The Impact of Climate Change on the State of Moraine Lakes in Northern Tian Shan: Case Study on Four Moraine Lakes
Abstract
1. Introduction
2. Study Area
3. Methodology
3.1. Selection of Lakes
3.2. Data Collection
3.3. Data Processing and Analysis
- Predicted (0–24% error): high accuracy;
- Moderately unpredictable (25–49% error): satisfactory, but not perfect, model performance;
- Unpredictable (>50% error): low prediction accuracy.
4. Results
4.1. Bathymetry of Moraine Lakes
4.2. Characteristics and Dynamics of Individual Moraine Lakes
4.3. Quantifying Area-to-Volume Dynamics for Outburst Forecasting
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, G.; Chernikhova, D.; Thiele, S.; Altshuler, I. Microbial Dynamics in Rapidly Transforming Arctic Proglacial Landscapes. PLoS Clim. 2024, 3, e0000337. [Google Scholar] [CrossRef]
- Blumberg, S. Climate Change Could Trigger More Landslides in High Mountain Asia. Available online: https://www.nasa.gov/feature/goddard/2020/climate-change-could-trigger-more-landslides-in-high-mountain-asia/ (accessed on 17 August 2025).
- You, Q.L.; Ren, G.Y.; Zhang, Y.Q.; Ren, Y.Y.; Sun, X.B.; Zhan, Y.J.; Shrestha, A.B.; Krishnan, R. An Overview of Studies of Observed Climate Change in the Hindu Kush Himalayan (HKH) Region. Adv. Clim. Change Res. 2017, 8, 141–147. [Google Scholar] [CrossRef]
- Sattar, A.; Haritashya, U.K.; Kargel, J.S.; Karki, A. Transition of a Small Himalayan Glacier Lake Outburst Flood to a Giant Transborder Flood and Debris Flow. Sci. Rep. 2022, 12, 12421. [Google Scholar] [CrossRef]
- Saha, S.; Bera, B.; Sengupta, D.; Mukhopadhyay, U.; Ghosh, D.; Tamang, L.; Bhattacharjee, S.; Sengupta, N. Multiple Drivers of the Recent South Lhonak Glacial Lake Outburst Flood in Sikkim Himalaya and Its Aftermath on Teesta River Valley. Geosyst. Geoenviron. 2025, 4, 100375. [Google Scholar] [CrossRef]
- Sharma, A.; Prakash, C.; Thakur, D. Glacier Lakes Detection Utilizing Remote Sensing Integration with Satellite Imagery and Advanced Deep Learning Method. Appl. Geomat. 2024, 16, 829–850. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; An, B.; Gao, T.; Yao, T. Ice Thickness and Morphological Analysis Reveal the Future Glacial Lake Distribution and Formation Probability in the Tibetan Plateau and Its Surroundings. Glob. Planet. Change 2022, 216, 103923. [Google Scholar] [CrossRef]
- Qi, M.; Liu, S.; Wu, K.; Zhu, Y.; Xie, F.; Jin, H.; Gao, Y.; Yao, X. Improving the Accuracy of Glacial Lake Volume Estimation: A Case Study in the Poiqu Basin, Central Himalayas. J. Hydrol. 2022, 610, 127973. [Google Scholar] [CrossRef]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef]
- Su, P.; Liu, J.; Li, Y.; Liu, W.; Wang, Y.; Ma, C.; Li, Q. Changes in Glacial Lakes in the Poiqu River Basin in the Central Himalayas. Hydrol. Earth Syst. Sci. 2021, 25, 5879–5903. [Google Scholar] [CrossRef]
