Species-Specific Element Accumulation in Mollusc Shells: A Framework for Trace Element-Based Marine Environmental Biomonitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Area and Molluscs
2.2. Sample Preparation for the Analysis
2.3. ICP-MS Analysis
2.4. Quality Assurance/Quality Control
2.5. Statistical Analysis
3. Results
3.1. Element Concentrations in Mollusc Shells
3.2. Correlations
3.3. Multivariate Ordinations
4. Discussion
4.1. Comparative Analysis of Element Concentrations in Mollusc Shells
4.2. Element Concentrations in Molluscs as Signatures of Their Provenance, Harvest Time, or Taxonomic Affiliation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICP-MS | Inductively coupled plasma mass spectrometry |
LDA | Linear discriminant analysis |
CAP | Canonical analysis of principal coordinates |
References
- Morris, J.P.; Backeljau, T.; Chapelle, G. Shells from aquaculture: A valuable biomaterial, not a nuisance waste product. Rev. Aquac. 2018, 11, 42–57. [Google Scholar] [CrossRef]
- Jović, M.; Mandić, M.; Šljivić-Ivanović, M.; Smičiklas, I. Recent trends in application of shell waste from mariculture. Stud. Mar. 2019, 32, 47–62. [Google Scholar] [CrossRef]
- Mathew, G.M.; Huang, C.C.; Sindhu, R.; Binod, P.; Sirohi, R.; Awsathi, M.K.; Pillai, S.; Pandey, A. Enzymatic approaches in the bioprocessing of shellfish wastes. 3 Biotech 2021, 11, 367. [Google Scholar] [CrossRef]
- Zhan, J.; Lu, J.; Wang, D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev. Aquac. 2022, 14, 477–488. [Google Scholar] [CrossRef]
- Mititelu, M.; Stanciu, G.; Drăgănescu, D.; Ioniță, A.C.; Neacșu, S.M.; Dinu, M.; Stefan-van Staden, R.-I.; Moroșan, E. Mussel Shells, a Valuable Calcium Resource for the Pharmaceutical Industry. Mar. Drugs 2022, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Elegbede, I.; Lawal-Are, A.; Favour, O.; Jolaosho, T.; Goussanou, A. Chemical compositions of bivalves shells: Anadara senilis, Crassostrea gasar, and Mytilus edulis and their potential for a sustainable circular economy. SN Appl. Sci. 2023, 5, 44. [Google Scholar] [CrossRef]
- Brakemi, E.; Michael, K.; Tan, S.P.; Helen, H. Antimicrobial activity of natural mollusc shells: A review. Process Biochem. 2024, 137, 122–133. [Google Scholar] [CrossRef]
- Gigante, V.; Cinelli, P.; Righetti, M.C.; Sandroni, M.; Tognotti, L.; Seggiani, M.; Lazzeri, A. Evaluation of Mussel Shells Powder as Reinforcement for PLA-Based Biocomposites. Int. J. Mol. Sci. 2020, 21, 5364. [Google Scholar] [CrossRef]
- Aydin, G.; Kalemtas, A. Antibacterial Properties of Scallop Shell Derived Calcium Hydroxide Powders. Mater. Sci. Res. India 2021, 18, 56–65. [Google Scholar] [CrossRef]
- Summer, K.; Browne, J.; Liu, L.; Benkendorff, K. Molluscan Compounds Provide Drug Leads for the Treatment and Prevention of Respiratory Disease. Mar. Drugs 2020, 18, 570. [Google Scholar] [CrossRef]
- Astuti, P.; Putra, M.N.P.; Shiddiq, M.F.A.; Yuneldi, R.F.; Airin, C.M.; Sarmin, S. The Potency of Anadara nodifera Shell as Natural Testosterone Booster for Male Canary (Seriunus canaria). HAYATI J. Biosci. 2021, 29, 107–113. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, P.; Garcia-Triñanes, P.; López, M.E.; Santoveña, A.; Landin, M. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications. Carbohydr. Polym. 2018, 195, 235–242. [Google Scholar] [CrossRef]
- Suhih, S.A.; Patyukov, N.Y.; Kriger, O.V.; Moroz, N.Y.; Babitch, O.O.; Voblikova, T.V. Perspective natural sources of chondroprotectors. IOP Conf. Ser. Earth Environ. Sci. 2020, 613, 012146. [Google Scholar] [CrossRef]
- Summa, D.; Lanzoni, M.; Castaldelli, G.; Fano, E.A.; Tamburini, E. Trends and Opportunities of Bivalve Shells’ Waste Valorization in a Prospect of Circular Blue Bioeconomy. Resources 2022, 11, 48. [Google Scholar] [CrossRef]
- Khirul, M.A.; Kim, B.G.; Cho, D.; Yoo, G.; Kwon, S.H. Effect of oyster shell powder on nitrogen releases from contaminated marine sediment. Environ. Eng. Res. 2020, 25, 230–237. [Google Scholar] [CrossRef]
- Lee, W.D.; Kothari, D.; Niu, K.M.; Lim, J.M.; Park, D.H.; Ko, J.; Eom, K.; Kim, S.K. Superiority of coarse eggshell as a calcium source over limestone, cockle shell, oyster shell, and fine eggshell in old laying hens. Sci. Rep. 2021, 11, 13225. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Nishibori, M. Use of extruded eggshell as a calcium source substituting limestone or oyster shell in the diet of laying hens. Vet. Med. Sci. 2021, 7, 1948–1958. [Google Scholar] [CrossRef]
