A Novel Deep Learning-Based Soil Moisture Prediction Model Using Adaptive Group Radial Lasso Regularized Basis Function Networks (AGRL-RBFN) Optimized by Hierarchical Correlated Spider Wasp Optimizer (HCSWO) and Incremental Learning (IL)
Abstract
1. Introduction
2. Materials and Methods: Soil Moisture Prediction Using AGRL-RBFN with IL
2.1. Dataset Description and Data Acquisition
2.2. Preprocessing
2.2.1. Gap Filling
Algorithm 1. Pseudo Code of AdaK-MCC |
Input: Soil Moisture Data Z Output: Gap-Filled Data Begin Initialize Nc (number of clusters), , minimum iteration , maximum iteration While < Derive # using Adaptive Momentum Coefficients Assign to data Update centroid Repeat until End while Return End |
2.2.2. Noise Reduction
2.2.3. Atmospheric Correction
2.3. Season Mapping
2.4. Seasonal Clustering
2.5. Varying Pattern Analysis
2.6. Multivariate Correlation Analysis
2.7. Feature Extraction
2.8. Feature Selection
2.9. Soil Moisture Prediction
Algorithm 2. Pseudo Code of AGRL-RBFN |
Input: Selected Features Output: Predicted Soil Moisture Begin Initialize , For each Compute Regularize the input Evaluate Calculate End for Return End |
2.10. Integration of Remote Sensing and Deep Learning for Soil Moisture Prediction
2.11. Model Calibration and Validation
3. Results
3.1. Performance Analysis
3.1.1. Performance Analysis of Gap Filling
3.1.2. Performance Analysis of Clustering
3.1.3. Performance Analysis of Varying Pattern Analysis
3.1.4. Performance Analysis of Feature Selection
3.1.5. Performance Analysis of Soil Moisture Prediction
3.1.6. Time-Series Validation of AGRL-RBFN Predictions Against Observed Measurements
3.2. Comparison with Existing Approaches
3.3. Convergence and Computational Complexity Analysis of HCSWO
4. Discussion
4.1. Model Performance
4.2. Feature Importance and Model Behavior
4.3. Error Analysis
4.4. Limitations and Generalizability Across Climatic Zones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol/Term | Definition | Unit/Note |
Z | Original input dataset | — |
Ξsel | Selected features vector | — |
Iin | Input vector to the AGRL-RBFN model | — |
z | Number of selected features | Integer |
λ | Regularization parameter in AGRL | Hyperparameter |
βg | Coefficient vector for group g | — |
G | Total number of feature groups | Integer |
Ck | Centroid of cluster k | — |
Nc | Number of clusters in AdaK-MCC | Integer |
μ, σ | Mean and standard deviation | Depends on context |
φ | Radial basis function (e.g., Gaussian) | Activation function |
μi | Center of the i-th RBF neuron | — |
γ | Width (spread) of the RBF | — |
wj | Weight associated with the j-th hidden neuron | — |
b | Bias term in the output layer | — |
h | Output of hidden layer neuron | — |
ξ~U(0,1) | Random variable from uniform distribution | Uniform distribution |
𝓛 | Loss function used during training | — |
t | Time index in time-series | — |
α | Learning rate | Hyperparameter |
m | Number of spider wasps (population size in HCSWO) | Integer |
δ, γ | Day and year of an observation (in seasonal mapping) | Integer |
FWFC | Frequency Weighted Fourier Coefficient | For varying pattern analysis |
SGF | Savitzky–Golay Filter | Used for noise reduction |
SM | Soil Moisture | % volumetric |
NDVI | Normalized Difference Vegetation Index | Remote sensing vegetation index |
SMI | Soil Moisture Index | Derived index |
