman, C.C.; Zanini, G.P.; Avena, M.J. Effect of Humic Acid on the Adsorption/Desorption Behavior of Glyphosate on Goethite. Isotherms and Kinetics. Chemosphere 2016, 145, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Noorimotlagh, Z.; Ravanbakhsh, M.; Valizadeh, M.R.; Bayati, B.; Kyzas, G.Z.; Ahmadi, M.; Rahbar, N.; Jaafarzadeh, N. Optimization and Genetic Programming Modeling of Humic Acid Adsorption onto Prepared Activated Carbon and Modified by Multi-Wall Carbon Nanotubes. Polyhedron 2020, 179, 114354. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.; Tan, X.; Zhang, X.; Yue, Q.; Wang, Y.; Li, Q. Nitrate Adsorption by Stratified Wheat Straw Resin in Lab-Scale Columns. Chem. Eng. J. 2013, 226, 1–6. [Google Scholar] [CrossRef]
- Chu, K.H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. [Google Scholar] [CrossRef]
- Aniagor, C.O.; Menkiti, M.C. Application of Modified Yoon-Nelson Nonlinear Equation for Modeling Antibiotics Adsorption onto a Composite Adsorbent. Results Surf. Interfaces 2025, 18, 100370. [Google Scholar] [CrossRef]
- Song, W.; Gao, B.; Xu, X.; Wang, F.; Xue, N.; Sun, S.; Song, W.; Jia, R. Adsorption of Nitrate from Aqueous Solution by Magnetic Amine-Crosslinked Biopolymer Based Corn Stalk and Its Chemical Regeneration Property. J. Hazard. Mater. 2016, 304, 280–290. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, F.; Song, W.; Ren, X.; Wang, J.; Cai, X.; Li, X.; Li, Y.; Yan, L. Enhanced Selective Removal of Phosphate in the Presence of High-Strength Nitrate Using Straw-Based Anion Imprinted Biosorbent. J. Environ. Chem. Eng. 2022, 10, 108060. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, W.; Qiu, S.; Li, M.; Feng, M.; Yuan, M.; Guo, C.; Zhang, K.; Wang, F.; Han, W. One-Pot High-Speed Shear Preparation of Modified Straw: An Efficient, Convenient, Nontoxic, and Green Method with High Adsorption Capacity for Nitrate Removal from Aqueous Solution. J. Environ. Chem. Eng. 2023, 11, 111459. [Google Scholar] [CrossRef]
- Kono, H. Cationic Flocculants Derived from Native Cellulose: Preparation, Biodegradability, and Removal of Dyes in Aqueous Solution. Resour. Effic. Technol. 2017, 3, 55–63. [Google Scholar] [CrossRef]
Materials | Concentration (mg·L−1) | Proposed Primary Adsorption Kinetic Model | Proposed Secondary Adsorption Kinetic Model | ||||
---|---|---|---|---|---|---|---|
qe (mg·g−1) | K1 (min−1) | R2 | qe (mg·g−1) | K2 (g.(mg·min)−1) | R2 | ||
MRS | 20 | 2.24 | 2.21 | 0.997 | 2.45 | 2.34 | 0.995 |
50 | 4.79 | 2.66 | 0.988 | 4.85 | 3.95 | 0.998 | |
100 | 10.36 | 3.35 | 0.954 | 9.93 | 4.23 | 0.921 | |
ERS | 20 | 2.31 | 2.43 | 0.994 | 2.34 | 2.55 | 0.998 |
50 | 5.67 | 3.27 | 0.996 | 5.77 | 3.65 | 0.999 | |
100 | 10.97 | 3.98 | 0.953 | 11.01 | 4.08 | 0.977 |
Material | Temperature (k) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
qmax (mg·g−1) | KL | R2 | n | KF | R2 | ||
MRS | 288 | 8.54 | 0.139 | 0.972 | 2.29 | 1.69 | 0.997 |
298 | 8.43 | 0.143 | 0.975 | 2.43 | 1.78 | 0.995 | |