- Badar, B.; Romshoo, S.A.; Khan, M.A. Modelling Catchment Hydrological Responses in a Himalayan Lake as a Function of Changing Land Use and Land Cover. J. Earth Syst. Sci. 2013, 122, 433–449. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An Inventory of Glacial Lakes in the Third Pole Region and Their Changes in Response to Global Warming. Glob. Planet. Change 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial Lake Inventory of High-Mountain Asia in 1990 and 2018 Derived from Landsat Images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Sajan, B.; Kanga, S.; Singh, S.K.; Rai, P.K.; Đurin, B.; Cetl, V.; Rathnayake, U. Evidence of Climate Change—Investigating Glacial Terminus and Lake Inventory Using Earth Observation Data for Mountainous Bhutan. Sci. Remote Sens. 2024, 10, 100149. [Google Scholar] [CrossRef]
- Petrov, M.A.; Sabitov, T.Y.; Tomashevskaya, I.G.; Glazirin, G.E.; Chernomorets, S.S.; Savernyuk, E.A.; Tutubalina, O.V.; Petrakov, D.A.; Sokolov, L.S.; Dokukin, M.D.; et al. Glacial Lake Inventory and Lake Outburst Potential in Uzbekistan. Sci. Total Environ. 2017, 592, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Senese, A.; Maragno, D.; Fugazza, D.; Soncini, A.; D’Agata, C.; Azzoni, R.S.; Minora, U.; Ul-Hassan, R.; Vuillermoz, E.; Khan, M.A.; et al. Inventory of Glaciers and Glacial Lakes of the Central Karakoram National Park (CKNP–Pakistan). J. Maps 2018, 14, 189–198. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Guo, H.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Scott Watson, C. Annual 30 m Dataset for Glacial Lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [Google Scholar] [CrossRef]
- Che, T.; Xiao, L.; Liou, Y.A. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet). Adv. Meteorol. 2014, 2014, 903709. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Shahfahad, S.; Baig, M.R.I.; Talukdar, S.; Asgher, M.S.; Usmani, T.M.; Ahmed, S.; Rahman, A. Lake Water Volume Calculation Using Time Series LANDSAT Satellite Data: A Geospatial Analysis of Deepor Beel Lake, Guwahati. Front. Eng. Built Environ. 2021, 1, 107–130. [Google Scholar] [CrossRef]
- Sarwar, M.; Mahmood, S. Exploring Potential Glacial Lakes Using Geo-Spatial Techniques in Eastern Hindu Kush Region, Pakistan. Nat. Hazards Res. 2024, 4, 56–61. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T. Mapping of Glacial Lakes Using Sentinel-1 and Sentinel-2 Data and a Random Forest Classifier: Strengths and Challenges. Sci. Remote Sens. 2020, 2, 100008. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Huang, Q.; Han, P.; Zhao, F.; Wada, Y. High-Temporal-Resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau during 2000–2017 Using Multiple Altimetric Missions and Landsat-Derived Lake Shoreline Positions. Earth Syst. Sci. Data 2019, 11, 1603–1627. [Google Scholar] [CrossRef]
- Carballido, E. Analysis of Small Lake Water Level Fluctuations by Remote Sensing in Twin Lake, Michigan. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2023. [Google Scholar]
- Phan, V.H.; Lindenbergh, R.C.; Menenti, M. Geometric Dependency of Tibetan Lakes on Glacial Runoff. Hydrol. Earth Syst. Sci. 2013, 17, 4061–4077. [Google Scholar] [CrossRef]
- Nurbekuly, D.; Beisembekova, M.K.; Maemerova, G.M. Modelling of Water Volume Changes in Lake Alakol Using Polynomial Regression. Bull. Ser. Phys. Math. Sci. 2024, 4, 101–108. [Google Scholar]
- Wu, Y.; Zheng, H.; Zhang, B.; Chen, D.; Lei, L. Long-Term Changes of Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan Plateau. J. Hydrometeorol. 2014, 15, 1312–1322. [Google Scholar] [CrossRef]