- Mendonça, D.D.S.; Lana, S.R.V.; Lana, G.R.Q.; Leão, A.P.A.; Barros Júnior, R.F.D.; Lima, L.A.D.A.; Ayres, I.C.d.B.; Santos, D.S.; Silva, W.A.D. Different calcium sources on the productive performance and bone quality of meat quail. Ciência Rural 2021, 52, e20210446. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Kittelsen, K.; Vasdal, G. Environmental enrichment in commercial flocks of aviary housed laying hens: Relationship with plumage condition and fearfulness. Poult. Sci. 2022, 101, 101754. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, N.; Li, F.; Wei, F.; Lu, H. Carbon storage in mollusk shells: An overlooked yet significant carbon sink in terrestrial ecosystems. Sci. Total Environ. 2024, 915, 170050. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Valeo, C.; Chu, A.; Zhao, Y. The Efficacy of Whole Oyster Shells for Removing Copper, Zinc, Chromium, and Cadmium Heavy Metal Ions from Stormwater. Sustainability 2021, 13, 4184. [Google Scholar] [CrossRef]
- Hussain, Z.; Sultan, N.; Ali, M.; Naz, M.Y.; AbdEl-Salam, N.M.; Ibrahim, K.A. Thermochemical Conversion of Waste Glass and Mollusk Shells into an Absorbent Material for Separation of Direct Blue 15 Azo Dye from Industrial Wastewater. ACS Omega 2020, 5, 18114–18122. [Google Scholar] [CrossRef]
- Skews, R.A. Mechanisms of Dissolved Zn and Cu Retention by Mussel Shells in a Rapid-Flow Stormwater Treatment System. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2021. [Google Scholar] [CrossRef]
- Carroll, M.L.; Johnson, B.J.; Henkes, G.A.; McMahon, K.W.; Voronkov, A.; Ambrose, W.G., Jr.; Denisenko, S.G. Bivalves as indicators of environmental variation and potential anthropogenic impacts in the southern Barents Sea. Mar. Pollut. Bull. 2009, 59, 193–206. [Google Scholar] [CrossRef]
- Broadaway, B.J.; Hannigan, R.E. Elemental Fingerprints used to Identify Essential Habitats: Nantucket Bay Scallop. J. Shellfish Res. 2012, 31, 671–676. [Google Scholar] [CrossRef]
- Barbosa, I.d.S.; Brito, G.B.; dos Santos, G.L.; Santos, L.N.; Teixeira, L.S.G.; Araujo, R.G.O.; Korn, M.G.A. Multivariate data analysis of trace elements in bivalve molluscs: Characterization and food safety evaluation. Food Chem. 2019, 273, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Forleo, T.; Zappi, A.; Melucci, D.; Ciriaci, M.; Griffoni, F.; Bacchiocchi, S.; Siracusa, M.; Tavoloni, T.; Piersanti, A. Inorganic elements in Mytilus galloprovincialis shells: Geographic traceability by multivariate analysis of ICP-MS data. Molecules 2021, 26, 2634. [Google Scholar] [CrossRef] [PubMed]
- Cohen, F.P.; Cabral, A.E.; Lillebø, A.I.; Calado, R. Relieving pressure from coral reefs: Artificial oyster rocks can replace reef rocks used for biological filtration in marine aquariums. J. Clean. Prod. 2021, 325, 129326. [Google Scholar] [CrossRef]
- Bourgoin, B.P. Mytilus edulis shell as a bioindicator of lead pollution: Considerations on bioavailability and variability. Mar. Ecol. Prog. Ser. 1990, 61, 253–262. [Google Scholar] [CrossRef]
- Markich, S.J.; Jeffree, R.A.; Burke, P.T. Freshwater bivalve shells as archival indicators of metal pollution from a copper− uranium mine in tropical Northern Australia. Environ. Sci. Technol. 2002, 36, 821–832. [Google Scholar] [CrossRef]
- Hamed, M.A.; Emara, A.M. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. J. Mar. Syst. 2006, 60, 220–234. [Google Scholar] [CrossRef]
- El-Sorogy, A.; El Kammar, A.; Ziko, A.; Aly, M.; Nour, H. Gastropod shells as pollution indicators, Red Sea coast, Egypt. J. Afr. Earth Sci. 2013, 87, 93–99. [Google Scholar] [CrossRef]
- Vidyalakshmi, D.; Yesudas, A.; Sivan, G.; Prakash, E.A.; Priyaja, P. Heavy metal accumulation analysis using bivalve, sponge, sea urchin, and gastropod species as bioindicators. Mar. Pollut. Bull. 2024, 202, 116374. [Google Scholar] [CrossRef]
- Karbasdehi, V.N.; Dobaradaran, S.; Nabipour, I.; Ostovar, A.; Vazirizadeh, A.; Ravanipour, M.; Nazmara, S.; Keshtkar, M.; Mirahmadi, R.; Noorinezhad, M. A new bioindicator, shell of Trachycardium lacunosum, and sediment samples to monitors metals (Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu) in marine environment: The Persian Gulf as a case. J. Environ. Health Sci. Eng. 2016, 14, 16. [Google Scholar] [CrossRef]