FWFCSD | Frequency Weighted Fourier Coefficient-based Seasonal Decomposition | Seasonal analysis method |
AdaK-MCC | Adaptive K-Means Clustering with Momentum Coefficients | Gap filling & seasonal clustering |
HCSWO | Hierarchical Correlated Spider Wasp Optimizer | Feature selection algorithm |
AGRL-RBFN | Adaptive Group Lasso Regularized Radial Basis Function Network | Proposed prediction model |
IL | Incremental Learning | Online model update mechanism |
MAE | Mean Absolute Error | Evaluation metric |
RMSE | Root Mean Squared Error | Evaluation metric |
F1-Score | Harmonic mean of precision and recall | Evaluation metric |
CI | Confidence Interval | Statistical reliability indicator |
References
- Sekaran, U.; Mehmandoostkotlar, A.; Kumar, S. Soil Hydrology in a Changing Climate: Soil health and soil water. In Soil Hydrology in a Changing Climate; Blanco, H., Kumar, S., Anderson, S.H., Eds.; CSIRO: Clayton, Australia, 2023. [Google Scholar]
- Pal, J.; Bodhe, H. Design and Implementation of Deep Learning Model For Soil Moisture Analysis An IoT Based Soil Moisture Monitoring on Losant Platform. Int. J. Res. Eng. Sci. 2023, 11, 509–514. [Google Scholar]
- Abbes, A.B.; Jarray, N.; Farah, I.R. Advances in remote sensing-based soil moisture retrieval: Applications, techniques, scales and challenges for combining machine learning and physical models. Artif. Intell. Rev. 2024, 57, 224. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Sun, M.; Liu, X.; Cao, L. A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning. Agronomy 2024, 14, 2054. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Guo, Z.; Yang, H.; Li, N. Soil Moisture Inversion Based on Data Augmentation Method Using Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 1899. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, C.; Kim, J.; Choi, M.; Cho, J.; Lee, Y. Estimation of High-Resolution Soil Moisture in Canadi—An Croplands Using Deep Neural Network with Sentinel-1 and Sentinel-2 Images. Remote Sens. 2023, 15, 4063. [Google Scholar] [CrossRef]
- Li, M.; Yan, Y. Comparative Analysis of Machine-Learning Models for Soil Moisture Estimation Using High-Resolution Remote-Sensing Data. Land 2024, 13, 1331. [Google Scholar] [CrossRef]
- Uthayakumar, A.; Mohan, M.P.; Khoo, E.H.; Jimeno, J.; Siyal, M.Y.; Karim, M.F. Machine Learning Models for Enhanced Estimation of Soil Moisture Using Wideband Radar Sensor. Sensors 2022, 22, 5810. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gu, X.; Chen, X.; Mumtaz, F.; Liu, Y.; Wang, C.; Yu, T.; Zhang, Y.; Wang, D.; Zhan, Y. Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization. Sensors 2022, 22, 1611. [Google Scholar] [CrossRef] [PubMed]
- Shokati, H.; Masha, M.; Noroozi, A.; Abkar, A.A. Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data. Remote Sens. 2024, 16, 1962. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Z.; Zhang, Z.; Huang, J.A. Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package. Agronomy 2024, 14, 421. [Google Scholar] [CrossRef]
- Win, K.; Sato, T.; Tsuyuki, S. Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan. Information 2024, 15, 485. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Li, H.; Guo, J. Soil moisture retrieval in farmland areas with sentinel multi-source data based on regression convolutional neural networks. Sensors 2021, 21, 877. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, E.H.; Samak, A.A.; Yang, L.; Huang, R.; Huang, J. Prediction of Soil Moisture Content from Senti-nel-2 Images Using Convolutional Neural Network (CNN). Agronomy 2023, 13, 656. [Google Scholar] [CrossRef]
