Research Overview on Isolated Wetlands
Abstract
1. Introduction
2. Research Review Based on Bibliometric Analysis
3. The Definition of Isolated Wetlands
4. Major Factors in the Isolation of Wetlands
4.1. Geological Factors
4.2. Climatic Factors
4.3. Anthropogenic Influencing Factors
5. Isolated Wetlands Monitoring Methodology
6. The Ecological Services of Isolated Wetlands
6.1. The Hydroconnectivity Service Functions
6.2. The Runoff Regulation and Water Storage Service Functions
6.3. The Water Quality Improvement Service Functions
6.4. The Carbon Cycle Service Functions
6.5. The Biodiversity Service Functions
6.6. The Service Functions Coupling
7. Discussion and Outlook
7.1. Harmonized Definition of Isolated Wetlands
7.2. Long-Term Dynamic Monitoring of Isolated Wetlands
7.3. Integrated Evaluation and Multi-Functional Coupling of Isolated Wetlands Functions
7.4. Biological Characteristics and Biological Connections
7.5. Ecological Restoration and Adaptive Management of Isolated Wetlands
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, K.R.; DeLaune, R.D.; Inglett, P.W. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Cohen, M.J.; Creed, I.F.; Alexander, L.; Basu, N.B.; Calhoun, A.J.K.; Craft, C.; D’Amico, E.; DeKeyser, E.; Fowler, L.; Golden, H.E.; et al. Do geographically isolated wetlands influence landscape functions? Proc. Natl. Acad. Sci. USA 2016, 113, 1978–1986. [Google Scholar] [CrossRef]
- Marton, J.M.; Creed, I.F.; Lewis, D.B.; Lane, C.R.; Basu, N.B.; Cohen, M.J.; Craft, C.B. Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. Bioscience 2015, 65, 408–418. [Google Scholar] [CrossRef]
- Sieben, E.J.; Khubeka, S.P.; Sithole, S.; Job, N.M.; Kotze, D.C. The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manag. 2018, 26, 441–458. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Kaplan, D.A.; Cohen, M.J. A significant nexus: Geographically isolated wetlands influence landscape hydrology. Water Resour. Res. 2014, 50, 7153–7166. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Sanyal, P.; Ray, R. Pollution, environmental perturbation and consequent loss of wetlands. In Wetlands Ecology: Eco-Biological Uniqueness of a Ramsar Site (East Kolkata Wetlands, India); Springer: Singapore, 2023; pp. 521–582. [Google Scholar]
- Kundu, S.; Kundu, B.; Rana, N.K.; Mahato, S. Wetland degradation and its impacts on livelihoods and sustainable development goals: An overview. Sustain. Prod. Consum. 2024, 48, 419–434. [Google Scholar] [CrossRef]
- Liu, J.; Liang, C.; Ma, C. The Prospect for Study on Isolated Wetland Functions. Geogr. Sci. 2018, 38, 1357–1363. [Google Scholar] [CrossRef]
- Lane, C.R.; D’Amico, E. Identification of Putative Geographically Isolated Wetlands of the Conterminous United States. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 705–722. [Google Scholar] [CrossRef]
- Stewart, A.J.; Halabisky, M.; Babcock, C.; Butman, D.E.; D’Amore, D.V.; Moskal, L.M. Revealing the hidden carbon in forested wetland soils. Nat. Commun. 2024, 15, 726. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Pallett, D.W.; Schäfer, S.M.; Macrae, M.L.; Bowes, M.J.; Farrand, P.; Warwick, A.C.; King, S.M.; Williams, R.J.; Armstrong, L. Biogeochemical and Climate Drivers of Wetland Phosphorus and Nitrogen Release: Implications for Nutrient Legacies and Eutrophication Risk; 0047-2425; Wiley Online Library: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bonada, N.; Cañedo-Argüelles, M.; Gallart, F.; von Schiller, D.; Fortuño, P.; Latron, J.; Llorens, P.; Múrria, C.; Soria, M.; Vinyoles, D. Conservation and management of isolated pools in temporary rivers. Water 2020, 12, 2870. [Google Scholar] [CrossRef]