- Rodland, D.L.; Schöne, B.R.; Helama, S.; Nielsen, J.K.; Baier, S. A clockwork mollusc: Ultradian rhythms in bivalve activity revealed by digital photography. J. Exp. Mar. Biol. Ecol. 2006, 334, 316–323. [Google Scholar] [CrossRef]
- Freitas, P.S.; Clarke, L.J.; Kennedy, H.; Richardson, C.A.; Abrantes, F. Environmental and biological controls on elemental (Mg∕Ca, Sr∕Ca and Mn∕Ca) ratios in shells of the king scallop Pecten maximus. Geochim. Cosmochim. Acta 2006, 70, 5119–5133. [Google Scholar] [CrossRef]
- Zuykov, M.; Pelletier, E.; Harper, D.A.T. Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring. Chemosphere 2013, 93, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Zuykov, M.; Pelletier, E.; Rouleau, C.; Popov, L.; Fowler, S.W.; Orlova, M. Autoradiographic study on the distribution of 241Am in the shell of the freshwater zebra mussel Dreissena polymorpha. Microchim. Acta 2009, 167, 173–178. [Google Scholar] [CrossRef]
- Zuykov, M.; Pelletier, E.; Belzile, C.; Demers, S. Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles. Chemosphere 2011, 84, 701–706. [Google Scholar] [CrossRef]
- Rainbow, P.S.; Phillips, D.J.H. Cosmopolitan biomonitors of trace metals. Mar. Pollut. Bull. 1993, 26, 593–601. [Google Scholar] [CrossRef]
- Rainbow, P.S. Physiology, physicochemistry and metal uptake—A crustacean perspective. Mar. Pollut. Bull. 1995, 31, 55–59. [Google Scholar] [CrossRef]
- Piwoni-Piórewicz, A.; Strekopytov, S.; Humphreys-Williams, E.; Kukliński, P. The patterns of elemental concentration (Ca, Na, Sr, Mg, Mn, Ba, Cu, Pb, V, Y, U and Cd) in shells of invertebrates representing different CaCO3 polymorphs: A case study from the brackish Gulf of Gdańsk (the Baltic Sea). Biogeosciences 2021, 18, 707–728. [Google Scholar] [CrossRef]
- Rainbow, P.S.; Wolowicz, M.; Fialkowski, W.; Smith, B.D.; Sokolowski, A. Biomonitoring of trace metals in the Gulf of Gdansk, using mussels (Mytilus trossulus) and barnacles (Balanus improvisus). Water Res. 2000, 34, 1823–1829. [Google Scholar] [CrossRef]
- Becker, B.J.; Fodrie, F.J.; McMillan, P.A.; Levin, L.A. Spatial and temporal variation in trace elemental fingerprints of mytilid mussel shells: A precursor to invertebrate larval tracking. Limnol. Oceanogr. 2005, 50, 48–61. [Google Scholar] [CrossRef]
- Dunphy, B.J.; Millet, M.A.; Jeffs, A.G. Elemental signatures in the shells of early juvenile green-lipped mussels (Perna canaliculus) and their potential use for larval tracking. Aquaculture 2011, 311, 187–192. [Google Scholar] [CrossRef]
- Cathey, A.M.; Miller, N.R.; Kimmel, D.G. Microchemistry of juvenile Mercenaria mercenaria shell: Implications for modeling larval dispersal. Mar. Ecol. Prog. Ser. 2012, 465, 155–168. [Google Scholar] [CrossRef]
- Ricardo, F.; Génio, L.; Costa Leal, M.; Albuquerque, R.; Queiroga, H.; Rosa, R.; Calado, R. Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas. Sci. Rep. 2015, 5, 11932. [Google Scholar] [CrossRef]
- Ricardo, F.; Pimentel, T.; Génio, L.; Calado, R. Spatio-temporal variability of trace elements fingerprints in cockle (Cerastoderma edule) shells and its relevance for tracing geographic origin. Sci. Rep. 2017, 7, 3475. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, F.; Mamede, R.; Bispo, R.; Santos, A.; Ferreira da Silva, E.; Patinha, C.; Calado, R. Cost-efficiency improvement of bivalves shells preparation when tracing their geographic origin through ICP-MS analysis of elemental fingerprints. Food Control. 2020, 118, 107383. [Google Scholar] [CrossRef]
- Honig, A.; Etter, R.; Pepperman, K.; Morello, S.; Hannigan, R. Site and age discrimination using trace element fingerprints in the blue mussel, Mytilus edulis. J. Exp. Mar. Biol. Ecol. 2020, 522, 151249. [Google Scholar] [CrossRef]
- Kapranov, S.V.; Kozintsev, A.F.; Bobko, N.I.; Ryabushko, V.I. Elements in Soft Tissues of the Young Mediterranean Mussel Mytilus galloprovincialis Lam. 1819 Collected in Sevastopol Bay (Crimea, Black Sea): Effects of Age, Sex, Location, and Principal Morphometric Parameters. Animals 2023, 13, 1950. [Google Scholar] [CrossRef]
- Bennion, M.; Morrison, L.; Shelley, R.; Graham, C. Trace elemental fingerprinting of shells and soft tissues can identify the time of blue mussel (Mytilus edulis) harvesting. Food Control 2021, 121, 107515. [Google Scholar] [CrossRef]
- Morrison, L.; Bennion, M.; Gill, S.; Graham, C.T. Spatio-temporal trace element fingerprinting of king scallops (Pecten maximus) reveals harvesting period and location. Sci. Total Environ. 2019, 697, 134121. [Google Scholar] [CrossRef]