- Babu, C.V.S.; Yadavamuthiah, K. Soil quality prediction using deep learning. In Sustainable Development in AI, Blockchain, and E-Governance Applications; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 171–188. [Google Scholar] [CrossRef]
- Patrizi, G.; Bartolini, A.; Ciani, L.; Gallo, V.; Sommella, P.; Carratu, M.A. Virtual Soil Moisture Sensor for Smart Farming Using Deep Learning. IEEE Trans. Instrum. Meas. 2022, 71, 2515411. [Google Scholar] [CrossRef]
- Roberts, T.M.; Colwell, I.; Chew, C.; Lowe, S.; Shah, R.A. Deep-Learning Approach to Soil Moisture Estimation with GNSS-R. Remote Sens. 2022, 14, 3299. [Google Scholar] [CrossRef]
- Singh, T.; Kundroo, M.; Kim, T. WSN-Driven Advances in Soil Moisture Estimation: A Machine Learning Approach. Electronics 2024, 13, 1590. [Google Scholar] [CrossRef]
- Dabboor, M.; Atteia, G.; Meshoul, S.; Alayed, W. Deep Learning-Based Framework for Soil Moisture Content Retrieval of Bare Soil from Satellite Data. Remote Sens. 2023, 15, 1916. [Google Scholar] [CrossRef]
- Nijaguna, G.S.; Manjunath, D.R.; Abouhawwash, M.; Askar, S.S.; Basha, D.K.; Sengupta, J. Deep Learning-Based Improved WCM Technique for Soil Moisture Retrieval with Satellite Images. Remote Sens. 2023, 15, 2005. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Z.; Cui, N.; Jin, X.; Zhu, S.; Jiang, S.; Zhao, L.; Gong, D. Estimation of Soil Moisture Using Multi-Source Remote Sensing and Machine Learning Algorithms in Farming Land of Northern China. Remote Sens. 2023, 15, 4214. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine learning to estimate surface soil moisture from remote sensing data. Water 2020, 12, 3223. [Google Scholar] [CrossRef]
- Celik, M.F.; Isik, M.S.; Yuzugullu, O.; Fajraoui, N.; Erten, E. Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote Sens. 2022, 14, 5584. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Hu, Y.; Hu, X.; Song, W.; Wang, L. A comprehensive study of deep learning for soil moisture prediction. Hydrol. Earth Syst. Sci. 2024, 28, 917–943. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Song, J. Variations in global soil moisture during the past decades: Climate or human causes? Water Resour. Res. 2023, 59, e2023WR034915. [Google Scholar] [CrossRef]
- Segura-Barrero, R.; Lauvaux, T.; Lian, J.; Ciais, P.; Badia, A.; Ventura, S.; Villalba, G. Heat and drought events alter biogenic capacity to balance CO2 budget in southwestern Europe. Glob. Biogeochem. Cycles 2025, 39, e2024GB008163. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Paparrizos, S.; Kranjac-Berisavljevic, G.; Jamaldeen, B.M.; Issahaku, A.K.; Gandaa, B.Z.; Supit, I.; van Slobbe, E. The role of soil moisture information in developing robust climate services for smallholder farmers: Evidence from Ghana. Agronomy 2022, 12, 541. [Google Scholar] [CrossRef]
- Boonprong, S.; Cao, C.; Chen, W.; Ni, X.; Xu, M.; Acharya, B.K. The classification of noise-afflicted remotely sensed data using three machine-learning techniques: Effect of different levels and types of noise on accuracy. ISPRS Int. J. Geo-Inf. 2018, 7, 274. [Google Scholar] [CrossRef]
