Water Rights Trading and Agricultural Water Use Efficiency: Evidence from China
Abstract
1. Introduction
2. Institutional Background and Research Hypotheses
2.1. Institutional Background
2.2. Research Hypotheses
2.2.1. WRT and AWUE
2.2.2. Mediating Mechanism: Technological Innovation
2.2.3. Mediating Mechanism: Factor Mobility
2.2.4. Mediating Mechanism: Optimizing Crop Planting Structures
3. Methodology and Variables
3.1. DID Model
3.2. Variable Description
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Control Variables
4. Results
4.1. Baseline Regression
4.2. Robustness Test
4.2.1. Parallel Trend Test
4.2.2. Placebo Test
4.2.3. Replace the Dependent Variable
4.2.4. Eliminate Policy Interference
4.2.5. Excluding Provincial Pilot
5. Further Analysis
5.1. Heterogeneity Analysis
5.1.1. Marketization Level
5.1.2. Water Resource Endowment
5.1.3. Agricultural Dependence
5.2. Mechanism Analysis
5.2.1. Technological Innovation
5.2.2. Factor Mobility
5.2.3. Cropping Structure
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
6.3. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gain, A.K.; Giupponi, C.; Wada, Y. Measuring global water security towards sustainable development goals. Environ. Res. Lett. 2016, 11, 124015. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Zhang, J. China’s success in increasing per capita food production. J. Exp. Bot. 2011, 62, 3707–3711. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yu, C.; Xiong, L.; Chang, Y. How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar] [CrossRef]
- Han, S.; Tian, F.; Gao, L. Current status and recent trend of irrigation water use in China. Irrig. Drain. 2020, 69, 25–35. [Google Scholar] [CrossRef]
- Ju, Q.; Du, L.; Liu, C.; Jiang, S. Water resource management for irrigated agriculture in China: Problems and prospects. Irrig. Drain. 2023, 72, 854–863. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Wu, P.; Zhao, X.; Wang, J. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Sci. Total Environ. 2015, 529, 10–20. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Lv, H.; Wang, D.; Li, Y.; He, W. Water usage for energy production and supply in China: Decoupled from industrial growth? Sci. Total Environ. 2020, 719, 137278. [Google Scholar] [CrossRef]
- Wallace, J.S. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Geng, Q.; Ren, Q.; Nolan, R.H.; Wu, P.; Yu, Q. Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecol. Indic. 2019, 96, 329–335. [Google Scholar] [CrossRef]
- Shi, C.; Li, L.; Chiu, Y.H.; Pang, Q.; Zeng, X. Spatial differentiation of agricultural water resource utilization efficiency in the Yangtze River Economic Belt under changing environment. J. Clean. Prod. 2022, 346, 131200. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, X.; Gao, X.; Jia, R.; Yang, M.; Yang, X.; Wu, Y.; Siddique, K.H. Effect of natural factors and management practices on agricultural water use efficiency under drought: A meta-analysis of global drylands. J. Hydrol. 2021, 594, 125977. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Yasmeen, R.; Yan, H.; Qi, Y. Impact of agricultural technological innovation on total-factor agricultural water usage efficiency: Evidence from 31 Chinese Provinces. Agric. Water Manag. 2024, 299, 108905. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, T.; Biswas, A.K. Structuring water rights in China: A hierarchical framework. Int. J. Water Resour. Dev. 2018, 34, 418–433. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Binswanger, H.P. Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation. World Dev. 1994, 22, 1613–1625. [Google Scholar] [CrossRef]
- Bekchanov, M.; Bhaduri, A.; Ringler, C. Potential gains from water rights trading in the Aral Sea Basin. Agric. Water Manag. 2015, 152, 41–56. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Wheeler, S.A. Economics of water recovery in the Murray-Darling Basin, Australia. Annu. Rev. Resour. Econ. 2018, 10, 487–510. [Google Scholar] [CrossRef]
- Razzaq, A.; Qing, P.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef]
