Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of Empirical Data on the Patterns of Formation and Distribution of Transboundary Groundwater
2.2. Data Collection and Processing
2.3. Research Methods for the Shu Basin
3. Results
3.1. Analysis and Assessment of Trends in the Change in Storage and Renewable Groundwater Resources of the Shu Transboundary Basin Under the Influence of Climatic Factors and Anthropogenic Pressures
3.2. Chemical and Analytical Studies of Groundwater Samples
3.3. Categorization of Risks Related to Transboundary Groundwater Issues
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GIS | Geographic Information System |
GOST | State Standard |
ISO | International Organization for Standardization |
KR | Kyrgyz Republic (Kyrgyzstan) |
MAC | Maximum Allowable Concentration |
MPC | Maximum Permissible Concentrations |
RK | Republic of Kazakhstan (Kazakhstan) |
SDG | Sustainable Development Goal |
ST RK | Standard of the Republic of Kazakhstan |
TDS | Total Dissolved Solids |
Appendix A
Sampling Location | Karasu Village | Otegen Village | Auhatty Village | Sortobe Village | Kordai Village | Sarybulak Village | Kainar Village | |
---|---|---|---|---|---|---|---|---|
The coordinates of the sampling points | 42°59′41.88″ N, 74°53′03.24″ E. | 42°57′45.94″ N, 74°59′56.70″ E. | 42°54′00.30″ N, 75°09′20.86″ E. | 42°52′00.48″ N, 75°13′49.26″ E. | 43°01′25.33″ N, 74°43′53.76″ E. | 43°15′10.73″ N, 74°18′01.60″ E. | 43°17′41.23″ N, 74°12′55.37″ E. | |
Date of sampling | 26 September 2024 | 27 September 2024 | 28 September 2024 | 29 September 2024 | 2 October 2024 | 3 October 2024 | 4 October 2024 | |
pH | 8.0 | 8.04 | 8.16 | 8.24 | 8.21 | 8.19 | 8.15 | |
Dry residue, mg/dm3 | 495 | 268 | 277 | 169 | 345 | 445 | 738 | |
Cations, mg/dm3 | Na+ | 55.0 | 46.1 | 18.4 | 9.0 | 56.3 | 85.3 | 87.5 |
K+ | 2.9 | 15.8 | 1.5 | 1.5 | 2.6 | 2.4 | 3.6 | |
Ca2+ | 88.1 | 24.0 | 64.1 | 44.0 | 50.1 | 56.1 | 114.1 | |
Mg2+ | 34.0 | 14.6 | 18.2 | 7.3 | 19.5 | 23.1 | 46.2 | |
NH4+ | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | |
Fe sum | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | |
Anions, mg/dm3 | CO3− | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 |
HCO3− | 311.2 | 189.2 | 231.9 | 152.5 | 219.7 | 256.3 | 244.1 | |
Cl− | 25.9 | 17.7 | 11.3 | 7.1 | 18.8 | 14.2 | 21.3 | |
SO42− | 157.8 | 69.6 | 53.1 | 28.4 | 106.6 | 151.9 | 369.6 | |
NO3− | 13.0 | 4 | 14 | 6 | 8 | 18 | 35 | |
NO2− | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | |
F, mg/dm3 | 1.5 | 1.2 | 1.5 | 1.3 | 1.2 | 2.3 | 1.0 | |
Mineralization, mg/dm3 | 697 | 388 | 422 | 262 | 490 | 617 | 930 | |
Hardness | total | 7.2 | 2.4 | 4.7 | 2.8 | 4.1 | 4.7 | 9.5 |
carbonates | 5.1 | 2.4 | 3.8 | 2.5 | 3.6 | 4.2 | 4.0 | |
SiO2, mg/dm3 | 7.1 | 6 | 7.7 | 5.3 | 7.3 | 7.3 | 7.8 | |
Overall stiffness, moll/dm3 | 7.2 | 2.4 | 4.7 | 2.8 | 4.1 | 4.7 | 9.5 | |
Permanganate oxidizability mg oxygen/dm3 | 0.52 | 0.64 | 0.32 | 0.24 | 0.28 | 0.28 | 0.28 | |
Petroleum products, mg/dm3 | 0.005 | 0.01 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | |
Surfactants, mg/dm3 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | |
