Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sample Collection
2.3. Reagents and Instruments
Chemical Reagents
2.4. Determination of Phenols in Water Bodies
2.4.1. Sample Pretreatment
2.4.2. Instrumental Conditions
2.4.3. Quality Control
2.5. Determination of Water Quality Parameters
2.6. Methodology for Human Risk Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Distribution Characteristics, Sources, and Results of the Water Quality Parameter Determination Analysis of Phenolic Contaminants in the Water Column of Lake Xingkai
3.2. Correlation Analysis Between Cresols and Water Quality Parameters
3.3. Risk Assessment of the Impact of Phenolic Contaminants on Human Health
4. Conclusions
- (1)
- The concentration range of cresols in the water column of Lake Xingkai was between 5.91 × 10−1 and 6.68 ng·mL−1. The concentration of cresols in the water of Xiaoxingkai Lake was generally higher than that in Daxingkai Lake.
- (2)
- The health risk of drinking water in the Lake Xingkai Basin was between 3.15 × 10−4 and 3.57 × 10−3, whereas the non-cancer risks in the Daxingkai and Xiaoxingkai Lakes were at acceptable levels. The non-cancer risk coefficient for cresols in Xiaoxingkai Lake was one order of magnitude higher than that in Daxingkai Lake, indicating that the human health risk of cresols from Xiaoxingkai Lake should be monitored and managed more closely and that water treatment measures should be implemented to ensure the safety of drinking water.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Sui, Q.; Lyu, S.; Huang, Y.; Huang, S.; Wang, B.; Xu, D.; Zhao, W.; Kong, M.; Zhang, Y.; et al. Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources: A case study in a typical region adjacent to Taihu Lake watershed. Sci. Total Environ. 2020, 722, 137946. [Google Scholar] [CrossRef]
- Fernie, K.J.; Letcher, R.J. Historical contaminants, flame retardants, and halogenated phenolic compounds in peregrine falcon (Falco peregrinus) nestlings in the Canadian Great Lakes Basin. Environ. Sci. Technol. 2010, 44, 3520–3526. [Google Scholar] [CrossRef] [PubMed]
- Al-Kaabi, Z.; Pradhan, R.R.; Thevathasan, N.; Chiang, Y.W.; Gordon, A.; Dutta, A. Potential value added applications of black liquor generated at paper manufacturing industry using recycled fibers. J. Clean. Prod. 2017, 149, 156–163. [Google Scholar] [CrossRef]
- Grant, T.M.; King, C.J. Mechanism of irreversible adsorption of phenolic compounds by activated carbons. Ind. Eng. Chem. Res. 1990, 29, 264–271. [Google Scholar] [CrossRef]
- Ma, X.; Yang, L.; Hou, Y.; Zhou, L. Adsorption/desorption characteristics of low-concentration semi-volatile organic compounds in vapor phase on activated carbon. J. Environ. Manag. 2022, 305, 114360. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, K.M.G.; de Sousa Carvalho, E.H.; dos Santos Filho, R.; Sivek, T.W.; Thá, E.L.; de Souza, I.R.; de Sousa Coelho, L.D.; Pimenta, M.E.B.; de Oliveira, G.A.R.; de Oliveira, D.P.; et al. Single and mixture toxicity evaluation of three phenolic compounds to the terrestrial ecosystem. J. Environ. Manag. 2021, 296, 113226. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Sui, X.; Wang, J.; Zhao, Z.; Liu, B.; Liu, M.; Liu, M.; Shi, C.; Feng, X.; Fu, Y.; Shi, D.; et al. Ferroptosis induced by phenolic compound-iron complex. bioRxiv 2023. [Google Scholar] [CrossRef]
- Valdés, L.; Cuervo, A.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. The relationship between phenolic compounds from diet and microbiota: Impact on human health. Food Funct. 2015, 6, 2424–2439. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- González-Burgos, E.; Gómez-Serranillos, M.P. Effect of phenolic compounds on human health. Nutrients 2021, 13, 3922. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, Y.; Gao, P.; Ren, N.; Li, B.-L. Simulation and prediction of phenolic compounds fate in Songhua River, China. Sci. Total Environ. 2012, 431, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.Y.; Ai, S.H.; Gao, X.Y.; Wang, X.N.; Liu, Z.T.; Zhao, S.Q.; Ge, G.; Li, J. Human health risk assessment of phenol in Poyang Lake Basin. Huan Jingg Ke Xue Huanjing Kexue 2021, 42, 1354–1360. (In Chinese) [Google Scholar]
- Liu, H.Y.; Lu, X.G.; Wang, C.K. Study on the sustainable development of wetland resources in the Ussuri/Wusuli river basin. Chin. Geogr. Sci. 2000, 10, 270–275. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Z.; Wang, H.; Li, C.; Li, J.; Wei, W.; Zheng, Y.; Ye, C. Effect of land use on the water quality of rivers flowing into Xingkai Lake and ecological restoration strategies. J. Environ. Eng. Technol. 2023, 13, 1997–2005. (In Chinese) [Google Scholar]
- GB 3838-2002; Ministry of Ecology and Environment of the People’s Republic of China. Surface Water Environment Quality Standard. Standards Press of China: Beijing, China, 2002.