- Yap, C.K.; Edward, F.B.; Tan, S.G. Similarities and differences of metal distributions in the tissues of molluscs by using multivariate analyses. Environ. Monit. Assess. 2010, 165, 39–53. [Google Scholar] [CrossRef]
- Mutić, J.; Jovanović, V.; Jacxsens, L.; Tondeleir, J.; Ristivojević, P.; Djurdjić, S.; Rajković, A.; Veličković, T.Ć. Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation. Foods 2021, 10, 2690. [Google Scholar] [CrossRef] [PubMed]
- Kapranov, S.V.; Ryabushko, V.I.; Dikareva, J.D.; Kapranova, L.L.; Bobko, N.I.; Barinova, S. Rare Earth Elements in Shells of Black Sea Molluscs: Anomalies and Biogeochemical Implications. J. Mar. Sci. Eng. 2024, 12, 713. [Google Scholar] [CrossRef]
- Silva, E.; Costa, F.N.; Souza, T.L.; Viana, Z.C.; Souza, A.S.; Korn, M.G.; Ferreira, S.L. Assessment of Trace Elements in Tissues of Fish Species: Multivariate Study and Safety Evaluation. J. Braz. Chem. Soc. 2016, 27, 2234–2245. [Google Scholar] [CrossRef]
- Özşeker, K.; Erüz, C.; Terzi, Y. Spatial distribution and ecological risk evaluation of toxic metals in the southern Black Sea coastal sediments. Mar. Pollut. Bull. 2022, 182, 114020. [Google Scholar] [CrossRef]
- Böke Özkoç, H.; Arıman, S. Contamination and risk assessment of heavy metals in coastal sediments from the Mid-Black Sea, Turkey. Stoch. Environ. Res. Risk Assess. 2023, 37, 375–394. [Google Scholar] [CrossRef]
- Bat, L. Heavy metal pollution in the Black Sea. In Turkish Fisheries in the Black Sea; Düzgüneş, E., Öztürk, B., Zengin, M., Eds.; Turkish Marine Research Foundation: Istanbul, Turkey, 2014; pp. 71–107. [Google Scholar]
- Bat, L.; Şahin, F.; Öztekin, A.; Arici, E. Toxic Metals in Seven Commercial Fish from the Southern Black Sea: Toxic Risk Assessment of Eleven-Year Data Between 2009 and 2019. Biol. Trace Elem. Res. 2021, 200, 832–843. [Google Scholar] [CrossRef]
- Johnson, R.K.; Wiederholm, T.; Rosenberg, D.M. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In Freshwater Biomonitoring and Benthics Macroinvertebrates; Rosenberg, D.M., Resh, V.H., Eds.; Chapman & Hall: New York, NY, USA, 1992; pp. 40–158. [Google Scholar]
- Hédouin, L.; Pringault, O.; Metian, M.; Bustamante, P.; Warnau, M. Nickel bioaccumulation in bivalves from the New Caledonia lagoon: Seawater and food exposure. Chemosphere 2007, 66, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Zuykov, M. Optimisation and Use of Bivalve Mollusk Shells as Monitors and Indicators for Chemical and Biotic Stress Detection. Ph.D. Thesis, Laurentian University, Sudbury, ON, Canada, 2022. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Bharatham, H.; Zakaria, M.Z.A.B.; Perimal, E.K.; Yusof, L.M.; Hamid, M. Mineral and physiochemical evaluation of Cockle shell (Anadara granosa) and other selected Molluscan shell as potential biomaterials. Sains Malays. 2014, 43, 1023–1029. [Google Scholar]
- Yap, C.K.; Hatta, Y.; Edward, F.B.; Tan, S.G. Comparison of heavy metal concentrations (Cd, Cu, Fe, Ni and Zn) in the shells and different soft tissues of Anadara granosa collected from Jeram, Kuala Juru and Kuala Kurau, Peninsular Malaysia. Pertanika J. Trop. Agric. Sci. 2008, 31, 205–215. [Google Scholar]
- Cardoso da Silva, P.S.C.; de Moura Farias, W.; Gomez, M.R.B.P.; Torrecilha, J.K.; Rocha, F.R.; Scapin, M.A.; Garcia, R.H.L.; de Simone, L.R.L.; de Amaral, V.S.; Vincent, M.; et al. Oyster shell element composition as a proxy for environmental studies. J. S. Am. Earth Sci. 2024, 134, 104749. [Google Scholar] [CrossRef]
- Nekhoroshkov, P.; Zinicovscaia, I.; Nikolayev, D.; Lychagina, T.; Pakhnevich, A.; Yushin, N.; Bezuidenhout, J. Effect of the Elemental Content of Shells of the Bivalve Mollusks (Mytilus galloprovincialis) from Saldanha Bay (South Africa) on Their Crystallographic Texture. Biology 2021, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Lyubas, A.A.; Kuznetsova, I.A.; Bovykina, G.V.; Eliseeva, T.A.; Gofarov, M.Y.; Khrebtova, I.S.; Kondakov, A.V.; Malkov, A.V.; Mavromatis, V.; Shevchenko, A.R.; et al. Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone. Water 2023, 15, 3625. [Google Scholar] [CrossRef]
- Sereanu, V.; Feraru, D.-L.; Predeanu, G.; Meghea, A. Microstructure and chemical characterization of Rapana thomasiana shell. U.P.B. Sci. Bull. Ser. B 2017, 79, 81–92. [Google Scholar]