Phenolic index, mg/dm3 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Al, mg/dm3 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | |
Be, mg/dm3 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | |
B, mg/dm3 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.2 | |
Cd, mg/dm3 | 0.0001 | 0.0004 | 0.001 | 0.0009 | 0.0009 | 0.001 | 0.0001 | |
Co, mg/dm3 | 0.0190 | 0.0084 | 0.0099 | 0.0048 | 0.0086 | 0.010 | 0.019 | |
Si, mg/dm3 | 7.14 | 6.0 | 7.7 | 5.3 | 7.3 | 7.3 | 7.8 | |
Li, mg/dm3 | 0.016 | 0.008 | 0.005 | 0.0038 | 0.01 | 0.017 | 0.0033 | |
Mn, mg/dm3 | 0.016 | 0.0430 | 0.0120 | 0.0140 | 0.0160 | 0.0160 | 0.0230 | |
Pb, mg/dm3 | 0.001 | 0.0200 | 0.03 | 0.02 | 0.03 | 0.0035 | 0.001 | |
Cu, mg/dm3 | 0.0250 | 0.0130 | 0.0130 | 0.0180 | 0.0110 | 0.0130 | 0.016 | |
Mo, mg/dm3 | 0.0570 | 0.0190 | 0.0330 | 0.0230 | 0.0900 | 0.0410 | 0.0230 | |
As, mg/dm3 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Ni, mg/dm3 | 0.027 | 0.0066 | 0.0130 | 0.0081 | 0.0120 | 0.0140 | 0.0230 | |
Hg, mg/dm3 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Se, mg/dm3 | 0.0001 | 0.0028 | 0.0001 | 0.0001 | 0.0055 | 0.0001 | 0.0001 | |
Ag, mg/dm3 | 0.0140 | 0.0001 | 0.0052 | 0.0007 | 0.0035 | 0.0041 | 0.0100 | |
Sr, mg/dm3 | 1.034 | 0.1825 | 0.400 | 0.0181 | 0.509 | 0.601 | 2.411 | |
Zn, mg/dm3 | 0.0017 | 0.0005 | 0.0028 | 0.0020 | 0.0017 | 0.0023 | 0.0039 | |
Date of sampling | 5 October 2024 | 6 October 2024 | 9 October 2024 | 10 October 2024 | Kazakhstan | WHO | ||
The coordinates of sampling points | 43°15′28.44″ N, 74°01′39.95″ E. | 43°02′21.77″ N, 73°33′30.66″ E. | 42°56′58.86″ N, 73°29′24.09″ E. | 42°48′26.35″ N, 73°29′38.84″ E. | - | - | ||
pH | 8.09 | 8.01 | 8.22 | 8.11 | 6.0–9.0 | 6.2–8.5 | ||
Dry residue, mg/dm3 | 187 | 114 | 132 | 118 | - | - | ||
Cations, mg/dm3 | Na+ | 37.4 | 21.5 | 17.1 | 4.2 | 200 | 200 | |
K+ | 1.5 | 0.7 | 1.2 | 0.7 | ||||
Ca2+ | 20.0 | 16.0 | 18.0 | 30.0 | - | 200 | ||
Mg2+ | 7.3 | 4.9 | 10.9 | 7.3 | - | 50 | ||
NH4+ | <0.05 | <0.05 | <0.05 | <0.05 | 2.0 | 0.50 | ||
Fe sum | <0.05 | <0.05 | <0.05 | <0.05 | 0.3 | 0.3 | ||
Anions, mg/dm3 | CO3− | <6.0 | <6.0 | <6.0 | <6.0 | - | ||
HCO3− | 122.0 | 109.8 | 140.3 | 128.1 | - | |||
Cl− | 12.8 | 3.2 | 2.1 | 2.8 | 350 | 250 | ||
SO42− | 53.1 | 14.0 | 13.2 | 9.1 | 500 | 250 | ||
NO3− | 4.0 | 3.0 | 4.0 | 5.0 | 45 | 50 | ||
NO2− | <0.005 | <0.005 | <0.005 | <0.005 | 3.0 | 0.50 | ||
F, mg/dm3 | 1.5 | 1.3 | 1.2 | 1.1 | 1.5 | 1.5 | ||
Mineralization, mg/dm3 | 267 | 181 | 216 | 193 | 1000.0 | |||
Hardness | total | 1.6 | 1.2 | 1.8 | 2.1 | 7.0 | ||
carbonates | 1.6 | 1.2 | 1.8 | 2.1 | ||||
SiO2, mg/dm3 | 7.0 | 6.1 | 7.6 | 4.5 | - | - | ||
Overall stiffness, moll/dm3 | 1.6 | 1.2 | 1.8 | 2.1 | - | - | ||
Permanganate oxidizability mg oxygen/dm3 | 0.16 | 0.84 | 0.36 | 0.12 | 5.0 | -- | ||
Petroleum products, mg/dm3 | 0.005 | 0.01 | 0.005 | 0.033 | 0.1 | |||
Surfactants, mg/dm3 | 0.05 | 0.05 | 0.05 | 0.05 | - | - | ||
Phenolic index, mg/dm3 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | - | - | ||
Al, mg/dm3 | 0.001 | 0.001 | 0.001 | 0.001 | - | - | ||
Be, mg/dm3 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | - | - | ||
B, mg/dm3 | 0.01 | 0.01 | 0.01 | 0.01 | - | - | ||
Cd, mg/dm3 | 0.0007 | 0.0006 | 0.0009 | 0.0008 | 0.001 | - | ||