- Xu, H.; Yang, R. The impact of water rights reform on economic development: Evidence from city-level panel data in China. J. Environ. Manag. 2025, 374, 124082. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Q.; Zhang, C. Evaluation of agricultural water-saving effects in the context of water rights trading: An empirical study from China’s water rights pilots. J. Clean. Prod. 2021, 313, 127725. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Gao, X.; Jiang, S.; Lin, L.; An, T. Virtual water output intensifies the water scarcity in Northwest China: Current situation, problem analysis and countermeasures. Sci. Total Environ. 2021, 765, 144276. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Wei, S.; Lin, T.; Yang, N.; Liu, Y. Water rights and firm productivity: Evidence from the water rights trading policy in China. Appl. Econ. 2024, 1–15. [Google Scholar] [CrossRef]
- Xu, T.; Wu, Z.; Tian, G.; Shi, Z. Does water rights trading promote the efficiency of water use? Empirical evidence from pilot water rights trading in China. Water Supply 2024, 24, 2670–2687. [Google Scholar] [CrossRef]
- Chen, X.N.; Wu, F.P.; Li, F.; Zhao, Y.; Xu, X. Prediction and analysis of water rights trading volume: Based on the water rights trading in Inner Mongolia, China. Agric. Water Manag. 2022, 272, 107803. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, Y.; Zhang, Z. Resource regulation and green innovation: Evidence from China’s water rights trading policy. Environ. Res. 2024, 258, 119443. [Google Scholar] [CrossRef]
- Jiang, M.; Webber, M.; Barnett, J.; Zhang, W.; Liu, G. Making a water market intermediary: The China Water Exchange. Int. J. Water Resour. Dev. 2022, 38, 699–716. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhou, Y.; Liu, W.; Zhang, X.; Li, M. Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework. Agric. Water Manag. 2023, 280, 108212. [Google Scholar] [CrossRef]
- Cao, X.; Xiao, J.; Wu, M.; Zeng, W.; Huang, X. Agricultural water use efficiency and driving force assessment to improve regional productivity and effectiveness. Water Resour. Manag. 2021, 35, 2519–2535. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Chen, X. Spatial patterns and regional differences of inequality in water resources exploitation in China. J. Clean. Prod. 2019, 227, 835–848. [Google Scholar] [CrossRef]
- Yan, R.; Zhao, N.; Wang, Y.; Liu, X. The impact of water rights trading on water resource use efficiency: Evidence from China’s water rights trading pilots. Water Resour. Econ. 2024, 46, 100241. [Google Scholar] [CrossRef]
- Gao, D.; Deng, Y.; Gao, S.; Chen, C. Can China’s water rights trading system promote water resources technological innovation? Desalination Water Treat. 2024, 317, 100112. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, H.; Yin, H.; Guo, X. A pricing model for water rights trading between agricultural and industrial water users in China. J. Water Supply Res. Technol.—AQUA 2018, 67, 347–356. [Google Scholar] [CrossRef]
- Brauman, K.A.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environ. Res. Lett. 2013, 8, 024030. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, X.; Xie, M.; Cheng, W.; Shu, Q. A study on the effects of regional differences on agricultural water resource utilization efficiency using super-efficiency SBM model. Sci. Rep. 2021, 11, 9953. [Google Scholar] [CrossRef]
- Rui, D.; Riaz, N.; Guoyong, W.; Qiang, G. Agricultural water use efficiency and spatial spillover effect considering undesired output in China. Water Policy 2022, 24, 1658–1675. [Google Scholar] [CrossRef]
- Dong, S.; Hou, R.; Li, T.; Fu, Q.; Xue, P.; Gao, Y.; Zhou, Z.; Li, Q. Simulation study of the production efficiency of family-type agricultural management entities under regulation measures on farmland: Three-stage super-SBM model considering greenhouse gas emissions. Agric. Syst. 2025, 224, 104265. [Google Scholar] [CrossRef]
- Wei, J.; Lei, Y.; Yao, H.; Ge, J.; Wu, S.; Liu, L. Estimation and influencing factors of agricultural water efficiency in the Yellow River basin, China. J. Clean. Prod. 2021, 308, 127249. [Google Scholar] [CrossRef]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Song, J. Analysis of the threshold effect of agricultural industrial agglomeration and industrial structure upgrading on sustainable agricultural development in China. J. Clean. Prod. 2022, 341, 130818. [Google Scholar] [CrossRef]