- Chenet, T.; Schwarz, G.; Neff, C.; Hattendorf, B.; Günther, D.; Martucci, A.; Cescon, M.; Baldi, A.; Pasti, L. Scallop shells as biosorbents for water remediation from heavy metals: Contributions and mechanism of shell components in the adsorption of cadmium from aqueous matrix. Heliyon 2024, 10, e29296. [Google Scholar] [CrossRef]
- Sereanu, V.; Meghea, I.; Vasile, G.G.; Mihai, M. Environmental influence on Rapana venosa shell morphotypes and phenotypes from the Romanian Black Sea Coast. Rev. Chim. 2018, 69, 50–56. [Google Scholar] [CrossRef]
- Pospelova, N.V.; Priimak, A.S.; Ryabushko, V.I. Chemical Composition of Mussel Mytilus galloprovincialis Cultivated at the Seashore of Sevastopol (Black Sea). Ecol. Saf. Coast. Shelf Zones Sea 2021, 4, 67–80. [Google Scholar] [CrossRef]
- Mititelu, M.; Dogaru, E.; Nicolescu, T.O.; Hincu, L.; Băncescu, A.; Ioniţă, C. Heavy metals analysis in some mollusks shells from Black Sea. Sci. Study Res. 2008, 9, 195–198. [Google Scholar]
- Du, Y.; Lian, F.; Zhu, L. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environ. Pollut. 2011, 159, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Iglikowska, A.; Bełdowski, J.; Chełchowski, M.; Chierici, M.; Kędra, M.; Przytarska, J.; Sowa, A.; Kukliński, P. Chemical composition of two mineralogically contrasting Arctic bivalves’ shells and their relationships to environmental variables. Mar. Pollut. Bull. 2017, 114, 903–916. [Google Scholar] [CrossRef]
- Stanley, S.M. Effects of Global Seawater Chemistry on Biomineralization: Past, Present, and Future. Chem. Rev. 2008, 108, 4483–4498. [Google Scholar] [CrossRef]
- Cusack, M.; Freer, A. Biomineralization: Elemental and Organic Influence in Carbonate Systems. Chem. Rev. 2008, 108, 4433–4454. [Google Scholar] [CrossRef] [PubMed]
- Chemmalar, S.; Intan-Shameha, A.R.; Abdullah, C.A.C.; Ab Razak, N.A.; Yusof, L.M.; Ajat, M.; Gowthaman, N.S.K.; Bakar, M.Z.A. Synthesis and Characterization of Gefitinib and Paclitaxel Mono and Dual Drug-Loaded Blood Cockle Shells (Anadara granosa)-Derived Aragonite CaCO3 Nanoparticles. Nanomaterials 2021, 11, 1988. [Google Scholar] [CrossRef]
- Kennedy, W.J.; Taylor, J.D.; Hall, A. Environmental and biological controls on bivalve shell mineralogy. Biol. Rev. 1969, 44, 499–530. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.S.; Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 2007, 107, 342–381. [Google Scholar] [CrossRef]
- Alkan, N.; Alkan, A. Elemental Compositions of Rapana Venosa (Mollusca: Muricidae) from the Eastern Black Sea Region of Turkey: Toxicology Health Risk Assessment. Anal. Lett. 2023, 56, 504–516. [Google Scholar] [CrossRef]
- Pirkova, A.V.; Ladygina, L.V.; Shchurov, S.V. Feeding intensity of females and males of the veined rapa whelk Rapana venosa (Valenciennes, 1846) (Gastropoda, Muricidae) in the Black Sea. Tomsk State Univ. J. Biol. 2023, 61, 134–150. [Google Scholar] [CrossRef]
- Bat, L.; Başusta, N.; Öztekin, A.; Şahin, F.; Arici, E.; Seyhan, K. Trace elements in edible tissues of the veined rapa whelk (Rapana venosa) in the southern Black Sea, Türkiye: Sex, monthly, and age variations and human consumer health risk. Environ. Sci. Pollut. Res. 2023, 30, 17384–17396. [Google Scholar] [CrossRef]
- Coote, G.; Trompetter, W. Proton microprobe studies of fluorine distributions in mollusc shells. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1995, 104, 333–338. [Google Scholar] [CrossRef]
- Yapo, N.S.; Briton, B.G.H.; Aw, S.; Reinert, L.; Drogui, P.; Adouby, K. Bivalve shells (Corbula trigona) as a new adsorbent for the defluoridation of groundwater by adsorption-precipitation. J. Environ. Sci. Health Part A 2021, 56, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Hashemkhani, M.; Rezvani Ghalhari, M.; Bashardoust, P.; Hosseini, S.S.; Mesdaghinia, A.; Mahvi, A.H. Fluoride removal from aqueous solution via environmentally friendly adsorbent derived from seashell. Sci. Rep. 2022, 12, 9655. [Google Scholar] [CrossRef]
- Bonnard, M.; Cantel, S.; Boury, B.; Parrot, I. Chemical evidence of rare porphyrins in purple shells of Crassostrea gigas oyster. Sci. Rep. 2020, 10, 12150. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, M.; Boury, B.; Parrot, I. Xanthurenic acid in the shell purple patterns of Crassostrea gigas: First evidence of an ommochrome metabolite in a mollusk shell. Molecules 2021, 26, 7263. [Google Scholar] [CrossRef]