Co, mg/dm3 | 0.0040 | 0.0016 | 0.0043 | 0.0026 | - | - | ||
Si, mg/dm3 | 7.0 | 6.1 | 7.6 | 4.5 | - | - | ||
Li, mg/dm3 | 0.006 | 0.0039 | 0.0046 | 0.002 | - | - | ||
Mn, mg/dm3 | 0.0046 | 0.0035 | 0.0087 | 0.0064 | - | - | ||
Pb, mg/dm3 | 0.0160 | 0.0046 | 0.010 | 0.010 | 0.03 | 0.01 | ||
Cu, mg/dm3 | 0.0093 | 0.0048 | 0.0099 | 0.0092 | 1.0 | 1.0 | ||
Mo, mg/dm3 | 0.0210 | 0.0130 | 0.0150 | 0.0160 | - | - | ||
As, mg/dm3 | 0.0001 | 0.015 | 0.0001 | 0.240 | - | - | ||
Ni, mg/dm3 | 0.0032 | 0.0017 | 0.0044 | 0.0026 | - | - | ||
Hg, mg/dm3 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | - | - | ||
Se, mg/dm3 | 0.0029 | 0.0011 | 0.0019 | 0.0029 | - | - | ||
Ag, mg/dm3 | 0.0001 | 0.0001 | 0.0052 | 0.0001 | - | - | ||
Sr, mg/dm3 | 0.190 | 0.123 | 0.080 | 0.027 | - | - | ||
Zn, mg/dm3 | 0.0003 | 0.0004 | 0.0006 | 0.0014 | 5.0 | 5.0 |
References
- Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B.; Arulmani, S.; Parameswari, E.; Santhosh, A.; Srinivasulu, A.; Lal, A.; Naidu, R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere 2024, 15, 122. [Google Scholar] [CrossRef]
- Williams, S.A.; Zuniga-Teran, A.A.; Megdal, S.B.; Quanrud, D.M.; Christopherson, G. Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources. Water 2025, 17, 1097. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef]
- Schroeter, S.A.; Orme, A.M.; Lehmann, K.; Lehmann, R.; Chaudhari, N.M.; Küsel, K.; Wang, H.; Hildebrandt, A.; Totsche, K.U.; Trumbore, S.; et al. Hydroclimatic Extremes Threaten Groundwater Quality and Stability. Nat. Commun. 2025, 16, 720. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, J.; Zhang, S.; Chen, Q.; Fan, H.; Cao, C.; Zhang, Y.; Yang, Y.; Luo, J.; Yao, Y. Groundwater Quality Evolution across China. Nat. Commun. 2025, 16, 2522. [Google Scholar] [CrossRef]
- Choudhary, S.; Subba Rao, N.; Chaudhary, M.; Das, R. Assessing Sources of Groundwater Quality and Health Risks Using Graphical, Multivariate, and Index Techniques from a Part of Rajasthan, India. Groundw. Sustain. Dev. 2024, 27, 101356. [Google Scholar] [CrossRef]
- Misstear, B.; Vargas, C.R.; Lapworth, D.; Ouedraogo, I.; Podgorski, J. A Global Perspective on Assessing Groundwater Quality. Hydrogeol. J. 2023, 31, 11–14. [Google Scholar] [CrossRef]
- Assessment of Groundwater Quality in the Alluvial Aquifer Using GIS and Water Quality Indices in the Feija Plain, South-East Morocco. Int. J. Environ. Sci. Dev. 2025, 16, 16–33. [CrossRef]
- Latif, M.; Nasim, I.; Ahmad, M.; Nawaz, R.; Tahir, A.; Irshad, M.A.; Al-Mutairi, A.A.; Irfan, A.; Al-Hussain, S.A.; Zaki, M.E.A. Human Health Risk Assessment of Drinking Water Using Heavy Metal Pollution Index: A GIS-Based Investigation in Mega City. Appl. Water Sci. 2025, 15, 12. [Google Scholar] [CrossRef]
- Etuk, M.; Re, V.; Viaroli, S.; Raco, B.; Igwe, O. Assessing Groundwater Quality and Solute Sources in Highly Anthropized Areas. The Case of Abuja Federal Capital Territory, Nigeria. Groundw. Sustain. Dev. 2025, 29, 101425. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Lee, J.; Joseph, G.; Bahuguna, A.; Wijesundera, S.; Nair, S.S.; Hoo, Y.R.; Wang, Q.; Ayling, S.C.E. Assessing the Water Quality Hazard and Challenges to Achieving the Freshwater Goal in Sri Lanka. Sci. Rep. 2025, 15, 10187. [Google Scholar] [CrossRef] [PubMed]