- Tiner, R.W. Geographically isolated wetlands of the United States. Wetlands 2003, 23, 494–516. [Google Scholar] [CrossRef]
- Tian, X.; Liu, J. A prospect for study on isolated wetland. Shengtai Xuebao 2011, 31, 6261–6269. [Google Scholar] [CrossRef]
- Liu, J.; Li, A.; Tian, X.; Zhao, L. Formation and Main Types of Isolated Wetlands in Sanjiang Plain. Wetl. Sci. 2014, 12, 141–147. [Google Scholar]
- Winter, T.C.; LaBaugh, J.W. Hydrologic considerations in defining isolated wetlands. Wetlands 2003, 23, 532–540. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Wright, A.; Xu, J.; Liu, H.; Wang, G.; Wang, C. Integrated factor analysis of water level variation in geographically isolated ponds. Environ. Sci. Pollut. Res. 2020, 27, 38861–38870. [Google Scholar] [CrossRef]
- Malzone, J.M.; Sweet, E.G.; Bell, A.C.; Minzenberger, G.L. Geomorphic controls of perched groundwater interaction with natural ridge-top depressional wetlands. Hydrol. Process. 2019, 34, 1089–1100. [Google Scholar] [CrossRef]
- Park, J.; Botter, G.; Jawitz, J.W.; Rao, P.S.C. Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of hydro-climatic forcing and wetland bathymetry. Adv. Water Resour. 2014, 69, 38–48. [Google Scholar] [CrossRef]
- Zedler, J.B. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Front. Ecol. Environ. 2003, 1, 65–72. [Google Scholar] [CrossRef]
- Carter, V. Wetland hydrology, water quality, and associated functions. Natl. Water Summ. Wetl. Resour. 1996, 2425, 35–48. [Google Scholar]
- Gutiérrez-Elorza, M.; Desir, G.; Gutiérrez-Santolalla, F.; Marín, C. Origin and evolution of playas and blowouts in the semiarid zone of Tierra de Pinares (Duero Basin, Spain). Geomorphology 2005, 72, 177–192. [Google Scholar] [CrossRef]
- Paine, J.G. Shallow-Seismic Evidence for Playa Basin Development by Dissolution-Induced Subsidence on the Southern High Plains, Texas; Bureau of Economic Geology, the University of Texas at Austin: Austin, TX, USA, 1995; Volume 233. [Google Scholar]
- Gala, T.; Young, D. Geographically isolated depressional wetlands–hydrodynamics, ecosystem functions and conditions. Appl. Ecol. Environ. Sci. 2015, 3, 108–116. [Google Scholar]
- Johnson, R.R.; Oslund, F.T.; Hertel, D.R. The past, present, and future of prairie potholes in the United States. J. Soil. Water Conserv. 2008, 63, 84A–87A. [Google Scholar] [CrossRef]
- Yun, J.; Ju, Y.; Deng, Y.; Zhang, H. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb. Ecol. 2014, 68, 360–369. [Google Scholar] [CrossRef]
- Muhammad, A.; Evenson, G.; Stadnyk, T.; Boluwade, A.; Jha, S.; Coulibaly, P. Assessing the Importance of Potholes in the Canadian Prairie Region under Future Climate Change Scenarios. Water 2018, 10, 1657. [Google Scholar] [CrossRef]
- Vander Valk, A.; Mushet, D.M. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change. Wetlands 2016, 36 (Suppl. 2), 397–406. [Google Scholar] [CrossRef]
