Temporal and Spatial Analysis: The Impact of Virtual Water Flows on Agricultural Production Efficiency in China
Abstract
1. Introduction
2. Literature Review
3. Theoretical Analysis
4. Models and Variables
4.1. Research Methodology
4.1.1. Calculation of Regional Virtual Water Flows
- (1)
- Principle of non-interference from external factors: Given that China’s grain self-sufficiency rate remains above 95%, so there is no need to consider the impact of import and export trade on regional virtual water flows in grain [38].
- (2)
- Principle of social equity: Without considering the actual flow direction of agricultural products, we assume that the per capita grain consumption is the same across all provinces, and that the opportunity for grain to be transferred from importing regions to exporting regions is equal.
- (3)
- Principle of constant grain reserves: We assume that all grain produced in a given year is consumed within that year.
4.1.2. Super-SBM Model
4.1.3. Kernel Density Estimation
4.1.4. Fixed Effects Model
4.2. Variable Selection
4.2.1. Dependent Variable
4.2.2. Core Explanatory Variable
4.2.3. Control Variables
4.3. Data Sources and Descriptive Statistics
4.3.1. Data Sources
4.3.2. Descriptive Statistics
5. Empirical Results
5.1. Trends in Virtual Water in Grain and Agricultural Production Efficiency
5.2. Trends in Agricultural Production Efficiency
5.3. Benchmark Regression Results
5.4. Robustness Checks
6. Conclusions and Policy Implications
6.1. Research Conclusions
6.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.M.; Guo, P. Integrated Agriculture Water Management Optimization Model for Water Saving Potential Analysis. Agric. Water Manag. 2016, 170, 5–19. [Google Scholar] [CrossRef]
- He, D.; Deng, X.; Wang, X.; Zhang, F. Livestock Greenhouse Gas Emission and Mitigation Potential in China. J. Environ. Manag. 2023, 348, 119494. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhang, J.B.; Liu, Q.Q. Exploring the path of balanced development: The decoupling evaluation of agricultural production efficiency and land carrying capacity. Land Degrad. Dev. 2025, 36, 599–613. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global Agricultural Economic Water Scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.H.; Zhang, J.B.; Zeng, Y.M. Will Climate Endowment Affect the Improvement of Agricultural Production Efficiency? Evidence From Cities in Zhejiang Province, China. Land Degrad. Dev. 2025, 36, 1048–1064. [Google Scholar] [CrossRef]
- Zeng, Y.M.; He, K.; Zhang, J.B.; Li, P. Impacts of Environmental Regulation Perceptions on Farmers’ Intentions to Adopt Multiple Smart Hog Breeding Technologies: Evidence from Rural Hubei, China. J. Clean. Prod. 2024, 469, 143223. [Google Scholar] [CrossRef]
- Malekian, A.; Hayati, D.; Aarts, N. Conceptualizations of Water Security in the Agricultural Sector: Perceptions, Practices, and Paradigms. J. Hydrol. 2017, 544, 224–232. [Google Scholar] [CrossRef]
- Lei, S.H.; Yang, X.; Qin, J.H. Does Agricultural Factor Misallocation Hinder Agricultural Green Production Efficiency? Evidence From China. Sci. Total Environ. 2023, 891, 164466. [Google Scholar] [CrossRef]