- Ammons, S.; Madrigal, J.M.; Manley, C.K.; Spaur, M.; Hofmann, J.N.; Sandler, D.P.; Freeman, L.E.B.; Ward, M.H.; Jones, R.R. Nitrate and Disinfection By-Products in Drinking Water and Risk of Ovarian Cancer. Environ. Epidemiol. 2025, 9, e382. [Google Scholar] [CrossRef]
- de Jesus Laureano, J.; do Nascimento, E.L.; Ramos, C.F.; da Silva Lopes, D.; Pavanello, L.F.S.; de Oliveira Lima, T.; Mendonça, A.G.; da Rosa, A.L.D.; da Costa Junior, W.A.; Recktenvald, M.C.N.d.N.; et al. Assessment of Risk to Human Health Associated with the Consumption of Contaminated Groundwater in the Western Brazilian Amazon. Environ. Geochem. Health 2025, 47, 185. [Google Scholar] [CrossRef]
- Zahra, A.; Ali, M.; Ali, N.; Khan, A.; Zairov, R.; Sinyashin, O.; Wang, Y.; Zafar, S.; Khan, F.-A. A Comprehensive Analysis of the Impact of Arsenic, Fluoride, and Nitrate–Nitrite Dynamics on Groundwater Quality and Its Health Implications. J. Hazard. Mater. 2025, 487, 137093. [Google Scholar] [CrossRef]
- Lapworth, D.; Boving, T.; Brauns, B.; Dottridge, J.; Hynds, P.; Kebede, S.; Kreamer, D.; Misstear, B.; Mukherjee, A.; Re, V.; et al. Groundwater Quality: Global Challenges, Emerging Threats and Novel Approaches. Hydrogeol. J. 2023, 31, 15–18. [Google Scholar] [CrossRef]
- Kane, D.D.; Manning, N.F.; Jacquemin, S.J.; Johnson, L.T. A Tale of Two Tributaries: Source Delineation of Chloride in a Distressed Watershed (Grand Lake St. Marys, Ohio). Water Air Soil Pollut. 2024, 235, 658. [Google Scholar] [CrossRef]
- Duan, L.; Yun, Q.; Jiang, G.; Teng, D.; Zhou, G.; Cao, Y. A Review of Chloride Ions Removal from High Chloride Industrial Wastewater: Sources, Hazards, and Mechanisms. J. Environ. Manag. 2024, 353, 120184. [Google Scholar] [CrossRef]
- Moore, J.; Fanelli, R.M.; Sekellick, A.J. High-Frequency Data Reveal Deicing Salts Drive Elevated Specific Conductance and Chloride along with Pervasive and Frequent Exceedances of the U.S. Environmental Protection Agency Aquatic Life Criteria for Chloride in Urban Streams. Environ. Sci. Technol. 2020, 54, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Nas, B.; Berktay, A. Groundwater Quality Mapping in Urban Groundwater Using GIS. Environ. Monit. Assess. 2010, 160, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Shekhar, A.; Jenifer, M.A. Assessing Groundwater Quality for Drinking Water Supply Using Hybrid Fuzzy-GIS-Based Water Quality Index. Water Res. 2020, 179, 115867. [Google Scholar] [CrossRef]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A Review of GIS-Integrated Statistical Techniques for Groundwater Quality Evaluation and Protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Mirzaei, R.; Sakizadeh, M. Comparison of Interpolation Methods for the Estimation of Groundwater Contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- On Approval of Sanitary Rules “Sanitary and Epidemiological Requirements to Water Sources, Places of Water Intake for Domestic and Drinking Purposes, Domestic and Drinking Water Supply and Places of Cultural and Domestic Water Use and Safety of Water Bodi. Available online: https://adilet.zan.kz/kaz/ (accessed on 18 August 2025).