- Liu, B. Research on the Current Status of Water Environment Pollution and Countermeasures in the Muling River of Hulin City. Heilongjiang Sci. 2018, 9, 154–155. (In Chinese) [Google Scholar]
- EPA/603/P-03/001F; Guidelines for Carcinogen Risk Assessment. US EPA: Washington, DC, USA, 2005.
- EPA/600/R-09/052A; Exposure Factors Handbook: 2009 Update. US EPA: Washington, DC, USA, 2009.
- EPA/540/R92/003; Risk Assessment Guidance for Superfund Volume I-Human Health Evaluation Manual (Part B, Development of Risk Based Preliminary Remediation Goals). US EPA: Washington, DC, USA, 1991.
- Piao, D.X.; Wang, F.K. Environmental conditions and the protection countermeasures for waters of Lake Xingkai. J. Lake Sci. 2011, 738, 196–202. (In Chinese) [Google Scholar]
- HJ 676-2013; Water Quality-Determination of Phenolic Compounds-Liquid-Liquid Extraction/Gas Chromatography. China’s Ministry of Environmental Protection: Beijing, China, 2013.
- US EPA. Guidelines for the Health Risk Assessment of Chemical Mixtures; U.S. Environmental Protection Agency: Washington, DC, USA, 1986.
- US EPA. Guidelines for Exposure Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 1992.
- Wang, J.J.; Liu, Z.Q.; Gu, X.N. Health risk assessment technique of environmental carcinogens. Foreign Med. Sci. 2009, 36, 50–58. [Google Scholar]
- Zhao, Z.H.; Zhang, L.; Cai, Y.J.; Chen, Y. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol. Environ. Saf. 2014, 104, 323–331. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Z.; Li, J.; Wang, X.; Cui, L.; Ai, S.; Zhao, S.; Xu, Q. Ecological and health risk assessment of perfluorooctane sulfonate in surface and drinking water resources in China. Sci. Total Environ. 2020, 738, 139914. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A); US EPA: Washington, DC, USA, 1989.