- Breidenbach, J.; Ellison, D.; Petersson, H.; Korhonen, K.T.; Henttonen, H.M.; Wallerman, J.; Fridman, J.; Gobakken, T.; Astrup, R.; Næsset, E. Harvested area did not increase abruptly—How advancements in satellite-based mapping led to erroneous conclusions. Ann. For. Sci. 2022, 79, 2. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Wiseman, G.; McNairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Fiorentino, M.; Rodríguez-Iturbe, I.; Wood, E.F. Scaling characteristics of spatial patterns of soil moisture from distributed modelling. Adv. Water Resour. 2007, 30, 2145–2150. [Google Scholar] [CrossRef]
- Gebler, S.; Franssen, H.J.H.; Kollet, S.J.; Qu, W.; Vereecken, H. High-resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data. J. Hydrol. 2017, 547, 309–331. [Google Scholar] [CrossRef]
- Zarlenga, A.; Fiori, A.; Russo, D. Spatial variability of soil moisture and the scale issue: A geostatistical approach. Water Resour. Res. 2018, 54, 1765–1780. [Google Scholar] [CrossRef]
- Svetlitchnyi, A.A. Soil erosion induced degradation of agro landscapes in Ukraine: Modeling, computation and prediction in conditions of the climate changes. In Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-Boreal Eastern Europe; Springer: Dordrecht, The Netherlands, 2009; pp. 191–199. [Google Scholar]
- Sanchez-Mejia, Z.M.; Papuga, S.A. Empirical modeling of planetary boundary layer dynamics under multiple precipitation scenarios using a two-layer soil moisture approach: An example from a semiarid shrubland. Water Resour. Res. 2017, 53, 8807–8824. [Google Scholar] [CrossRef]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010: 19th International Conference on Computational Statistics, Paris, France, 22–27 August 2010; Lechevallier, Y., Saporta, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–186. [Google Scholar]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum (6S): 6S User Guide; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1997. [Google Scholar]
- Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 1–17. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: San Diego, CA, USA, 2011. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Filipović, N.; Brdar, S.; Mimić, G.; Marko, O.; Crnojević, V. Regional soil moisture prediction system based on Long Short-Term Memory network. Biosyst. Eng. 2022, 213, 30–38. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Park, J.; Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef]
- Kumar, P.; Udayakumar, A.; Anbarasa Kumar, A.; Senthamarai Kannan, K.; Krishnan, N. Multiparameter optimization system with DCNN in precision agriculture for advanced irrigation planning and scheduling based on soil moisture estimation. Environ. Monit. Assess. 2023, 195, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Z.; Shangguan, W.; Li, L.; Yao, Y.; Yu, F. Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning. J. Hydrol. 2021, 600, 1–14. [Google Scholar] [CrossRef]
- Jia, Y.; Jin, S.; Chen, H.; Yan, Q.; Savi, P.; Jin, Y.; Yuan, Y. Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression with a Preclassification Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4879–4893. [Google Scholar] [CrossRef]
Techniques | Silhouette Score |
---|---|
Proposed AdaK-MCC | 0.975 |
KMC | 0.953 |
FCM | 0.929 |
KNN | 0.858 |
K-Medoid | 0.813 |
Techniques | Dunn Index | Mean | Standard Deviation | 95% Confidence Interval |
---|---|---|---|---|
Proposed AdaK-MCC | 4.897 | 2.942 | 1.214 | [1.876, 4.008] |