- On Approval of Hygienic Standards of Safety Indicators of Domestic and Cultural Water Use//Order of the Minister of Health of the Republic of Kazakhstan. DSM-138. № 30713. Table 1. 24.11.2022. Available online: https://adilet.zan.kz/kaz/ (accessed on 18 August 2025).
- Krasnopyorova, M.; Gorlachev, I.; Kharkin, P.; Severinenko, M.; Zheltov, D. Study of the Trace Element Composition of Drinking Water in Almaty City and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2025, 22, 560. [Google Scholar] [CrossRef]
- Kaliyeva, K.; Punys, P.; Zhaparkulova, Y. The Impact of Climate Change on Hydrological Regime of the Transboundary River Shu Basin (Kazakhstan–Kyrgyzstan): Forecast for 2050. Water 2021, 13, 2800. [Google Scholar] [CrossRef]
- Seraya, N.; Daumova, G.; Petrova, O.; Garcia-Mira, R.; Polyakova, A. Ecological Status of the Small Rivers of the East Kazakhstan Region. Sustainability 2025, 17, 6525. [Google Scholar] [CrossRef]
- Liu, J.T.; Li, Y.P.; Huang, G.H.; Wang, S.G.; Wang, P.P. A Multi-Perspective Input-Output Model for the Energy-Water Nexus in Kazakhstan. Sustain. Prod. Consum. 2024, 49, 115–129. [Google Scholar] [CrossRef]
- Ozenbayeva, A.; Yerezhepkyzy, R.; Yessetova, S.; Jangabulova, A.; Beissenbayeva, M. Legal Regulation of Transboundary Water Resources of the Republic of Kazakhstan. Environ. Dev. 2022, 44, 100781. [Google Scholar] [CrossRef]
- Wu, X.J.; Li, Y.P.; Liu, J.; Huang, G.H.; Ding, Y.K.; Sun, J.; Zhang, H. Identifying Optimal Virtual Water Management Strategy for Kazakhstan: A Factorial Ecologically-Extended Input-Output Model. J. Environ. Manag. 2021, 297, 113303. [Google Scholar] [CrossRef]
- Rubin, G.I.; Nagabhatla, N.; Londono-Escudero, C.; Vignola, R. Transboundary Aquifer Management Across the Americas: Hydro-Diplomacy as an Accelerator of Adaptive Groundwater Governance Amid Climate Change Challenges. Water 2024, 16, 3117. [Google Scholar] [CrossRef]
- Tapia-Villaseñor, E.; Megdal, S. The U.S.-Mexico Transboundary Aquifer Assessment Program as a Model for Transborder Groundwater Collaboration. Water 2021, 13, 530. [Google Scholar] [CrossRef]
- Tapia-Villaseñor, E.M.; Megdal, S.B.; Shamir, E. Prioritizing Transboundary Aquifers in the Arizona–Sonora Region: A Multicriteria Approach for Groundwater Assessment. Water 2025, 17, 443. [Google Scholar] [CrossRef]
- Pathak, P.; Olivares, R.; Varner, T.S.; Kulkarni, H.V.; Carmona, G.; Lima, C.; Hollan, S.; Datta, S. Hydrogeochemical Assessment of Groundwater in Transboundary Aquifers along the US-Mexico Border and Drinking Water Quality Implications for Texas Colonias. Groundw. Sustain. Dev. 2024, 27, 101377. [Google Scholar] [CrossRef]
- Rivera, A.; Pétré, M.-A.; Fraser, C.; Petersen-Perlman, J.D.; Sanchez, R.; Movilla, L.; Pietersen, K. Why Do We Need to Care about Transboundary Aquifers and How Do We Solve Their Issues? Hydrogeol. J. 2023, 31, 27–30. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Ruan, H.; Wang, T.; Yu, J.; Cheng, Y.; Kulmatov, R. Sustainable Use of Groundwater Resources in the Transboundary Aquifers of the Five Central Asian Countries: Challenges and Perspectives. Water 2020, 12, 2101. [Google Scholar] [CrossRef]