- Yan, J.; Chen, C.; Hu, B. Farm Size and Production Efficiency in Chinese Agriculture: Output and Profit. China Agric. Econ. Rev. 2019, 11, 20–38. [Google Scholar] [CrossRef]
- He, K.; Li, F.L.; Wang, H.; Ming, R.Y.; Zhang, J.B. A Low-Carbon Future for China’s Tech Industry. Science 2022, 377, 1498–1499. [Google Scholar] [CrossRef]
- Guo, B.S.; Jin, G. Beyond the Land Quantity: Rethinking the Role of Land Quality in Agriculture from the Efficiency Perspective. Socio-Econ. Plan. Sci. 2025, 98, 102151. [Google Scholar] [CrossRef]
- Bocean, C.G. A Cross-Sectional Analysis of the Relationship between Digital Technology Use and Agricultural Productivity in EU Countries. Agriculture 2024, 14, 519. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X. Optimization of Territorial Space Layout in China. J. Geogr. Sci. 2024, 34, 1719–1738. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhang, J.B.; Chang, B.L.; Ni, C.J. Do Agricultural Ecology and Food Security Promote Each Other? Evidence From China. Food Energy Secur. 2025, 14, e70059. [Google Scholar] [CrossRef]
- Gai, Q.E.; Li, C.Z.; Zhang, W.K.; Shi, Q.H. From Smallholders to Large-Scale Farmers: Land Rental and Agricultural Productivity. Econ. Res. J. 2023, 58, 135–152. (In Chinese) [Google Scholar]
- Melesse, M.B.; Bulte, E. Does Land Registration and Certification Boost Farm Productivity? Evidence from Ethiopia. Agric. Econ. 2015, 46, 757–768. [Google Scholar] [CrossRef]
- Markussen, T. Property Rights, Productivity, and Common Property Resources: Insights from Rural Cambodia. World Dev. 2008, 36, 2277–2296. [Google Scholar] [CrossRef]
- Ghebru, H.; Holden, S.T. Technical Efficiency and Productivity Differential Effects of Land Right Certification: A Quasi-Experimental Evidence. Q. J. Int. Agric. 2015, 54, 1–31. [Google Scholar]
- Liu, Z.M.; Yang, D.; Wen, T. Agricultural Production Mode Transformation and Production Efficiency: A Labor Division and Cooperation Lens. China Agric. Econ. Rev. 2019, 11, 160–179. [Google Scholar] [CrossRef]
- Zeng, S.B.; Zhang, Y.X.; Jin, G. Can Urban Low-Carbon Transformation Affect the Prices of Its Industrial Land? An Empirical Study Based on Spatial Regression Discontinuity. Land Use Policy 2025, 148, 107413. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, G. Spatiotemporal Differentiation of Carbon Budget and Balance Zoning: Insights from the Middle Reaches of the Yangtze River Urban Agglomeration, China. Appl. Geogr. 2024, 167, 103293. [Google Scholar] [CrossRef]
- Guo, B.S.; Jin, G. Heterogeneity of Urban—Rural Responses to Multigoal Policy from an Efficiency Perspective: An Empirical Study in China. Habitat Int. 2025, 158, 103341. [Google Scholar] [CrossRef]
- Liu, Y.H. “Who Will Grow Grain?”: Operational Characteristics and Logical Choices of Smallholder Farmers and Family Farms. Rural Econ. 2023, 5, 125–133. (In Chinese) [Google Scholar]
- Allan, J.A.; Lant, C. Virtual Water-the Water, Food, and Trade Nexus. Useful Concept Or Misleading Metaphor? Water Int. 2003, 28, 106–113. [Google Scholar] [CrossRef]
- Vallino, E.; Ridolfi, L.; Laio, F. Trade of Economically and Physically Scarce Virtual Water in the Global Food Network. Sci. Rep. 2021, 11, 22806. [Google Scholar] [CrossRef]