308 | 8.76 | 0.122 | 0.976 | 2.31 | 1.72 | 0.997 | |
ERS | 288 | 12.25 | 0.071 | 0.966 | 2.02 | 1.56 | 0.977 |
298 | 10.75 | 0.102 | 0.938 | 2.11 | 1.59 | 0.984 | |
308 | 11.56 | 0.082 | 0.984 | 2.35 | 1.76 | 0.995 |
Material | Temperature (K) | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J/mol) |
---|---|---|---|---|
MRS | 288.15 | −0.34 | −4.07 | −12.96 |
298.15 | −0.21 | |||
308.15 | −0.08 | |||
ERS | 288.15 | −1.47 | −11.12 | −33.53 |
298.15 | −1.12 | |||
308.15 | −0.80 |
Material | Filler Volume (mL) | Initial Flow Rate (mL/min) | Penetration Point (min) | Saturation Point (min) | Total Adsorption (g) | Adsorption Capacity (mg·g−1) | Removal Rate (%) |
---|---|---|---|---|---|---|---|
MRS | 1 | 5 | 10 | 45 | 3.18 | 3.18 | 70.67 |
2 | 5 | 45 | 75 | 6.05 | 3.03 | 80.67 | |
3 | 5 | 95 | 125 | 11.15 | 3.72 | 89.20 | |
2 | 3 | 25 | 90 | 3.91 | 3.91 | 43.44 | |
2 | 5 | 20 | 55 | 3.99 | 3.99 | 72.55 | |
2 | 7 | 10 | 45 | 4.03 | 4.03 | 89.56 | |
ERS | 1 | 5 | 70 | 150 | 11.06 | 11.06 | 73.73 |
2 | 5 | 130 | 260 | 21.92 | 10.96 | 84.31 | |
3 | 5 | 290 | 370 | 32.23 | 10.74 | 87.11 | |
2 | 3 | 60 | 280 | 11.57 | 11.57 | 41.32 | |
2 | 5 | 55 | 180 | 12.2 | 12.2 | 67.78 | |
2 | 7 | 40 | 150 | 13.49 | 13.49 | 89.93 |
Material | Filler Volume (g) | Inlet Flow Rate (mL·min−1) | Thomas Model | Yoon–Nelson Models | |||||
---|---|---|---|---|---|---|---|---|---|
KTh (mL·min−1·mg−1) | qe (mg·g−1) | R2 | KYN (min−1) | τ (min) | R2 | τ/KYN | |||
MRS | 1 | 3 | 0.421 | 4.48 | 0.967 | 0.084 | 67.73 | 0.967 | 806.309 |
1 | 5 | 0.796 | 4.04 | 0.983 | 0.159 | 40.35 | 0.983 | 253.774 | |
1 | 7 | 0.831 | 4.02 | 0.971 | 0.166 | 28.71 | 0.971 | 172.952 | |
2 | 7 | 0.588 | 4.21 | 0.81 | 0.179 | 58.46 | 0.916 | 327.598 | |
3 | 7 | 0.317 | 6.14 | 0.863 | 0.086 | 123.32 | 0.954 | 1433.953 | |
ERS | 1 | 3 | 0.143 | 11.62 | 0.968 | 0.025 | 188.72 | 0.952 | 7248.8 |
1 | 5 | 0.241 | 12.09 | 0.964 | 0.048 | 120.85 | 0.966 | 2517.708 | |
1 | 7 | 0.381 | 15.79 | 0.976 | 0.054 | 107.8 | 0.939 | 1996.296 | |
2 | 7 | 0.243 | 12.6 | 0.907 | 0.046 | 178.7 | 0.942 | 3884.783 | |
3 | 7 | 0.365 | 15.17 | 0.984 | 0.065 | 323.51 | 0.951 | 4977.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, H.; Yang, Z.; Qin, Z. Study on the Adsorption Behavior and Mechanism of Nitrate Nitrogen in Sewage by Aminated Reed Straw. Water 2025, 17, 2546. https://doi.org/10.3390/w17172546
Zhang Q, Zhang H, Yang Z, Qin Z. Study on the Adsorption Behavior and Mechanism of Nitrate Nitrogen in Sewage by Aminated Reed Straw. Water. 2025; 17(17):2546. https://doi.org/10.3390/w17172546
Chicago/Turabian StyleZhang, Qi, Haodong Zhang, Zhan Yang, and Zhe Qin. 2025. "Study on the Adsorption Behavior and Mechanism of Nitrate Nitrogen in Sewage by Aminated Reed Straw" Water 17, no. 17: 2546. https://doi.org/10.3390/w17172546
APA StyleZhang, Q., Zhang, H., Yang, Z., & Qin, Z. (2025). Study on the Adsorption Behavior and Mechanism of Nitrate Nitrogen in Sewage by Aminated Reed Straw. Water, 17(17), 2546. https://doi.org/10.3390/w17172546