- Johnson, W.C.; Werner, B.; Guntenspergen, G.R.; Voldseth, R.A.; Millett, B.; Naugle, D.E.; Tulbure, M.; Carroll, R.W.; Tracy, J.; Olawsky, C. Prairie wetland complexes as landscape functional units in a changing climate. Bioscience 2010, 60, 128–140. [Google Scholar] [CrossRef]
- Anderson, T.A.; Salice, C.J.; Erickson, R.A.; McMurry, S.T.; Cox, S.B.; Smith, L.M. Effects of landuse and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere 2013, 92, 84–90. [Google Scholar] [CrossRef]
- Lee, S.; Yeo, I.Y.; Lang, M.W.; Sadeghi, A.M.; McCarty, G.W.; Moglen, G.E.; Evenson, G.R. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. J. Environ. Manag. 2018, 223, 37–48. [Google Scholar] [CrossRef]
- Yan, M.; Deng, W.; Ma, X. Climate variation in the Sanjiang Plain disturbed by large scale reclamation during the last 45 years. Acta Geogr. Sin.-Chin. Ed. 2001, 56, 170–179. [Google Scholar]
- Zhang, S.; Liu, J.; Chen, Y.; Pei, W.; Xuan, L.; Wang, Y. Investigating the Dynamic Change and Driving Force of Isolated Marsh Wetland in Sanjiang Plain, Northeast China. Land 2024, 13, 1969. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Huang, Q. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- Evenson, G.R.; Golden, H.E.; Lane, C.R.; D’Amico, E. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model. Hydrol. Process. 2016, 30, 4168–4184. [Google Scholar] [CrossRef]
- Haukos, D.A.; Smith, L.M. The importance of playa wetlands to biodiversity of the Southern High Plains. Landscape Urban. Plan. 1994, 28, 83–98. [Google Scholar] [CrossRef]
- Erickson, N.E.; Leslie, D.M., Jr.; Segelquist, C. Soil-Vegetation Correlations in the Sandhills and Rainwater Basin Wetlands of Nebraska; Biological Report; U.S. Fish and Wildlife Service: Washington, DC, USA, 1987. [Google Scholar]
- Guthery, F.S.; Bryant, F.C. Status of playas in the Southern Great Plains. Wildl. Soc. B 1982, 10, 309–317. [Google Scholar]
- Nguyen, H.; Dinh, T.; Phan-Van, P.; Nguyen-Quoc, H. Transformation and Fragmentation of Wetlands in Mekong Delta Floodplains: A Case Study in Dong Thap Province, Vietnam. Proc. Bulg. Acad. Sci. 2025, 78, 207–215. [Google Scholar] [CrossRef]
- Liu, H.; Lü, X.; Zhang, S.; Yang, Q. Fragmentation process of wetland landscape in watersheds of Sanjiang Plain, China. J. Appl. Ecol. 2005, 16, 289–295. [Google Scholar]
- Galatowittsch, S.M.; van der Valk, A.G. Restoring Prairie Wetlands: An Ecological Approach; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Rojas, C.; Sepúlveda, E.; Jorquera, F.; Munizaga, J.; Pino, J. Accessibility disturbances to the biodiversity of urban wetlands due to built environment. City Environ. Interact. 2022, 13, 100076. [Google Scholar] [CrossRef]
- McCauley, L.A.; Jenkins, D.G.; Quintana-Ascencio, P.F. Isolated wetland loss and degradation over two decades in an increasingly urbanized landscape. Wetlands 2013, 33, 117–127. [Google Scholar] [CrossRef]
- Bayley, S.E.; Guimond, J.K. Aboveground biomass and nutrient limitation in relation to river connectivity in montane floodplain marshes. Wetlands 2009, 29, 1243–1254. [Google Scholar] [CrossRef]
- Frohn, R.C.; Reif, M.; Lane, C.; Autrey, B. Satellite remote sensing of isolated wetlands using object-oriented classification of Landsat-7 data. Wetlands 2009, 29, 931–941. [Google Scholar] [CrossRef]