- Yapiyev, V.; Wade, A.J.; Shahgedanova, M.; Saidaliyeva, Z.; Madibekov, A.; Severskiy, I. The Hydrochemistry and Water Quality of Glacierized Catchments in Central Asia: A Review of the Current Status and Anticipated Change. J. Hydrol. Reg. Stud. 2021, 38, 100960. [Google Scholar] [CrossRef]
- Lee, E.; Jayakumar, R.; Shrestha, S.; Han, Z. Assessment of Transboundary Aquifer Resources in Asia: Status and Progress towards Sustainable Groundwater Management. J. Hydrol. Reg. Stud. 2018, 20, 103–115. [Google Scholar] [CrossRef]
- Adenova, D.; Sarsekova, D.; Absametov, M.; Murtazin, Y.; Sagin, J.; Trushel, L.; Miroshnichenko, O. The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability. Sustainability 2024, 16, 4597. [Google Scholar] [CrossRef]
- Tazhiyev, S.; Murtazin, Y.; Sotnikov, Y.; Rakhimova, V.; Adenova, D.; Abdizhalel, M.; Yerezhep, D. Geoinformation and Analytical Support for the Development of Promising Aquifers for Pasture Water Supply in Southern Kazakhstan. Water 2025, 17, 1297. [Google Scholar] [CrossRef]
- GOST 26449.1-85; Stationary Distillation Desalting Units. Methods of Saline Water Chemical Analysis. USSR National Committee on Standards: Moscow, Russia, 1985.
- ST RK 1015-2000; WATER Gravimetric Method for Determination of Sulfate Content in Natural and Waste Waters. Committee for Standardization, Metrology and Certification of the Ministry of Energy, Industry and Trade of the Republic of Kazakhstan (Gosstandart): Astana, Kazakhstan, 2000.
- GOST 33045-2014; WATER Methods for Determination of Nitrogen-Containing Substances. Standartinform: Moscow, Russia, 2014.
- ST RK ISO6332-2008; Water Quality. Determination of Iron Content. Spectrometric Method Using 1,10-Phenanthroline. Committee for Standardization, Metrology and Certification of the Ministry of Energy, Industry and Trade of the Republic of Kazakhstan, (Gosstandart): Astana, Kazakhstan, 2008.
- ST RK 2727-2015; Water Quality Method for Determination of Fluorides. Committee for Standardization, Metrology and Certification of the Ministry of Energy, Industry and Trade of the Republic of Kazakhstan (Gosstandart): Astana, Kazakhstan, 2015.
- ST RK ISO10523-2013; Water Quality. Determination of pH. Committee for Standardization, Metrology and Certification of the Ministry of Energy, Industry and Trade of the Republic of Kazakhstan (Gosstandart): Astana, Kazakhstan, 2013.
- GOST 23268.16-78; Drinking Medicinal, Medicinal-Table and Natural Table Mineral Water. Methods of Determination of Iodid-Ions. Methods of Saline Water Chemical Analysis. USSR National Committee on Standards: Moscow, Russia, 1978.
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible//UNESCO, Paris. Available online: https://www.unwater.org/publications/un-world-water-development-report-2022 (accessed on 18 August 2025).