- Yao, X.; Liu, S.; Sun, M.; Wei, J.; Guo, W. Volume Calculation and Analysis of the Changes in Moraine-Dammed Lakes in the North Himalaya: A Case Study of Longbasaba Lake. J. Glaciol. 2012, 58, 753–760. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Guo, W.; Yao, X.; Jiang, Z.; Han, Y. Using Remote Sensing Data to Quantify Changes in Glacial Lakes in the Chinese Himalaya. Mt. Res. Dev. 2012, 32, 203–212. [Google Scholar] [CrossRef]
- Hussain, A.; Bano, D. Temporal Monitoring of Ghamu Bar Glacial Lakes Using Remote Sensing and GIS. Int. J. Adv. Geosci. 2019, 7, 18–22. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T.; Liu, M.; Chen, Y.; Shang, H.; Zhu, L.; Shedayi, A.A.; Yu, H.; Cheng, G.; Liu, G.; et al. Linkages of the Dynamics of Glaciers and Lakes with the Climate Elements over the Tibetan Plateau. Earth Sci. Rev. 2018, 185, 308–324. [Google Scholar] [CrossRef]
- Medeu, A.R.; Popov, N.V.; Blagovechshenskiy, V.P.; Askarova, M.A.; Medeu, A.A.; Ranova, S.U.; Kamalbekova, A.; Bolch, T. Moraine-Dammed Glacial Lakes and Threat of Glacial Debris Flows in South-East Kazakhstan. Earth Sci. Rev. 2022, 229, 103999. [Google Scholar] [CrossRef]
- Mussina, A.; Abdullayeva, A.; Barandun, M.; Cicoira, A.; Tursyngali, M. Assessment of the Current State and Temporal Changes of Glacial-Moraine Lakes in the Central and Eastern Part of the Northern Slope of the Ile Alatau, Kazakhstan. J. Water Land Dev. 2024, 63, 19–24. [Google Scholar] [CrossRef]
- Chigrinets, A.G.; Duskayev, K.K.; Mazur, L.P.; Chigrinets, L.Y.; Akhmetova, S.T.; Mussina, A.K. Evaluation and Dynamics of the Glacial Runoff of the Rivers of the Ile Alatau Northern Slope in the Context of Global Warming. Int. J. Eng. Res. Technol. 2020, 13, 419–426. [Google Scholar] [CrossRef]
- Blagovechshenskiy, V.; Kapitsa, V.; Kasatkin, N. Danger of GLOFs in the Mountain Areas of Kazakhstan. J. Earth Sci. Eng. 2015, 5, 182–187. [Google Scholar] [CrossRef]
- Daiyrov, M.; Kattel, D.B.; Narama, C.; Wang, W. Evaluating the Variability of Glacial Lakes in the Kyrgyz and Teskey Ranges, Tien Shan. Front. Earth Sci. 2022, 10, 850146. [Google Scholar] [CrossRef]
- Kapitsa, V.; Shahgedanova, M.; MacHguth, H.; Severskiy, I.; Medeu, A. Assessment of Evolution and Risks of Glacier Lake Outbursts in the Djungarskiy Alatau, Central Asia, Using Landsat Imagery and Glacier Bed Topography Modelling. Nat. Hazards Earth Syst. Sci. 2017, 17, 1837–1856. [Google Scholar] [CrossRef]
- Tielidze, L.; Mackintosh, A.; Gavashelishvili, A.; Gadrani, L.; Nadaraia, A.; Elashvili, M. Post-Little Ice Age Equilibrium-Line Altitude and Temperature Changes in the Greater Caucasus Based on Small Glaciers. Remote Sens. 2025, 17, 1486. [Google Scholar] [CrossRef]
- Tarca, G.; Hoelzle, M.; Guglielmin, M. Using PlanetScope Images to Investigate the Evolution of Small Glaciers in the Alps. Remote Sens. Appl. Soc. Environ. 2023, 32, 101013. [Google Scholar] [CrossRef]
- Corbari, C.; Huber, C.; Yesou, H.; Huang, Y.; Su, Z.; Mancini, M. Multi-Satellite Data of Land Surface Temperature, Lakes Area, and Water Level for Hydrological Model Calibration and Validation in the Yangtze River Basin. Water 2019, 11, 2621. [Google Scholar] [CrossRef]