KMC | 2.984 | 2.984 | 0.015 | [2.969, 2.999] |
FCM | 2.541 | 2.541 | 0.016 | [2.524, 2.558] |
KNN | 1.924 | 1.924 | 0.014 | [1.912, 1.936] |
K-Medoid | 1.368 | 1.368 | 0.01 | [1.358, 1.378] |
Metric | Proposed Model (AGRL-RBFN) | Existing Methods |
---|---|---|
Gap Filling MAE | 0.047 (CI: [0.043, 0.051]), SD: 0.002 | KMC: 0.099 (CI: [0.080, 0.118]), FCM: 0.157 (CI: [0.145, 0.169]), KNN: 0.386 (CI: [0.370, 0.402]), K-Medoid: 0.548 (CI: [0.532, 0.564]) |
Silhouette Score (Gap Filling) | 0.975 (SD: 0.019) | KMC: 0.953 (SD: 0.019), FCM: 0.929 (SD: 0.022), KNN: 0.858 (SD: 0.034), K-Medoid: 0.813 (SD: 0.042) |
Clustering Time | 2118 ms | KMC: N/A, FCM: N/A, KNN: N/A, K-Medoid: N/A |
Dunn Index | 4.897 (SD: 0.125) | KMC: 2.984 (SD: 0.015), FCM: 2.541 (SD: 0.016), KNN: 1.924 (SD: 0.014), K-Medoid: 1.368 (SD: 0.01) |
Varying Pattern Cross-Correlation Coefficient | 0.9715 (CI: [0.965, 0.978]) | FSD: 0.8930 (CI: [0.880, 0.906]), DFT: 0.8930 (CI: [0.880, 0.906]), FFT: 0.8930 (CI: [0.880, 0.906]), STFT: 0.8930 (CI: [0.880, 0.906]) |
Varying Pattern Reconstruction Error | 0.0589 (SD: 0.004) | FSD: 0.1483 (SD: 0.003), DFT: 0.1483 (SD: 0.003), FFT: 0.1483 (SD: 0.003), STFT: 0.1483 (SD: 0.003) |
Feature Selection Time | 2118 ms (SD: 10 ms) | SWO: 2211 ms (SD: 12 ms), ACO: 5178 ms (SD: 25 ms), GWO: 7135 ms (SD: 35 ms), CSO: 9052 ms (SD: 40 ms) |
Soil Moisture Prediction Accuracy | 98.09% (CI: [97.90%, 98.28%]) | RBFN: 96.27% (CI: [95.95%, 96.59%]), FFNN: 95.23% (CI: [94.80%, 95.66%]), RNN: 97.24% (CI: [96.80%, 97.68%]), ANN: 95.23% (CI: [94.80%, 95.66%]) |
Precision | 98.17% (CI: [97.97%, 98.37%]) | RBFN: 97.55% (CI: [97.30%, 97.80%]), FFNN: 96.12% (CI: [95.90%, 96.34%]), RNN: 97.05% (CI: [96.81%, 97.29%]), ANN: 96.12% (CI: [95.90%, 96.34%]) |
Recall | 97.24% (CI: [96.85%, 97.63%]) | RBFN: 95.34% (CI: [95.10%, 95.58%]), FFNN: 93.45% (CI: [93.20%, 93.70%]), RNN: 94.26% (CI: [94.00%, 94.52%]), ANN: 93.45% (CI: [93.20%, 93.70%]) |
F1-Score | 98.95% (CI: [98.75%, 99.15%]) | RBFN: 96.27% (CI: [95.95%, 96.59%]), FFNN: 95.23% (CI: [94.80%, 95.66%]), RNN: 97.24% (CI: [96.80%, 97.68%]), ANN: 95.23% (CI: [94.80%, 95.66%]) |
False Positive Rate (FPR) | 0.0248 (SD: 0.002) | RBFN: 0.481 (SD: 0.002), FFNN: 0.596 (SD: 0.003), RNN: 0.723 (SD: 0.004), ANN: 0.876 (SD: 0.005) |
False Negative Rate (FNR) | 0.076 (SD: 0.003) | RBFN: 0.108 (SD: 0.003), FFNN: 0.257 (SD: 0.004), RNN: 0.429 (SD: 0.005), ANN: 0.571 (SD: 0.006) |
Techniques | Execution Time (ms) |
---|---|
Proposed FWFCSD | 18,564 |
FSD | 24,796 |
DFT | 28,357 |
FFT | 32,497 |
STFT | 39,641 |
Techniques | Feature Selection Time (ms) |
---|---|
Proposed HCSWO | 2118 |
SWO | 2211 |
ACO | 5178 |
GWO | 7135 |
CSO | 9052 |
Techniques | FPR | FNR |
---|---|---|
Proposed AGRL-RBFN | 0.0248 | 0.076 |
RBFN | 0.481 | 0.108 |
FFNN | 0.596 | 0.257 |
RNN | 0.723 | 0.429 |
ANN | 0.876 | 0.571 |
Metric | AGRL-RBFN (Proposed) | LSTM [49] | DCNN [50] | ANN [22] | RBFN [9] | RF [10] | KNN [8] | SVM [7] | Attention-Aware LSTM [51] | DL with TL [52] | ML with Pre-classification [53] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | 98.09% | 74.36% | 98.05% | 95.23% | 96.27% | ~96% | ~95% | ~96% | 97.06% | 95.23% | 98% | |
Precision | 98.17% | - | - | 96.12% | 97.55% | ~96% | ~95% | 96.50% | - | - | - | |
Recall | 97.24% | - | - | 93.45% | 95.34% | ~94% | ~93% | 94% | - | - | - | |
F1-Score | 98.95% | - | - | 95.23% | 96.27% | ~95% | ~94% | 95% | - | - | - | |