- Yang, L.; Yin, X.; Gao, Z.; Yang, B.; Zhang, Y.; Shao, Y.; Gao, T.; Hai, N.T. Prioritizing Crops for Implementing a Virtual Water Strategy That Accounts for Effects at an Economic System Scale in Water-Scarce Regions. J. Hydrol. 2025, 661, 133756. [Google Scholar] [CrossRef]
- Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W. Internal and External Green-Blue Agricultural Water Footprints of Nations, and Related Water and Land Savings Through Trade. Hydrol. Earth Syst. Sci. 2011, 15, 1641–1660. [Google Scholar] [CrossRef]
- Tamea, S.; Allamano, P.; Carr, J.A.; Claps, P.; Laio, F.; Ridolfi, L. Local and Global Perspectives on the Virtual Water Trade. Hydrol. Earth Syst. Sci. 2013, 17, 1205–1215. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.H.; Tang, G.R.; Wang, L. Virtual Water Flows in the International Trade of Agricultural Products of China. Sci. Total Environ. 2016, 557, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water Saving Through International Trade of Agricultural Products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef]
- Zhang, C.; Anadon, L.D. A Multi-Regional Input-Output Analysis of Domestic Virtual Water Trade and Provincial Water Footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Jiang, Y.K.; Cai, W.J.; Du, P.F.; Pan, W.; Wang, C. Virtual Water in Interprovincial Trade with Implications for China’s Water Policy. J. Clean. Prod. 2015, 87, 655–665. [Google Scholar] [CrossRef]
- Luan, X.B.; Yin, Y.L.; Wu, P.T.; Sun, S.K.; Wang, Y.B.; Gao, X.R.; Liu, J. An Improved Method for Calculating the Regional Crop Water Footprint Based on a Hydrological Process Analysis. Hydrol. Earth Syst. Sci. 2018, 22, 5111–5123. [Google Scholar] [CrossRef]
- Akoto-Danso, E.K.; Karg, H.; Drechsel, P.; Nyarko, G.; Buerkert, A. Virtual Water Flow in Food Trade Systems of Two West African Cities. Agric. Water Manag. 2019, 213, 760–772. [Google Scholar] [CrossRef]
- Liu, J.G.; Mooney, H.; Hull, V. Systems Integration for Global Sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef]
- Xu, C.X.; Ma, C.; Tian, G.L.; Xie, W.X. Study on Mechanisms of Virtual Water Trade and Its Contribution to Regional Economic Growth. China Soft Sci. 2011, 12, 110–119. (In Chinese) [Google Scholar]
- Nguyen, T.T.H.; Phuong, P.T.; Pham, A.T.; Vu, T.N.T. Unveiling Vietnam’s Trade Dynamics: The Perspective of Virtual Water on Agricultural Products Trade for Sustainable Water Resource Management. J. Clean. Prod. 2025, 503, 145430. [Google Scholar] [CrossRef]
- Dalin, C.; Qiu, H.G.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Balancing water resource conservation and food security in China. Proc. Natl. Acad. Sci. USA 2015, 112, 4588–4593. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Liu, D.; Cao, X.C.; Yang, Z.Y.; Song, J.F.; Chen, D.Y.; Sun, S.K. Agricultural water rights trading and virtual water export compensation coupling model: A case study of an irrigation district in China. Agric. Water Manag. 2017, 180, 99–106. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Terrell, G.R.; Scott, D.W. Variable Kernel Density Estimation. Ann. Stat. 1992, 20, 1236–1265. [Google Scholar] [CrossRef]