- Tsai, Y.L.S.; Klein, I.; Dietz, A.; Oppelt, N. Monitoring Large-Scale Inland Water Dynamics by Fusing Sentinel-1 Sar and Sentinel-3 Altimetry Data and by Analyzing Causal Effects of Snowmelt. Remote Sens. 2020, 12, 3896. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, S.; Lv, A. Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data. Remote Sens. 2014, 6, 10457–10482. [Google Scholar] [CrossRef]
- Khan, S.; Hossain, F.; Pavelsky, T.; Parkins, G.M.; Lane, M.R.; Gómez, A.M.; Minocha, S.; Das, P.; Ghafoor, S.; Bhuyan, M.A.; et al. Understanding Volume Estimation Uncertainty of Lakes and Wetlands Using Satellites and Citizen Science. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2386–2401. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, J.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Quantifying Glacier Mass Change and Its Contribution to Lake Growths in Central Kunlun during 2000–2015 from Multi-Source Remote Sensing Data. J. Hydrol. 2019, 570, 38–50. [Google Scholar] [CrossRef]
- Muñoz, R.; Huggel, C.; Frey, H.; Cochachin, A.; Haeberli, W. Glacial Lake Depth and Volume Estimation Based on a Large Bathymetric Dataset from the Cordillera Blanca, Peru. Earth Surf. Process. Landf. 2020, 45, 1510–1527. [Google Scholar] [CrossRef]
- Yapiyev, V.; Samarkhanov, K.; Tulegenova, N.; Jumassultanova, S.; Verhoef, A.; Saidaliyeva, Z.; Umirov, N.; Sagintayev, Z.; Namazbayeva, A. Estimation of Water Storage Changes in Small Endorheic Lakes in Northern Kazakhstan. J. Arid Environ. 2019, 160, 42–55. [Google Scholar] [CrossRef]
- Li, D.; Shangguan, D.; Wang, X.; Ding, Y.; Su, P.; Liu, R.; Wang, M. Expansion and Hazard Risk Assessment of Glacial Lake Jialong Co in the Central Himalayas by Using an Unmanned Surface Vessel and Remote Sensing. Sci. Total Environ. 2021, 784, 147249. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.; Cottam, A.; Gorelick, N.; Belward, A. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sens. Environ. 2016, 175, 167. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for Improved Surface Water Monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Huang, H.; Lee, D.H. Application of Water Indices in Surface Water Change Detection Using Landsat Imagery in Nepal. Sens. Mater. 2019, 31, 1429. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial Areas, Lake Areas, and Snow Lines from 1975 to 2012: Status of the Cordillera Vilcanota, Including the Quelccaya Ice Cap, Northern Central Andes, Peru. Cryosphere 2014, 8, 359. [Google Scholar] [CrossRef]
- Javed, M.; Böhner, J.; Hasson, S. ul Mapping Glacial Lakes in the Western Himalayas Using an Enhanced Breakpoint Method and CubeSat Imagery. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2025, 93, 401–419. [Google Scholar] [CrossRef]
- Yang, L.; Lu, Z.; Ouyang, C.; Zhao, C.; Hu, X.; Zhang, Q. Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS. Remote Sens. 2023, 15, 5327. [Google Scholar] [CrossRef]
- Kapitsa, V.; Shahgedanova, M.; Kasatkin, N.; Severskiy, I.; Kasenov, M.; Yegorov, A.; Tatkova, M. Bathymetries of Proglacial Lakes: A New Data Set from the Northern Tien Shan, Kazakhstan. Front. Earth Sci. 2023, 11, 1192719. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A.B.; Sawagaki, T.; Yamanokuchi, T. Potential Flood Volume of Himalayan Glacial Lakes. Nat. Hazards Earth Syst. Sci. 2013, 13, 1827–1839. [Google Scholar] [CrossRef]