- Teferi, E.; Uhlenbrook, S.; Bewket, W.; Wenninger, J.; Simane, B. The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2415–2428. [Google Scholar] [CrossRef]
- Frohn, R.C.; D’Amico, E.; Lane, C.; Autrey, B.; Rhodus, J.; Liu, H. Multi-temporal Sub-pixel Landsat ETM+ Classification of Isolated Wetlands in Cuyahoga County, Ohio, USA. Wetlands 2012, 32, 289–299. [Google Scholar] [CrossRef]
- Reif, M.; Frohn, R.C.; Lane, C.R.; Autrey, B. Mapping Isolated Wetlands in a Karst Landscape: GIS and Remote Sensing Methods. Gisci. Remote Sens. 2013, 46, 187–211. [Google Scholar] [CrossRef]
- Martin, G.I.; Kirkman, L.K.; Hepinstall-Cymerman, J. Mapping Geographically Isolated Wetlands in the Dougherty Plain, Georgia, USA. Wetlands 2012, 32, 149–160. [Google Scholar] [CrossRef]
- Jones, T.; Marzen, L.; Mitra, C.; Barbour, M. Identification and classification of geographically isolated wetlands in North Alabama using geographic object based image analysis (GeOBIA). Geocarto Int. 2019, 34, 769–784. [Google Scholar] [CrossRef]
- Riley, J.W.; Stillwell, C.C. Predicting inundation dynamics and hydroperiods of small, isolated wetlands using a machine learning approach. Wetlands 2023, 43, 63. [Google Scholar] [CrossRef]
- Jianguo, W. Landscape Ecology—Concepts and Theories. Shengtaixue Zazhi 2000, 19, 42–52. [Google Scholar] [CrossRef]
- Xiao, D.; Li, X. Development and prospect of contemporary landscape ecology. Sci. Geogr. Sin. 1997, 17, 69–77. [Google Scholar]
- Gao, C.; Zhou, D.; Luan, Z.; Zhang, H. Review on researches of wetland landscape pattern change. Chang. Liuyu Ziyuan Yu Huanjing 2010, 19, 460–464. [Google Scholar]
- Wang, X.; Bao, Y. Study on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 83–89. [Google Scholar]
- Sturtevant, B.R. A model of wetland vegetation dynamics in simulated beaver impoundments. Ecol. Model. 1998, 112, 195–225. [Google Scholar] [CrossRef]
- Wu, W.; Biber, P.; Bethel, M. Thresholds of sea-level rise rate and sea-level rise acceleration rate in a vulnerable coastal wetland. Ecol. Evol. 2017, 7, 10890–10903. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Basu, N.B. Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol. Appl. 2015, 25, 451–465. [Google Scholar] [CrossRef]
- Wu, A.; Li, J.; Zhang, D.; Chen, M.; Fan, M.; Yang, B.; Yu, J.; Gao, Y.; Li, L.; Xie, Z. Dynamics Analysis of Spatial Distribution and Landscape Pattern of Wetlands in the Weihe River Basin from 1980 to 2020. Sustainability 2025, 17, 544. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Zhang, S.; Zhang, B.; Li, X.; Ren, C. Study on the variation of landscape pattern and the gradient distribution of wetland in the Xianghai Nature Reserve. Arid. Land Geogr. 2006, 29, 694–699. [Google Scholar]
- Yan, D.; Luan, Z.; Xu, D.; Xue, Y.; Shi, D. Modeling the spatial distribution of three typical dominant wetland vegetation species’ response to the hydrological gradient in a Ramsar wetland, Honghe National Nature Reserve, Northeast China. Water 2020, 12, 2041. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Li, F. Vector analysis theory on landscape pattern(VATLP) in Sanjiang plain marsh, China. Wetl. Sci. 2004, 2, 161–170. [Google Scholar]