- Tian, G.L.; Li, S.W.; Chen, S.F.; Wu, Z.; Xia, Q. The Impact of Virtual Water Flow on Regional Food Security under the New Development Paradigm. J. Econ. Water Resour. 2023, 41, 11–17+93. (In Chinese) [Google Scholar]
- Tian, P.; Lu, H.; Liu, J.; Feng, K.; Heijungs, R.; Li, D.; Fan, X. The Pattern of Virtual Water Transfer in China: From the Perspective of the Virtual Water Hypothesis. J. Clean. Prod. 2022, 346, 131232. [Google Scholar] [CrossRef]
- Jin, W.; Liu, S.S.; Zhang, K.; Kong, W. The Impact of Agricultural Production Efficiency on Agricultural Water Consumption. J. Nat. Resour. 2018, 33, 1326–1339. (In Chinese) [Google Scholar]
- Sun, S.K.; Song, J.F.; Wang, F.F.; Wu, P.T.; Wang, Y.B. Evaluating the Impacts of Socio-Economic Factors on Regional Grain Virtual Water Flows in China Using a Structural Equation Modeling Approach. J. Hydrol. 2019, 571, 132–141. [Google Scholar] [CrossRef]
Variable | Sample Size | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
APE | 480 | 1.03 | 0.081 | 0.877 | 1.58 |
VW | 480 | −0.06 | 17.8 | −60.5 | 88 |
EDU | 480 | 7.74 | 0.657 | 5.72 | 10.1 |
RCS | 480 | 0.358 | 0.066 | 0.238 | 0.56 |
IG | 480 | 2.64 | 0.439 | 1.83 | 4.21 |
UR | 480 | 0.575 | 0.134 | 0.282 | 0.896 |
AF | 480 | 0.11 | 0.033 | 0.0291 | 0.204 |
AD | 480 | 0.176 | 0.143 | 0 | 0.696 |
Region | Province | Virtual Water Transfer Volume of Grain (in km3) | Region | Province | Virtual Water Transfer Volume of Grain (in km3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2007 | 2012 | 2017 | 2022 | 2007 | 2012 | 2017 | 2022 | ||||
North China | Beijing | −5.95 | −9.36 | −11.7 | −12 | Southeast China | Shanghai | −7.7 | −11.1 | −12.8 | −13.2 |
Tianjin | −3.05 | −5.21 | −5.35 | −4.82 | Zhejiang | −14.3 | −20.6 | −27.6 | −30.8 | ||
Shanxi | −2.98 | −2.95 | −3.34 | −2.54 | Fujian | −8.7 | −12.3 | −17.7 | −17.6 | ||
Northeast China | Inner Mongolia | 9.46 | 15.7 | 22.7 | 29.5 | Middle and Lower Reaches of Yangtze River | Jiangsu | 2.21 | −1.87 | −4.52 | −4.54 |
Liaoning | 2.49 | 2.32 | 3.97 | 6.04 | Jiangxi | 3.04 | 1.91 | 1.18 | −0.635 | ||
Jilin | 15.4 | 23.9 | 32.5 | 32.3 | Hubei | −0.0725 | −0.774 | 0.667 | −1.16 | ||
Heilongjiang | 27.9 | 58 | 81.2 | 88 | Hunan | 3.17 | 1.83 | −0.775 | −2.33 | ||
Huang-Huai-Hai Region | Hebei | 1.64 | 0.876 | 3.09 | 2.42 | Southwest China | Chongqing | 0.0425 | −1.9 | −4.96 | −6.07 |
Anhui | 7.01 | 8.85 | 14.8 | 14.3 | Sichuan | −1.11 | −2.46 | −5.31 | −7.05 | ||
Shandong | 4.09 | 2.2 | 4.69 | 4.46 | Guizhou | −3.36 | −5.98 | −6.86 | −9.523 | ||
Henan | 12.3 | 11.2 | 14 | 14.9 | Yunnan | −3.19 | −3.36 | −4.75 | −4.18 | ||
Northwest China | Shaanxi | −3.51 | −4.4 | −7.1 | −6.91 | South China | Guangdong | −27.7 | −40.6 | −53.7 | −60.5 |
Gansu | −1.9 | 0.0195 | −1.1 | 0.579 | |||||||
Qinghai | −1.28 | −1.96 | −2.24 | −2.35 | Guangxi | −5.02 | −6.76 | −11.6 | −12.5 | ||
Ningxia | 1.71 | 1.71 | 0.703 | 0.411 | |||||||
Xinjiang | 1.14 | 5.5 | 5.81 | 10.4 | Hainan | −1.71 | −2.48 | −4.03 | −4.48 |
Province (Municipality, Autonomous Region) | 2007 | 2012 | 2017 | 2022 | Regional Average |
---|---|---|---|---|---|
Beijing | 1.08 | 1.11 | 1.21 | 1 | 1.1 |
Tianjin | 1.03 | 1.02 | 1.15 | 1.02 | 1.06 |
Hebei | 0.833 | 0.871 | 0.91 | 0.894 | 0.877 |
Shanxi | 0.896 | 1.02 | 1.082 | 0.93 | 0.982 |