- Swinehart, J.H.; Smith, K.W. Iron and manganese deposition in the periostraca of several bivalve molluscs. Biol. Bull. 1979, 156, 369–381. [Google Scholar] [CrossRef]
- Vural, P.; Acarlı, S. Monthly variation of micro-and macro-element composition in smooth scallop, Flexopecten glaber (Linnaeus, 1758), from the Çardak Lagoon (Çanakkale Strait, Turkey). Ege J. Fish. Aquat. Sci. 2021, 38, 449–459. [Google Scholar] [CrossRef]
- Guérin, T.; Chekri, R.; Vastel, C.; Sirot, V.; Volatier, J.-L.; Leblanc, J.-C.; Noël, L. Determination of 20 trace elements in fish and other seafood from the French market. Food Chem. 2011, 127, 934–942. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Đokić, M.; Varenina, I.; Kolanović, B.S.; Božić, Đ.; Brstilo, M.; Šimić, B. Determination of zinc concentrations in foods of animal origin, fish and shellfish from Croatia and assessment of their contribution to dietary intake. J. Food Compos. Anal. 2014, 35, 61–66. [Google Scholar] [CrossRef]
- Pavlov, D.; Bezuidenhout, J.; Frontasyeva, M.; Goryainova, Z. Differences in Trace Element Content between Non-Indigenous Farmed and Invasive Bivalve Mollusks of the South African Coast. Am. J. Anal. Chem. 2015, 6, 886–897. [Google Scholar] [CrossRef]
- Yamashita, Y.; Omura, Y.; Okazaki, E. Distinct regional profiles of trace element content in muscle of Japanese eel Anguilla japonica from Japan, Taiwan, and China. Fish. Sci. 2006, 72, 1109–1113. [Google Scholar] [CrossRef]
- Smith, R.G.; Watts, C.A. Determination of the country of origin of farm-raised shrimp (family Penaeide) using trace metal profiling and multivariate statistics. J. Agric. Food. Chem. 2009, 57, 8244–8249. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, J.; Takashima, Y.; Namikoshi, A.; Yamashita, Y.; Yamashita, M. Origin identification method by multiple trace elemental analysis of short-neck clams produced in Japan, China, and the Republic of Korea. Fish. Sci. 2013, 79, 977–982. [Google Scholar] [CrossRef]
- Saavedra, Y.; González, A.; Fernández, P.; Blanco, J. Interspecific Variation of Metal Concentrations in Three Bivalve Mollusks from Galicia. Arch. Environ. Contam. Toxicol. 2004, 47, 341–351. [Google Scholar] [CrossRef]
- Cabral-Oliveira, J.; Pratas, J.; Mendes, S.; Pardal, M.A. Trace Elements in Edible Rocky Shore Species: Effect of Sewage Discharges and Human Health Risk Implications. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 135–145. [Google Scholar] [CrossRef]
Anadara kagoshimensis | Crassostrea gigas | Flexopecten glaber ponticus | Mytilus galloprovincialis | Rapana venosa | |
---|---|---|---|---|---|
Li | 0.69 ± 0.31 b | 0.54 ± 0.10 b | 0.39 ± 0.16 b | 14.0 ± 8.7 ab | 8.72 ± 2.68 a |
Be | 6.31 ± 1.65 a | 6.86 ± 2.40 a | 7.42 ± 2.44 a | 5.63 ± 1.51 a | 9.58 ± 4.18 a |
B | 6.10 ± 1.10 a | 4.22 ± 0.17 ab | 3.83 ± 0.54 ab | 7.39 ± 0.47 a | 1.89 ± 1.53 b |
F * | 113 ± 40 bc | 1842 ± 645 abc | 1147 ± 115 a | 891 ± 164 ab | 171 ± 13 c |
Na | 3201 ± 159 a | 4186 ± 523 a | 2725 ± 125 b | 2630 ± 391 ab | 4039 ± 463 a |
Mg | 338 ± 62 c | 2330 ± 137 a | 2403 ± 119 a | 1181 ± 198 bc | 1539 ± 218 b |
Al | 333 ± 68 a | 391 ± 187 a | 103 ± 47 ab | 32.4 ± 3.4 b | 165 ± 105 a |
Si | 113 ± 29 bc | 21.1 ± 4.1 c | 56.2 ± 29.6 bc | 34.3 ± 23.0 bc | 521 ± 50 a |
P | 233 ± 27 ab | 84.9 ± 16 c | 277 ± 32 ab | 223 ± 18 bc | 167 ± 85 bc |
K | 75.2 ± 4.7 a | 43.8 ± 27.4 a | 52.0 ± 17.1 a | 44.9 ± 23.0 a | 81.0 ± 42.7 a |
Ti | 4.13 ± 0.86 a | 4.10 ± 0.80 a | 2.17 ± 0.31 ab | 1.53 ± 0.14 b | 3.16 ± 0.80 ab |
V | 1.87 ± 0.29 a | 0.24 ± 0.16 b | 0.36 ± 0.05 b | 0.30 ± 0.03 b | 0.52 ± 0.41 b |
Cr | 6.77 ± 3.27 a | 0.16 ± 0.12 c | 1.38 ± 0.08 b | 1.09 ± 0.10 bc | 0.71 ± 0.24 bc |
Mn | 29.0 ± 11.6 a | 22.8 ± 6.1 ab | 20.5 ± 2.4 a | 8.47 ± 1.27 b | 14.3 ± 3.7 ab |
Fe | 1471 ± 121 d | 12017 ± 1743 a | 2244 ± 126 c | 2441 ± 49 bcd | 3336 ± 170 b |
Co | 2.22 ± 0.08 a | 2.26 ± 0.23 a | 1.28 ± 0.14 bc | 1.16 ± 0.03 bc | 1.65 ± 0.37 ab |
Ni | 31.5 ± 5.0 c | 90.8 ± 11.7 a | 39.0 ± 1.1 bc | 42.4 ± 0.74 bc | 47.8 ± 1.8 b |
Cu | 70.9 ± 28.6 c | 161 ± 62 ab | 65.7 ± 16.5 bc | 86.4 ± 11.4 bc | 209 ± 25 a |
Zn | 5.76 ± 1.88 a | 9.07 ± 4.10 a | 3.66 ± 2.08 a | 2.06 ± 0.81 a | 7.05 ± 2.29 a |
Ga | 62.3 ± 10.6 b | 136 ± 39.4 a | 41.5 ± 13.4 b | 23.5 ± 7.1 ab | 47.6 ± 24.3 b |
Ge | 1.16 ± 0.19 b | 3.23 ± 0.65 a | 1.20 ± 0.02 b | 1.13 ± 0.11 b | 1.18 ± 0.06 b |