- Yu, X.; Zheng, S.; Zheng, M.; Ma, X.; Wang, G.; Zou, Y. Herbicide accumulations in the Xingkai Lake area and the use of restored wetland for agricultural drainage treatment. Ecol. Eng. 2018, 120, 260–265. (In Chinese) [Google Scholar] [CrossRef]
- Varol, M.; Tokatlı, C. Impact of paddy fields on water quality of Gala Lake (Turkey): An important migratory bird stopover habitat. Environ. Pollut. 2021, 287, 117640. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D.; et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265 Pt A, 114953. [Google Scholar] [CrossRef]
- Mrdjen, I.; Fennessy, S.; Schaal, A.; Dennis, R.; Slonczewski, J.L.; Lee, S.; Lee, J. Tile Drainage and Anthropogenic Land Use Contribute to Harmful Algal Blooms and Microbiota Shifts in Inland Water Bodies. Environ. Sci. Technol. 2018, 5215, 8215–8223. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, D.; Liu, Q.; Du, C.; Lin, L.; Xie, Y. Residual Characteristics and Health Risk Assessment of Pesticides in Crops in Xingkai Lake Area; Environmental Monitoring in China: Beijing, China, 2025; pp. 1–15. (In Chinese) [Google Scholar]
- Yang, Q.; Huang, X.; Wen, Z.; Shang, Y.; Wang, X.; Fang, C.; Song, K. Evaluating the Spatial Distribution and Source of Phthalate Esters in the Surface Water of Xingkai Lake, China During Summer. J. Great Lakes Res. 2021, 47, 437–446. [Google Scholar] [CrossRef]
- Ning, C. Investigation of the Impact of Cropland Drainage on Surface Water Environment. Environ. Monit. China 2024, 40, 134–145. (In Chinese) [Google Scholar]
- Wang, W.; Xu, X.; Liu, Q.; Lin, L.H.; Lü, J.; Wang, D.H. Effects of Pesticides Use on Pesticides Residues and Its Environmental Risk Assessment in Xingkai Lake (China). Environ. Sci. 2024, 45, 2678–2685. (In Chinese) [Google Scholar]
- Reardon, K.F.; Mosteller, D.C.; Bull Rogers, J.D. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol. Bioeng. 2000, 69, 385–400. [Google Scholar] [CrossRef]
- Adeola, A.O. Fate and toxicity of chlorinated phenols of environmental implications: A review. Med. Anal. Chem. Int. J. 2018, 2, 000126. (In Chinese) [Google Scholar]
- Ocampo-Perez, R.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R.M. Adsorption rate of phenol from aqueous solution onto organ bentonite: Surface diffusion and kinetic models. J. Colloid Interface Sci. 2011, 364, 195–204. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, T.; Li, W.; Zhang, J.; Dong, Y.; Zhou, Y.; Zhou, Y. The effect of dissolved natural organic matter on adsorption of phenolic compounds on suspended sediments. Environ. Technol. 2021, 43, 3366–3377. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.; Roland, F.; Amado, A.; Resende, N.; Cardoso, S. Responses of Phytoplanktonic Chlorophyll-a Composition to Inorganic Turbidity Caused by Mine Tailings. Front. Environ. Sci. 2022, 9, 605838. [Google Scholar] [CrossRef]
- Zolfaghari, K.; Wilkes, G.; Bird, S.; Ellis, D.; Pintar, K.; Gottschall, N.; Mcnairn, H.; Lapen, D. Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada. Environ. Monit. Assess. 2019, 192, 67. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, J.; Ma, Q.; Chen, Y. Human health and ecological risk assessment of 16 polycyclic aromatic hydrocarbons in drinking source water from a large mixed-use reservoir. Int. J. Environ. Res. Public Health 2015, 12, 13956–13969. [Google Scholar] [CrossRef]
Name | RT | Ion Polarity | Window | Pre-Width | Post-Width | Mass | Product Mass | Collision Energy |
---|---|---|---|---|---|---|---|---|
Internal Standard | 12.3 | Positive | 1 | 0 | 0 | 250 | 169 | 10 |
Surrogate | 14.14 | Positive | 1 | 0 | 0 | 292 | 181 | 15 |
Cresol | 15.2 | Positive | 1 | 0 | 0 | 288 | 181 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Gao, J.; Sun, Y.; Sun, Y.; Liu, H.; Sun, H.; Mu, G. Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China. Water 2025, 17, 2037. https://doi.org/10.3390/w17132037
Liu L, Gao J, Sun Y, Sun Y, Liu H, Sun H, Mu G. Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China. Water. 2025; 17(13):2037. https://doi.org/10.3390/w17132037
Chicago/Turabian StyleLiu, Liang, Jinhua Gao, Yijun Sun, Yibo Sun, Handan Liu, Hongqing Sun, and Guangyi Mu. 2025. "Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China" Water 17, no. 13: 2037. https://doi.org/10.3390/w17132037
APA StyleLiu, L., Gao, J., Sun, Y., Sun, Y., Liu, H., Sun, H., & Mu, G. (2025). Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China. Water, 17(13), 2037. https://doi.org/10.3390/w17132037