Inner Mongolia | 0.965 | 0.956 | 1.01 | 1.11 | 1.01 |
Liaoning | 1.02 | 1.02 | 0.912 | 1.05 | 1 |
Jilin | 1.03 | 0.992 | 1.08 | 1.02 | 1.03 |
Heilongjiang | 1.13 | 0.984 | 1.05 | 1.03 | 1.05 |
Shanghai | 1.13 | 0.859 | 1.03 | 1.22 | 1.06 |
Jiangsu | 1.06 | 1.05 | 1.06 | 1.23 | 1.1 |
Zhejiang | 1.03 | 1.01 | 1.08 | 1.12 | 1.06 |
Anhui | 1.02 | 1.05 | 1.08 | 1.04 | 1.05 |
Fujian | 1.03 | 1.05 | 1.08 | 1.13 | 1.07 |
Jiangxi | 1.01 | 1 | 1.07 | 1.03 | 1.03 |
Shandong | 1.21 | 1.27 | 1.26 | 1.25 | 1.25 |
Henan | 1.12 | 1.11 | 1.15 | 1.14 | 1.13 |
Hubei | 1.07 | 1.03 | 1.07 | 1.04 | 1.05 |
Hunan | 1.04 | 0.893 | 0.931 | 1.06 | 0.981 |
Guangdong | 1.04 | 1.04 | 1.06 | 1.03 | 1.04 |
Guangxi | 1.03 | 1.03 | 1.09 | 1.06 | 1.05 |
Hainan | 1.01 | 1.02 | 1.08 | 1.11 | 1.06 |
Chongqing | 1.1 | 1.05 | 1.09 | 1.11 | 1.09 |
Sichuan | 1.04 | 1.04 | 1.11 | 1.12 | 1.08 |
Guizhou | 0.993 | 1.08 | 1.15 | 1.04 | 1.07 |
Yunnan | 1.03 | 0.964 | 1.07 | 1.11 | 1.04 |
Shaanxi | 0.999 | 1.02 | 1.07 | 1.1 | 1.05 |
Gansu | 0.895 | 1.03 | 1.17 | 0.934 | 1.01 |
Qinghai | 1.13 | 1.07 | 1.05 | 1.02 | 1.07 |
Ningxia | 0.876 | 1.02 | 1.03 | 1.03 | 0.989 |
Xinjiang | 1.1 | 1.05 | 1.09 | 1.1 | 1.09 |
National average | 1.03 | 1.02 | 1.08 | 1.07 | 1.05 |
(1) | (2) | |
---|---|---|
APE | APE | |
VW | 0.111 ** | 0.144 *** |
(−0.172) | (0.088) | |
VW2 | −0.0213 ** | −0.0142 ** |
(−0.0661) | (−0.0676) | |
EDU | 0.115 * | |
(−0.906) | ||
RCS | 0.18 ** | |
(−0.0744) | ||
IG | −0.067 *** | |
(−0.016) | ||
UR | −0.081 * | |
(−0.062) | ||
AF | 0.0735 ** | |
(−0.031) | ||
AD | 0.0811 | |
(−0.773) | ||
cons | 1.77 *** | 1.4 ** |
(−0.363) | (−0.549) | |
Individual Effects | Controlled | Controlled |
Time Effects | Controlled | Controlled |
N | 201 | 201 |
R2 | 0.887 | 0.901 |
(1) Replacing Core Explanatory Variable | (2) Endogeneity Control | (3) Changing Regression Model | |
---|---|---|---|
VW | 0.121 ** | 0.093 ** | 0.105 *** |
0.053 | −0.037 | −0.021 | |
VW2 | −0.0572 *** | −0.0411 *** | −0.072 *** |
0.006 | 0.011 | 0.024 | |
Control Variables | Controlled | Controlled | Controlled |
cons | 0.231 *** | 0.831 *** | 0.337 * |
0.0734 | 0.238 | 0.187 | |
Individual Effects | Controlled | Controlled | Controlled |
Time Effects | Controlled | Controlled | Controlled |
N | 201 | 201 | 201 |
R2 | 0.887 | 0.901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, J.; Wei, D.; Hu, Y. Temporal and Spatial Analysis: The Impact of Virtual Water Flows on Agricultural Production Efficiency in China. Water 2025, 17, 2541. https://doi.org/10.3390/w17172541
Ouyang J, Wei D, Hu Y. Temporal and Spatial Analysis: The Impact of Virtual Water Flows on Agricultural Production Efficiency in China. Water. 2025; 17(17):2541. https://doi.org/10.3390/w17172541
Chicago/Turabian StyleOuyang, Jinqiong, Deqiang Wei, and Yihang Hu. 2025. "Temporal and Spatial Analysis: The Impact of Virtual Water Flows on Agricultural Production Efficiency in China" Water 17, no. 17: 2541. https://doi.org/10.3390/w17172541
APA StyleOuyang, J., Wei, D., & Hu, Y. (2025). Temporal and Spatial Analysis: The Impact of Virtual Water Flows on Agricultural Production Efficiency in China. Water, 17(17), 2541. https://doi.org/10.3390/w17172541