As | 1.59 ± 0.19 b | 2.30 ± 0.25 b | 1.16 ± 0.13 c | 1.87 ± 0.35 bc | 15.5 ± 5.3 a |
Se | 1.34 ± 0.74 ab | 1.53 ± 0.49 b | 2.36 ± 0.22 a | 2.07 ± 0.03 ab | 3.56 ± 2.85 ab |
Br | 168 ± 31 b | 123 ± 30 bc | 72.8 ± 11.8 c | 364 ± 138 bc | 4769 ± 2152 a |
Rb | 0.53 ± 0.13 a | 0.45 ± 0.10 a | 0.29 ± 0.15 a | 0.10 ± 0.03 a | 0.23 ± 0.06 a |
Sr | 973 ± 80 ab | 484 ± 79 d | 788 ± 49 c | 571 ± 26 bcd | 1376 ± 183 a |
Mo | 0.84 ± 0.22 ab | 0.79 ± 0.28 ab | 0.50 ± 0.17 ab | 0.234 ± 0.012 b | 0.57 ± 0.07 a |
Cd | 0.18 ± 0.04 a | 0.43 ± 0.19 a | 1.22 ± 0.75 a | 0.070 ± 0.014 a | 0.14 ± 0.11 a |
I | 49.0 ± 7.9 a | 31.7 ± 1.1 b | 7.35 ± 1.72 c | 5.96 ± 0.22 c | 22.7 ± 7.5 b |
Cs | 72.1 ± 27.7 a | 36.3 ± 13.6 ab | 20.1 ± 6.7 b | 6.07 ± 2.49 b | 10.7 ± 6.5 b |
Ba | 17.6 ± 3.6 a | 5.62 ± 1.75 b | 6.61 ± 1.52 b | 16.4 ± 2.4 a | 3.99 ± 0.97 b |
Hg | 17.9 ± 9.4 c | 109 ± 44 ab | 35.5 ± 11.6 bc | 12.2 ± 4.1 bc | 201 ± 7 a |
Pb | 0.81 ± 0.15 a | 0.73 ± 0.14 a | 1.37 ± 1.07 a | 0.71 ± 0.08 a | 0.63 ± 0.35 a |
LDA | CAP | ||
---|---|---|---|
No Cross-Validation | Jackknifed | Jackknifed | |
Mg, Fe, As | 97.4 | 94.9 | 92.3 |
Mg, Co, As | 97.4 | 94.9 | 97.4 |
Mg, Ni, As | 97.4 | 94.9 | 92.3 |
Fe, As, Sr | 97.4 | 97.4 | 87.2 |
Fe, As, I | 100 | 94.9 | 87.2 |
Ni, As, I | 100 | 89.7 | 87.2 |
Ni, As, Sr | 97.4 | 94.9 | 89.7 |
Ni, As, Cs | 100 | 87.2 | 89.7 |
Fe, As, Sr, I | 100 | 100 | 92.3 |
Anadara | Crassostrea | Aequipecten, Flexopecten | Mytilus | Rapana venosa | |
---|---|---|---|---|---|
Na | A. granosa 887 ± 81 [66] A. kagoshimensis 3234 ± 288 (t.) | C. brasiliana and C. mangle 3830 ± 1990 [68] C. gigas 4210 ± 878 (t.) | F. glaber ponticus 2581 ± 330 (t.) | M. galloprovincialis 4333 ± 418 [69] M. trossulus 2010 ± 310 [42] M. edulis 3450 ± 191 [70] M. galloprovincialis 4002 ± 3626 (t.) | 2420 ± 1575 [71] 4034 ± 1109 (t.) |
Mg | A. granosa 53.2 ± 2.6 [66] A. kagoshimensis 668 ± 879 (t.) | C. brasiliana and C. mangle 2785 ± 1643 [68] C. gigas 2471 ± 486 (t.) | A. opercularis 92.8 ± 1.3 [72] F. glaber ponticus 2581 ± 330 (t.) | M. galloprovincialis 937 ± 153 [69] M. trossulus 1060 ± 170 [42] M. edulis 1020 ± 65 [70] M. galloprovincialis 1359 ± 471 (t.) | 950 ± 85 [71] 490 ± 64 [73] 1517 ± 369 (t.) |
Al | A. granosa 451 ± 12 [66] A. kagoshimensis 321 ± 114 (t.) | C. gigas 2471 ± 486 (t.) | F. glaber ponticus 149 ± 136 (t.) | M. galloprovincialis 34 ± 14 [69] M. edulis 34.5 ± 9.1 [70] M. galloprovincialis 42 ± 18 (t.) | 735 ± 960 [71] 5.32 ± 2.65 [73] 213 ± 142 (t.) |
P | A. granosa 467 ± 2.4 [66] A. kagoshimensis 245 ± 73 (t.) | C. gigas 111 ± 60 (t.) | F. glaber ponticus 298 ± 88 (t.) | M. edulis 154 ± 12 [70] M. galloprovincialis 220 ± 181 (t.) | 125 ± 174 [71] 278 ± 415 (t.) |
K | A. kagoshimensis 83 ± 20 (t.) | C. gigas 61 ± 56 (t.) | A. opercularis 1349 ± 449 [72] F. glaber ponticus 70 ± 64 (t.) | M. edulis 31.8 ± 11.3 [70] M. galloprovincialis 51 ± 32 (t.) | 315± 428 [71] 98 ± 47 (t.) |
Cr | A. kagoshimensis 7.82 ± 4.61 (t.) | C. brasiliana and C. mangle 0.72 ± 0.82 [68] C. gigas 0.23 ± 0.28 (t.) | F. glaber ponticus 1.75 ± 0.66 (t.) | M. galloprovincialis 1.5 ± 0.3 [69] M. galloprovincialis 1.69 ± 1.46 (t.) | 0.30 ± 0.22 [73] 0.78 ± 0.51 (t.) |
Mn | A. granosa 0.255 ± 0.001 [66] A. kagoshimensis 35.1 ± 18.2 (t.) | C. brasiliana and C. mangle 28 ± 21 [68] C. gigas 24.3 ± 12.0 (t.) | A. opercularis 75.5 ± 88.7 [72] F. glaber ponticus 19.2 ± 5.3 (t.) | M. galloprovincialis 1.8 ± 0.3 [69] 8.2 ± 1.7 [74] M. trossulus 54.3 ± 15.1 [42] M. edulis 154 ± 71 [71] M. galloprovincialis 8.18 ± 1.57 (t.) | 2.96 ± 0.84 [73] 16.2 ± 10.9 (t.) |
Fe | A. granosa 1400 ± 100 [66] A. granosa 312 ± 188 [67] A. kagoshimensis 1564 ± 325 (t.) | C. brasiliana and C. mangle 29 ± 24 [68] C. gigas 13,157 ± 4088 (t.) | A. opercularis 1595 ± 2746 [72] F. glaber ponticus 2285 ± 1852 (t.) | M. galloprovincialis 123 ± 29 [69] M. edulis 337 ± 100 [70] M. galloprovincialis 1962 ± 1028 (t.) | 9.3 ± 1.2 [73] 3294 ± 665 (t.) |
Co | A. kagoshimensis 2.19 ± 0.15 (t.) | C. brasiliana and C. mangle 0.082 ± 0.065 [68] C. gigas 2.73 ± 0.97 (t.) | A. opercularis 0.50 ± 0.63 [72] F. glaber ponticus 1.29 ± 0.15 (t.) | M. galloprovincialis 35.6 ± 7.3 [74] M. galloprovincialis 0.1 ± 0.03 [69] M. galloprovincialis 0.99 ± 0.39 (t.) | 1.83 ± 0.63 (t.) |
Ni | A. granosa 0.027 ± 0.001 [66] A. granosa 31.8 ± 17.6 [67] A. kagoshimensis 31.2 ± 5.0 (t.) | C. gigas 90.8 ± 11.8 (t.) | A. opercularis 1.77 ± 1.07 [72] F. glaber ponticus 41.3 ± 4.2 (t.) | M. galloprovincialis 1.4 ± 0.3 [74] M. galloprovincialis 0.4 ± 0.19 [69] M. galloprovincialis 34.5 ± 18.6 (t.) | 1.36 ± 1.01 [73] 50.0 ± 10.2 (t.) |