Gap Filling MAE | 0.047 | - | - | - | 0.099 | ~0.1 | ~0.4 | ~0.15 | - | - | - | |
Clustering Dunn Index | 4.897 | - | - | - | 2.984 | ~2.9 | ~2.5 | ~3.0 | - | - | - | |
Clustering Time | 2118 ms | - | - | - | ~2000 ms | ~2000 ms | ~2500 ms | ~3000 ms | - | - | - | |
Computational Complexity | Low | High | High | Medium | Medium | High | Medium | Medium to High | High | Medium–High | - | |
Seasonal Adaptability | Excellent | Limited | Limited | Moderate | Low | Moderate | Low | Low | Limited | Less effective | Limited | |
Climatic Adaptability | Excellent | Struggles | Limited | Moderate | Low | Low | Low | Low | Limited | Limited | Limited | |
Gap Filling Technique | AdaK-MCC | - | - | - | KMC | KNN | K-Medoid | SVM | - | - | - | |
Feature Selection Method | HCSWO | - | - | - | RF | Random Forest | KNN | SVM | - | Pre-classification | - | |
Normalization Strategy | Per- feature normali-zation (via PCA) | Min- Max or Z-score normalization | Min- Max or Z-score normalization | Min- Max or Z-score normalization | Per-feature normali- zation | Min-Max or Z-score normali- zation | Min-Max normal- ization | Z-score or Min-Max normalization | Min-Max or Z-score normalization | Not specified (likely Z-score) | Pre-classification may use normalized features | |
Application Suitability | Precision Agriculture, Climate Resilience | Irrigation, Water Conservation | Water Management | Climate Adaptive Agriculture | Limited tasks | Precision Agriculture | Simple Classification | Soil moisture & temperature prediction | Soil moisture in diverse regions | Land-specific soil moisture modeling | - | |
Limitations | Crop-specific moisture not addressed | High computational demands | High cost, limited spatiotemporal prediction | Complex, non-seasonal data | Limited adaptability | Large dataset challenges | Slow execution | Sensitive to small datasets | No spatiotemporal prediction | Less effective in winter | Depends on classification accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherubini, C.; Bala Anand, M. A Novel Deep Learning-Based Soil Moisture Prediction Model Using Adaptive Group Radial Lasso Regularized Basis Function Networks (AGRL-RBFN) Optimized by Hierarchical Correlated Spider Wasp Optimizer (HCSWO) and Incremental Learning (IL). Water 2025, 17, 2379. https://doi.org/10.3390/w17162379
Cherubini C, Bala Anand M. A Novel Deep Learning-Based Soil Moisture Prediction Model Using Adaptive Group Radial Lasso Regularized Basis Function Networks (AGRL-RBFN) Optimized by Hierarchical Correlated Spider Wasp Optimizer (HCSWO) and Incremental Learning (IL). Water. 2025; 17(16):2379. https://doi.org/10.3390/w17162379
Chicago/Turabian StyleCherubini, Claudia, and Muthu Bala Anand. 2025. "A Novel Deep Learning-Based Soil Moisture Prediction Model Using Adaptive Group Radial Lasso Regularized Basis Function Networks (AGRL-RBFN) Optimized by Hierarchical Correlated Spider Wasp Optimizer (HCSWO) and Incremental Learning (IL)" Water 17, no. 16: 2379. https://doi.org/10.3390/w17162379
APA StyleCherubini, C., & Bala Anand, M. (2025). A Novel Deep Learning-Based Soil Moisture Prediction Model Using Adaptive Group Radial Lasso Regularized Basis Function Networks (AGRL-RBFN) Optimized by Hierarchical Correlated Spider Wasp Optimizer (HCSWO) and Incremental Learning (IL). Water, 17(16), 2379. https://doi.org/10.3390/w17162379