- Wang, X.B.; Wang, Z.L. Research on the impact of environmental regulation on water resources utilization efficiency in China based on the SYS-GMM model. Water Supply 2021, 21, 3643–3656. [Google Scholar] [CrossRef]
- Ashenfelter, O. Estimating the effect of training programs on earnings. Rev. Econ. Stat. 1978, 60, 47–57. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings losses of displaced workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Imbens, G.W.; Rubin, D.B. Causal Inference in Statistics, Social, and Biomedical Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Tone, K. Variations on the theme of slacks-based measure of efficiency in DEA. Eur. J. Oper. Res. 2010, 200, 901–907. [Google Scholar] [CrossRef]
- Ouyang, R.; Mu, E.; Yu, Y.; Chen, Y.; Hu, J.; Tong, H.; Cheng, Z. Assessing the effectiveness and function of the water resources tax policy pilot in China. Environ. Dev. Sustain. 2024, 26, 2637–2653. [Google Scholar] [CrossRef]
- Moore, S.; Yu, W. Environmental politics and policy adaptation in China: The case of water sector reform. Water Policy 2020, 22, 850–866. [Google Scholar] [CrossRef]
- Xin, Z.; Xin, S. Marketization process predicts trust decline in China. J. Econ. Psychol. 2017, 62, 120–129. [Google Scholar] [CrossRef]
- Yu, M.; Deng, X. The inheritance of marketization level and regional human capital accumulation: Evidence from China. Financ. Res. Lett. 2021, 43, 102268. [Google Scholar] [CrossRef]
- Sheng, J.; Cheng, Q.; Yang, H. Water markets and water inequality: China’s water rights trading pilot. Socio-Econ. Plan. Sci. 2024, 94, 101929. [Google Scholar] [CrossRef]
- Birch, K.; Siemiatycki, M. Neoliberalism and the geographies of marketization: The entangling of state and markets. Prog. Hum. Geogr. 2016, 40, 177–198. [Google Scholar]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Reeve, T.A. Factor endowments and industrial structure. Rev. Int. Econ. 2006, 14, 30–53. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, L. Does the trading of water rights encourage technology improvement and agricultural water conservation? Agric. Water Manag. 2020, 233, 106097. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Sun, T.; Huang, J.; Zhang, L.; Guan, B.; Huang, Q. Forty years of irrigation development and reform in China. Aust. J. Agric. Resour. Econ. 2020, 64, 126–149. [Google Scholar] [CrossRef]
- Hamdy, A.; Ragab, R.; Scarascia-Mugnozza, E. Coping with water scarcity: Water saving and increasing water productivity. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2003, 52, 3–20. [Google Scholar] [CrossRef]
Years | Event | Description |
---|---|---|
2000 | The Water Rights Transfer Case between Dongyang and Yiwu, Zhejiang Province. | China’s first water rights transaction. |
2005 | MWR Issues “Several Opinions on the Transfer of Water Rights” and the “Framework for the Construction of the Water Rights System.” | For the first time, rules for WRT have been established, thereby providing an institutional framework for reform. |
2011 | The Decision of the Central Committee of the Communist Party of China (CPC) and the State Council on Accelerating the Reform and Development of Water Resources. | Explicitly call for the establishment of a water rights system and incorporate water rights reform into the national strategy. |
2014 | MWR Issues the “Notice on Launching Pilot Programs for Water Rights.” | Seven provinces in China officially launch nationwide water rights pilot program. |
2016 | 1. MWR issued the “Interim Measures for the Administration of Water Rights Trading”; 2. China Water Rights Exchange Established in Beijing. | 1. The first nationwide regulation for WRT; 2. Marks the launch of a unified national trading platform. |
Types | Indicators | Description (Unit) |
---|---|---|
Input variables | Water resources input | Total agricultural water use (10,000 cubic meters) |
Labor input | Number of employees in primary industry (10,000 people) | |
Land input | Cropped area of crops (thousand hectares) | |