- Rounce, D.R.; Watson, C.S.; McKinney, D.C. Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015. Remote Sens. 2017, 9, 654. [Google Scholar] [CrossRef]
- Kayastha, R.B.; Maskey, S. Glacial Lake Outburst Flood (GLOF) Modeling of Tsho Rolpa Glacial Lake, Nepal. Proc. IAHS 2024, 387, 59–63. [Google Scholar] [CrossRef]
- Ahmed, R. From Vulnerability to Resilience: Community-Based Approaches in Glacial Lake Outburst Flood (GLOF) Risk Mitigation. Discov. Sustain. 2025, 6, 335. [Google Scholar] [CrossRef]
- Mondal, S.K.; Patel, V.D.; Bharti, R.; Singh, R.P. Causes and Effects of Shisper Glacial Lake Outburst Flood Event in Karakoram in 2022. Geomat. Nat. Hazards Risk 2023, 14, 2264460. [Google Scholar] [CrossRef]
- Gaikwad, D.; Tiwari, R.K.; Goswami, A. Reconstruction of the 2023 South Lhonak Lake Outburst Flood and Modelling Future Scenarios in the Sikkim Himalaya. Nat. Hazards 2025, 121, 14197–14227. [Google Scholar] [CrossRef]
- Narama, C.; Daiyrov, M.; Tadono, T.; Yamamoto, M.; Kääb, A.; Morita, R.; Ukita, J. Seasonal Drainage of Supraglacial Lakes on Debris-Covered Glaciers in the Tien Shan Mountains, Central Asia. Geomorphology 2017, 286, 133–142. [Google Scholar] [CrossRef]
- Janský, B.; Šobr, M.; Engel, Z. Outburst Flood Hazard: Case Studies from the Tien-Shan Mountains, Kyrgyzstan. Limnologica 2010, 40, 358–364. [Google Scholar] [CrossRef]
- Narama, C.; Daiyrov, M.; Duishonakunov, M.; Tadono, T.; Sato, H.; Kääb, A.; Ukita, J.; Abdrakhmatov, K. Large Drainages from Short-Lived Glacial Lakes in the Teskey Range, Tien Shan Mountains, Central Asia. Nat. Hazards Earth Syst. Sci. 2018, 18, 983–995. [Google Scholar] [CrossRef]
- Nurakynov, S.; Sydyk, N.; Baygurin, Z.; Balakay, L. Advancements in Remote Sensing for Monitoring and Risk Assessment of Glacial Lake Outburst Floods. Geosciences 2025, 15, 211. [Google Scholar] [CrossRef]
- Nussbaumer, S.; Schaub, Y.; Huggel, C.; Walz, A. Risk Estimation for Future Glacier Lake Outburst Floods Based on Local Land-Use Changes. Nat. Hazards Earth Syst. Sci. 2014, 14, 1611–1624. [Google Scholar] [CrossRef]
Name of the Lake | River Basin | Geographic Coordinates | |
---|---|---|---|
Latitude | Longitude | ||
Moraine Lake No. 13 bis | Ulken Almaty | 43°2′21.29″ | 77°2′35.46″ |
Moraine Lake No. 6 | Kishi Almaty | 43°4′43.27″ | 77°6′0.36″ |
Moraine Lake No. 2 | Turgen | 43°8′30.31″ | 77°32′50.69″ |
Moraine Lake No. 5 | Turgen | 43°7′27.20″ | 77°35′9.50″ |
Dataset | Date of Receipt of Images | PlanetScope Image ID | Image Source |
---|---|---|---|
Lake No. 13 bis Lake No. 6 | 21 August 2016 | 1308e343-0959-4e1f-9dfe-5cd614106fe3 | PS Scene |
27 August 2017 | b5469de2-9202-4d57-805f-57f9f3f91313 | ||
20 August 2018 | 4d6964f9-cefc-43c9-9c94-a582f61015a8 | ||
26 August 2019 | 91fbacc6-6da1-4c09-803b-78b5f71b4faa | ||
23 August 2020 | 01fb2da7-e737-42e2-8cd9-899f49c7e3aa | ||
22 August 2021 | c8fe4309-90f6-4eef-af11-a695dd8a46b1 | ||
23 August 2022 | 79784655-7a0c-4ba0-bac8-322458ea77b4 | ||
23 August 2023 | ff5ebd42-e566-4ac7-834d-1f86d3624d68 | ||
Lake No. 5 Lake No. 2 | 27 August 2016 | 488b5c8a-baf6-498f-b3f1-8539ecd6faa1 | PS Scene |