- Xue, Y.; Niu, Z.; Zhang, R.; Jia, L.; Guo, S. Current Status and Future Research of Groundwater Under Climate Change: A Bibliometric Analysis. Water 2024, 16, 3438. [Google Scholar] [CrossRef]
- Yessenzholov, B.; Khussainov, A.; Kakabayev, A.; Plachinta, I.; Bayazitova, Z.; Kyzdarbekova, G.; Zhamkenov, U.; Ramazanova, M. Assessment of Hydrometeorological Impacts of Climate Change on Water Bodies in Northern Kazakhstan. Water 2024, 16, 2794. [Google Scholar] [CrossRef]
- Hedden-Nicely, D.R.; Kaiser, K.E. Water Governance in an Era of Climate Change: A Model to Assess the Shifting Irrigation Demand and Its Effect on Water Management in the Western United States. Water 2024, 16, 1963. [Google Scholar] [CrossRef]
- Marsz, A.A.; Sobkowiak, L.; Styszyńska, A.; Wrzesiński, D.; Perz, A. The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020. Water 2023, 15, 2547. [Google Scholar] [CrossRef]
- Benz, S.A.; Irvine, D.J.; Rau, G.C.; Bayer, P.; Menberg, K.; Blum, P.; Jamieson, R.C.; Griebler, C.; Kurylyk, B.L. Global Groundwater Warming Due to Climate Change. Nat. Geosci. 2024, 17, 545–551. [Google Scholar] [CrossRef]
- Klepikova, M.; Bense, V.; Le Borgne, T.; Guihéneuf, N.; Bour, O. Impact of Groundwater Extraction on Subsurface Thermal Regimes. Environ. Res. Lett. 2025, 20, 54048. [Google Scholar] [CrossRef]
- Irvine, D.J.; Singha, K.; Kurylyk, B.L.; Briggs, M.A.; Sebastian, Y.; Tait, D.R.; Helton, A.M. Groundwater-Surface Water Interactions Research: Past Trends and Future Directions. J. Hydrol. 2024, 644, 132061. [Google Scholar] [CrossRef]
- Adenova, D.; Tazhiyev, S.; Sagin, J.; Absametov, M.; Murtazin, Y.; Trushel, L.; Miroshnichenko, O.; Zaryab, A. Groundwater Quality and Potential Health Risk in Zhambyl Region, Kazakhstan. Water 2023, 15, 482. [Google Scholar] [CrossRef]
№ | Basin | Length of International Border, km | Area Within Kazakhstan, Thousand km2 |
---|---|---|---|
A. Border between the Republic of Kazakhstan and the Russian Federation | |||
1 | North Kazakhstan | 1840 | 147.60 |
2 | Irtysh River Basin | 1055 | 97.30 |
3 | Caspian Basin | 1680 | 75.00 |
4 | Syrt Basin | 212 | 2.41 |
5 | South Pre-Urals | 106 | 9.51 |
B. Border between the Republic of Kazakhstan and the People’s Republic of China | |||
6 | Zaisan | 115 | 30.00 |
7 | Alakol | 240 | 26.00 |
8 | Zharkent | 115 | 12.20 |
9 | Tekes | 80 | 1.80 |
C. Border between the Republic of Kazakhstan and the Kyrgyz Republic | |||
10 | Shu | 200 | 7.30 |
11 | North Talas | 58 | 0.67 |
12 | South Talas | 54 | 1.16 |
D. Border between the Republic of Kazakhstan and Uzbekistan | |||
13 | Tashkent Plain | 394 | 17.00 |
14 | Syrdarya | 960 | 189.00 |
15 | Amudarya | 700 | 122.50 |
350 * |
# | Administrative Districts | Total Surveyed | Water Intake Name | Well Coordinates | Aquifer | Water Demand, m3/Day | Approved GroundWater Reserves, m3/Day | Mineralization, g/L | Year of Approval | Expiration Year |
---|---|---|---|---|---|---|---|---|---|---|
1 | Kordai | 7 | Karasu village | 42°59′41.88″ N, 74°53′03.24″ E. | Alluvial-Proluvial Deposits | 652.4 | 652.4 (demand in 2015), 1036.8 (projected for 2042) | up 0.7 | 2015 | 2042 |
Otegen village | 42°57′45.94″ N, 74°59′56.70″ E. | Alluvial-Proluvial Deposits | 1264.2 | 1264.2 | up 0.6 | 2018 | 2045 | |||
Auhatty village | 42°54′00.30″ N, 75°09′20.86″ E. | Alluvial-Proluvial Deposits | 1553.0 | 1553.0 | 0.4–0.5 | 2014 | 2041 | |||