Technology input | Total power of agricultural machinery (ten thousand kilowatts) | |
Material capital input | Net application of chemical fertilizers (ten thousand tons) | |
Output variable | Expected output | Total agricultural output value (billion yuan) |
Variables | Abbr. | Description | Mean | SE | Min | Max |
---|---|---|---|---|---|---|
Agricultural water use efficiency | AWUE | Calculated by the super-efficiency SBM | 0.350 | 0.188 | 0.079 | 1.185 |
Water rights trading | WRT | Policy dummy variable | Binary variable 0/1 | |||
Population density | PD | Population per square kilometer (person/km2) | 460.289 | 684.752 | 7.642 | 3925.868 |
Water resource density | WRD | Water resources per square kilometer (10 billion m3/km2) | 0.440 | 0.369 | 0.013 | 1.701 |
Farmland water conservancy construction | FWCC | Natural logarithm of effective irrigated area | 7.267 | 1.032 | 4.694 | 8.805 |
Industrial structure | IS | Ratio of agricultural output to regional GDP (%) | 0.096 | 0.056 | 0.003 | 0.297 |
Financial support for agriculture | FSA | Ratio of expenditure on agriculture, forestry, and water affairs to total fiscal expenditure (%) | 0.110 | 0.033 | 0.029 | 0.204 |
Regulatory intensity | ER | Natural logarithm of chemical oxygen demand | 3.624 | 0.994 | 0.678 | 5.290 |
(1) AWUE | (2) AWUE | (3) LN (AWUE) | |
---|---|---|---|
WRT | 0.185 *** (0.023) | 0.097 *** (0.026) | 0.393 *** (0.084) |
PD | 0.001 * (0.000) | 0.003 * (0.002) | |
WRD | −0.016 (0.063) | 0.094 (0.130) | |
FWCC | 0.002 *** (0.000) | 1.175 ** (0.481) | |
IS | −1.521 * (0.882) | −4.261 (2.973) | |
FSA | 0.533 (0.644) | 5.570 ** (2.265) | |
ER | 0.033 *** (0.012) | 0.082 *** (0.024) | |
Constant | 0.326 *** (0.003) | −0.521 (0.345) | −0.278 (0.852) |
YES | YES | YES | |
YES | YES | YES | |
N | 480 | 480 | 480 |
R2 | 0.795 | 0.838 | 0.933 |
One Year Ahead (1) AWUE | Two Years Ahead (2) AWUE | Three Years Ahead (3) AWUE | Recalculate (4) AWUE-DEA | Exclude Policy Interference (5) AWUE | Exclude Provincial Pilot (6) AWUE | Exclude Provincial Pilot (7) AWUE | |
---|---|---|---|---|---|---|---|
WRT | −0.032 (0.025) | −0.033 (0.024) | −0.030 (0.028) | 0.131 *** (0.031) | 0.067 ** (0.031) | 0.153 *** (0.031) | 0.113 (0.035) |
Control | YES | YES | YES | YES | YES | YES | YES |
Constant | 0.351 * (0.183) | 0.359 (0.184) | 1.106 ** (0.500) | −0.609 (0.405) | −0.306 (0.290) | −0.624 * (0.319) | −0.581 (0.378) |
YES | YES | YES | YES | YES | YES | YES | |
YES | YES | YES | YES | YES | YES | YES | |
N | 480 | 480 | 480 | 480 | 480 | 480 | 480 |
R2 | 0.838 | 0.838 | 0.800 | 0.901 | 0.840 | 0.839 | 0.854 |
Marketization Level (1) AWUE | Water Resource Endowment (2) AWUE | Agricultural Dependence (3) AWUE | |
---|---|---|---|
0.014 *** (0.003) | |||
−0.051 (0.007) | |||
0.013 *** (0.004) | |||
0.004 (0.076) | |||
0.020 *** (0.006) | |||
−0.243 (0.171) | |||
Control | YES | YES | YES |
Constant | 0.329 (0.286) | −0.532 (0.388) | 0.506 (0.955) |
YES | YES | YES | |
YES | YES | YES | |
N | 480 | 480 | 480 |
R2 | 0.837 | 0.841 | 0.839 |
(1) TI | (2) SIM | (3) IFF | (4) RFF | (5) APS | |
---|---|---|---|---|---|
WRT | 0.859 *** (0.212) | 0.400 *** (0.162) | 0.828 ** (0.344) | 0.011 (0.009) | −0.016 ** (0.006) |
Control | YES | YES | YES | YES | YES |
Constant | 5.294 *** (1.231) | 7.858 *** (0.656) | −5.360 ** (2.449) | −0.050 (0.087) | 0.820 *** (0.044) |
YES | YES | YES | YES | YES | |
YES | YES | YES | YES | YES | |
N | 480 | 480 | 480 | 480 | 480 |
R2 | 0.930 | 0.601 | 0.416 | 0.203 | 0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhang, L. Water Rights Trading and Agricultural Water Use Efficiency: Evidence from China. Water 2025, 17, 2047. https://doi.org/10.3390/w17142047
Deng Y, Zhang L. Water Rights Trading and Agricultural Water Use Efficiency: Evidence from China. Water. 2025; 17(14):2047. https://doi.org/10.3390/w17142047
Chicago/Turabian StyleDeng, Yi, and Lezhu Zhang. 2025. "Water Rights Trading and Agricultural Water Use Efficiency: Evidence from China" Water 17, no. 14: 2047. https://doi.org/10.3390/w17142047
APA StyleDeng, Y., & Zhang, L. (2025). Water Rights Trading and Agricultural Water Use Efficiency: Evidence from China. Water, 17(14), 2047. https://doi.org/10.3390/w17142047