27 August 2017 | 11cf980e-7609-4608-bef7-5b3f749aa335 | ||
23 August 2018 | 1d297f71-5143-4458-8e10-d2ffb3f5c9f1 | ||
26 August 2019 | d9bde865-5895-4744-8305-07b17765d754 | ||
24 August 2020 | b823d7b2-4f4b-4580-bd1b-99fef51dc457 | ||
23 August 2021 | 48f82968-6154-4b48-ae2f-2f2eefe06fb9 | ||
22 August 2022 | 27adf1e6-0dbb-490f-8627-d68376006699 | ||
21 August 2023 | a718fa93-644f-4c42-9c32-f58180769028 |
River Basin | Name of the Lake | Lake Volume, m3 | Lake Area, m2 | Length, m | Width, m | Maximum Depth, m |
---|---|---|---|---|---|---|
Ulken Almaty | Moraine Lake No. 13 bis | 154,500 | 57,570 | 370 | 353 | 15 |
Kishi Almaty | Moraine Lake No. 6 | 64,500 | 15,900 | 237 | 113.1 | 12 |
Turgen | Moraine Lake No. 2 | 715,300 | 68,700 | 407 | 231 | 27.3 |
Turgen | Moraine Lake No. 5 | 1,109,000 | 89,800 | 740 | 225 | 30 |
Lake | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|
Lake no. 6 | 3.19% | 3.30% | 3.56% | 3.51% | 3.56% | 4.27% | 3.65% | 4.17% |
Lake no. 13 bis | 2.81% | 3.10% | 2.64% | 2.68% | 2.51% | 2.40% | 2.04% | 2.04% |
Lake no. 5 | 2.17% | 2.19% | 2.02% | 2.10% | 2.03% | 2.00% | 2.24% | 2.06% |
Lake no. 2 | 2.23% | 2.23% | 2.06% | 2.07% | 2.21% | 2.15% | 2.22% | 2.07% |
Lake No. 5 | |||
Square | Volume | Maximum depth | |
Bathymetric data (3 July 2024) | 89,800 m2 | 1,109,000 m3 | 30 m |
PlanetScope (3 July 2024) | 89,447 m2 | 1,117,524 m3 | |
Error: | 0.77% | ||
Lake No. 2 | |||
Square | Volume | Maximum depth | |
Bathymetric data (13 July 2024) | 68,700 m2 | 715,300 m3 | 27.3 m |
PlanetScope (1 August 2024) | 72,164 m2 | 823,850 m3 | |
Error: | 15.2% | ||
Lake No. 13 bis | |||
Square | Volume | Maximum depth | |
Bathymetric data (1 August 2024) | 95,281 m2 | 596,844 m3 | 15 m |
PlanetScope (1 August 2024) | 75,933 m2 | 885,614 m3 | |
Error: | 48.3% | ||
Lake No. 6 | |||
Square | Volume | Maximum depth | |
Bathymetric data (18 June 2024) | 15,900 m2 | 64,500 m3 | 12 m |
PlanetScope (20 June 2024) | 11,539 m2 | 60,997 m3 | |
Error: | 5.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sydyk, N.; Iskaliyeva, G.; Sagat, M.; Merekeyev, A.; Balakay, L.; Kaldybayev, A.; Baygurin, Z.; Abishev, B. The Impact of Climate Change on the State of Moraine Lakes in Northern Tian Shan: Case Study on Four Moraine Lakes. Water 2025, 17, 2533. https://doi.org/10.3390/w17172533
Sydyk N, Iskaliyeva G, Sagat M, Merekeyev A, Balakay L, Kaldybayev A, Baygurin Z, Abishev B. The Impact of Climate Change on the State of Moraine Lakes in Northern Tian Shan: Case Study on Four Moraine Lakes. Water. 2025; 17(17):2533. https://doi.org/10.3390/w17172533
Chicago/Turabian StyleSydyk, Nurmakhambet, Gulnara Iskaliyeva, Madina Sagat, Aibek Merekeyev, Larissa Balakay, Azamat Kaldybayev, Zhaksybek Baygurin, and Bauyrzhan Abishev. 2025. "The Impact of Climate Change on the State of Moraine Lakes in Northern Tian Shan: Case Study on Four Moraine Lakes" Water 17, no. 17: 2533. https://doi.org/10.3390/w17172533
APA StyleSydyk, N., Iskaliyeva, G., Sagat, M., Merekeyev, A., Balakay, L., Kaldybayev, A., Baygurin, Z., & Abishev, B. (2025). The Impact of Climate Change on the State of Moraine Lakes in Northern Tian Shan: Case Study on Four Moraine Lakes. Water, 17(17), 2533. https://doi.org/10.3390/w17172533