Sortobe village | 42°52′00.48″ N, 75°13′49.26″ E. | Alluvial-Proluvial Deposits | 3285.2 | 1036.8 | 0.4–0.5 | 2014 | 2041 | |||
Kordai village | 43°01′25.33″ N, 74°43′53.76″ E. | Alluvial Deposits | 12,282.0 | 12,960.0 | 0.5–0.6 | 2016 | 2043 | |||
Sarybulak village, | 43°15′10.73″ N, 74°18′01.60″ E. | Alluvial-Proluvial Deposits | 390.0 | 390.0 (demand in 2015), 1296.0 (projected for 2042) | up 0.6 | 2015 | 2042 | |||
Kainar village | 43°17′41.23″ N, 74°12′55.37″ E. | Alluvial-Proluvial Deposits | 705.6 | 705.6 | up to 1 g/L | 2015 | 2042 | |||
2 | Shu | 1 | Aksu village | 43°15′28.44″ N, 74°01′39.95″ E. | Alluvial Deposits | 316.8 | 316.8 | 0.55 | 2018 | 2043 |
3 | Merke | 3 | Aspara village | 43°02′21.77″ N, 73°33′30.66″ E. | Alluvial-Proluvial Deposits | 641.6 | 641.6 | up 1 | 2018 | 2045 |
Kenes village | 42°56′58.86″ N, 73°29′24.09″ E. | Alluvial-Proluvial Deposits | 838.0 | 882.0 | 0.3–0.5 | 2016 | 2043 | |||
Andas Batyr village | 42°48′26.35″ N, 73°29′38.84″ E. | Miocene-Pliocene deposits | 1179.0 | 1200.0 | 0.3–0.5 | 2016 | 2043 | |||
Total | 11 |
Component | Testing Methodologies | Component | Testing Methodologies |
---|---|---|---|
Sodium | GOST 26449.1-85, point 17.1 [41] | Carbonates | GOST 26449.1-85, point 7.1 |
Potassium | GOST 26449.1-85, point 18.1 | Bicarbonates | GOST 26449.1-85, point 7.1 |
Calcium | GOST 26449.1-85, point 11.1 | Chlorides | GOST 26449.1-85, point 9 |
Magnesium | GOST 26449.1-85, point 12 | Sulfates | ST RK 1015-2000 [42] |
Ammonium | GOST 33045-2014 [43] | Nitrates | GOST 33045-2014 |
Iron (Fe2+) | ST RK ISO6332-2008 [44] | Nitrites | GOST 33045-2014 |
Iron (Fe3+) | ST RK ISO6332-2008 | Fluorides | ST RK 2727-2015 [45] |
pH | ST RK ISO10523-2013 [46] | Total hardness | GOST 26449.1-85, point 10 |
Dry residue | GOST 26449.1-85 | SiO2 | GOST 26449.1-85, point 22 |
Boron | Rules for the standardization and documentation of food product quality 14.1:2:4.36-95 | Iodides | GOST 23268.16-78 [47] |
Cd, Pb, Cu, Zn, petroleum products | Drinking water quality standards No 26 from 20 February 2023 | Bromides | GOST 23268.15-78 |
Transboundary Aquifer Name | Length of the State Border, km | Area Within the Republic of Kazakhstan, Thousand km2 | Geological Index of Aquifers and Complexes | Risk Category |
---|---|---|---|---|
Shu Basin | 232 | 6.29 | aQII–IV, apQII–III, N | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tazhiyev, S.; Murtazin, Y.; Rakhimova, V.; Rakhmetov, I.; Adenova, D.; Koshpanova, K.; Sotnikov, Y.; Abdizhalel, M.; Akylbayeva, A.; Yerezhep, D. Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin. Water 2025, 17, 2476. https://doi.org/10.3390/w17162476
Tazhiyev S, Murtazin Y, Rakhimova V, Rakhmetov I, Adenova D, Koshpanova K, Sotnikov Y, Abdizhalel M, Akylbayeva A, Yerezhep D. Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin. Water. 2025; 17(16):2476. https://doi.org/10.3390/w17162476
Chicago/Turabian StyleTazhiyev, Sultan, Yermek Murtazin, Valentina Rakhimova, Issa Rakhmetov, Dinara Adenova, Kalamkas Koshpanova, Yevgeniy Sotnikov, Makhabbat Abdizhalel, Aigerim Akylbayeva, and Darkhan Yerezhep. 2025. "Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin" Water 17, no. 16: 2476. https://doi.org/10.3390/w17162476
APA StyleTazhiyev, S., Murtazin, Y., Rakhimova, V., Rakhmetov, I., Adenova, D., Koshpanova, K., Sotnikov, Y., Abdizhalel, M., Akylbayeva, A., & Yerezhep, D. (2025). Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin. Water, 17(16), 2476. https://doi.org/10.3390/w17162476