Cu | A. granosa 0.93 ± 0.01 [66] A. granosa 4.95 ± 0.78 [67] A. kagoshimensis 75.0 ± 36.9 (t.) | C. gigas 170 ± 73 (t.) | A. opercularis 6.8 [72] F. glaber ponticus 89.4 ± 52.4 (t.) | M. galloprovincialis 2.9 ± 0.7 [74] M. trossulus 14.1 ± 10.2 [42] M. edulis 0.96 ± 0.23 [70] M. galloprovincialis 77.1 ± 20.0 (t.) | 5.88 [75] 190 ± 77 (t.) |
Zn | A. granosa 9.22 ± 4.82 [67] A. kagoshimensis 8.27 ± 8.85 (t.) | C. brasiliana and C. mangle 4.0 ± 4.1 [68] C. gigas 16.1 ± 21.1 (t.) | A. opercularis 41 [72] F. glaber ponticus 4.61 ± 3.28 (t.) | M. galloprovincialis 38.9 ± 7.5 [74] M. galloprovincialis 3.33 ± 0.43 [69] M. edulis 17.3 ± 2.13 [70] 22.99 [75] M. galloprovincialis 15.7 ± 30.0 (t.) | 16.82 [75] 1.04 ± 0.36 [73] 6.81 ± 2.65 (t.) |
As | A. kagoshimensis 1.58 ± 0.23 (t.) | C. brasiliana and C. mangle 0.2 ± 0.12 [68] C. gigas 2.28 ± 0.56 (t.) | F. glaber ponticus 1.15 ± 0.15 (t.) | M. galloprovincialis 3.1 ± 0.8 [74] M. galloprovincialis 3.72 ± 4.54 (t.) | 24.1 ± 18.8 (t.) |
Br | A. kagoshimensis 176 ± 51 (t.) | C. brasiliana and C. mangle 8 ± 6.6 [68] C. gigas 120 ± 39 (t.) | F. glaber ponticus 79.0 ± 25.4 (t.) | M. galloprovincialis 89.3 ± 22.5 [69] M. galloprovincialis 392 ± 214 (t.) | 5539 ± 4809 (t.) |
Sr | A. kagoshimensis 951 ± 114 (t.) | C. gigas 518 ± 106 (t.) | F. glaber ponticus 794 ± 56 (t.) | M. trossulus 1170 ± 100 [42] M. galloprovincialis 1220 ± 264 [69] M. edulis 1600 ± 37 [70] M. galloprovincialis 475 ± 251 (t.) | 1620 ± 3048 [71] 1393 ± 442 (t.) |
Mo | A. kagoshimensis 1.01 ± 0.70 (t.) | C. gigas 0.85 ± 0.42 (t.) | F. glaber ponticus 0.96 ± 1.06 (t.) | M. galloprovincialis 0.29 ± 0.12 (t.) | 1.26 ± 0.22 [73] 0.56 ± 0.15 (t.) |
Cd | A. granosa 8.65 ± 3.15 [67] A. kagoshimensis 0.19 ± 0.11 (t.) | C. gigas 0.89 ± 0.86 (t.) | F. glaber ponticus 6.7 ± 14.1 (t.) | M. trossulus 0.09 ± 0.11 [42] M. galloprovincialis 0.35 ± 0.58 (t.) | 0.94 [75] 0.33 ± 0.34 (t.) |
I | A. granosa 0.01 ± 0.0001 [66] A. kagoshimensis 55.6 ± 17.3 (t.) | C. gigas 35.1 ± 5.4 (t.) | F. glaber ponticus 9.21 ± 4.84 (t.) | M. galloprovincialis 8.0 ± 4.4 [69] M. galloprovincialis 5.91 ± 0.45 (t.) | 26.0 ± 15.7 (t.) |
Ba | A. kagoshimensis 17.8 ± 4.8 (t.) | C. brasiliana and C. mangle 5.0 ± 5.6 [68] C. gigas 5.64 ± 2.16 (t.) | A. opercularis 4.0 ± 3.8 [72] F. glaber ponticus 7.08 ± 2.20 (t.) | M. trossulus 17.1 ± 6.69 [42] M. edulis 12.2 ± 1.01 [70] M. galloprovincialis 15.3 ± 5.3 (t.) | 4.96 ± 2.67 (t.) |
Hg | A. kagoshimensis 0.020 ± 0.011 (t.) | C. gigas 0.120 ± 0.055 (t.) | F. glaber ponticus 0.036 ± 0.021 (t.) | M. galloprovincialis 0.040 ± 0.002 [74] M. galloprovincialis 0.031 ± 0.039 (t.) | 0.195 ± 0.108 (t.) |
Pb | Scapharca sp. 3.11 [75] A. kagoshimensis 0.78 ± 0.21 (t.) | C. brasiliana and C. mangle 0.9 ± 0.56 [68] C. gigas 1.02 ± 0.54 (t.) | A. opercularis 1.68 ± 1.63 [72] F. glaber ponticus 1.65 ± 1.48 (t.) | M. galloprovincialis 1.0 ± 0.2 [74] M. trossulus 1.14 ± 1.41 [42] M. edulis 0.11 ± 0.01 [70] M. galloprovincialis 0.89 ± 0.34 (t.) | 0.74 ± 0.48 (t.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapranov, S.V.; Kapranova, L.L.; Gureeva, E.V.; Ryabushko, V.I.; Dikareva, J.D.; Barinova, S. Species-Specific Element Accumulation in Mollusc Shells: A Framework for Trace Element-Based Marine Environmental Biomonitoring. Water 2025, 17, 2407. https://doi.org/10.3390/w17162407
Kapranov SV, Kapranova LL, Gureeva EV, Ryabushko VI, Dikareva JD, Barinova S. Species-Specific Element Accumulation in Mollusc Shells: A Framework for Trace Element-Based Marine Environmental Biomonitoring. Water. 2025; 17(16):2407. https://doi.org/10.3390/w17162407
Chicago/Turabian StyleKapranov, Sergey V., Larisa L. Kapranova, Elena V. Gureeva, Vitaliy I. Ryabushko, Juliya D. Dikareva, and Sophia Barinova. 2025. "Species-Specific Element Accumulation in Mollusc Shells: A Framework for Trace Element-Based Marine Environmental Biomonitoring" Water 17, no. 16: 2407. https://doi.org/10.3390/w17162407
APA StyleKapranov, S. V., Kapranova, L. L., Gureeva, E. V., Ryabushko, V. I., Dikareva, J. D., & Barinova, S. (2025). Species-Specific Element Accumulation in Mollusc Shells: A Framework for Trace Element-Based Marine Environmental Biomonitoring. Water, 17(16), 2407. https://doi.org/10.3390/w17162407