- Zhang, S.; Zhang, J.; Li, F.; Cropp, R. Vector analysis theory on landscape pattern (VATLP). Ecol. Model. 2006, 193, 492–502. [Google Scholar] [CrossRef]
- Wang, X. The application of the Markov model on the dynamic change of wetland landscape pattern in four-lake area. J. Huazhong Agric. Univ. 2002, 21, 288–291. [Google Scholar]
- Ma, C.; Zhang, G.; Zhang, X.; Zhao, Y.; Li, H. Application of Markov model in wetland change dynamics in Tianjin Coastal Area, China. Procedia Environ. Sci. 2012, 13, 252–262. [Google Scholar] [CrossRef]
- Sun, Y. Cellular Automaton Model Study for Simulating Spatio-Temporal Evolution of Zhalong Wetland. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2007. [Google Scholar]
- Rains, M.C.; Leibowitz, S.G.; Cohen, M.J.; Creed, I.F.; Golden, H.E.; Jawitz, J.W.; Kalla, P.; Lane, C.R.; Lang, M.W.; McLaughlin, D.L. Geographically isolated wetlands are part of the hydrological landscape. Hydrol. Process. 2015, 30, 153–160. [Google Scholar] [CrossRef]
- Liu, J.; MA, H.; Zhao, D. Analysis on the spatial structural of isolated wetland landscapes in the Sanjiang Plain. Shengtai Xuebao 2016, 36, 4307–4316. [Google Scholar]
- Johnson, W.C.; Millett, B.V.; Gilmanov, T.; Voldseth, R.A.; Guntenspergen, G.R.; Naugle, D.E. Vulnerability of northern prairie wetlands to climate change. Bioscience 2005, 55, 863–872. [Google Scholar] [CrossRef]
- Londe, D.W.; Dvorett, D.; Davis, C.A.; Loss, S.R.; Robertson, E.P. Inundation of depressional wetlands declines under a changing climate. Clim. Change 2022, 172, 27. [Google Scholar] [CrossRef]
- Greenberg, C.; Goodrick, S.; Austin, J.; Parresol, B. Hydroregime prediction models for ephemeral groundwater-driven sinkhole wetlands: A planning tool for climate change and amphibian conservation. Wetlands 2015, 35, 899–911. [Google Scholar] [CrossRef]
- Chandler, H.C.; Rypel, A.L.; Jiao, Y.; Haas, C.A.; Gorman, T.A. Hindcasting historical breeding conditions for an endangered salamander in ephemeral wetlands of the southeastern USA: Implications of climate change. PLoS ONE 2016, 11, e0150169. [Google Scholar] [CrossRef]
- Golden, H.E.; Sander, H.A.; Lane, C.R.; Zhao, C.; Price, K.; D’Amico, E.; Christensen, J.R. Relative effects of geographically isolated wetlands on streamflow: A watershed-scale analysis. Ecohydrology 2015, 9, 21–38. [Google Scholar] [CrossRef]
- Pitt, A.L.; Baldwin, R.F.; Lipscomb, D.J.; Brown, B.L.; Hawley, J.E.; Allard-Keese, C.M.; Leonard, P.B. The missing wetlands: Using local ecological knowledge to find cryptic ecosystems. Biodivers. Conserv. 2011, 21, 51–63. [Google Scholar] [CrossRef]
- Semlitsch, R.D.; Bodie, J.R. Are small, isolated wetlands expendable? Conserv. Biol. 1998, 12, 1129–1133. [Google Scholar] [CrossRef]
- Leibowitz, S.G. Isolated wetlands and their functions: An ecological perspective. Wetlands 2003, 23, 517–531. [Google Scholar] [CrossRef]
- Jordan, S.J.; Stoffer, J.; Nestlerode, J.A. Wetlands as Sinks for Reactive Nitrogen at Continental and Global Scales: A Meta-Analysis. Ecosystems 2010, 14, 144–155. [Google Scholar] [CrossRef]
- Whitmire, S.L.; Hamilton, S.K. Rapid Removal of Nitrate and Sulfate in Freshwater Wetland Sediments. J. Environ. Qual. 2005, 34, 2062–2071. [Google Scholar] [CrossRef]
- Lane, C.R.; Autrey, B.C.; Jicha, T.; Lehto, L.; Elonen, C.; Seifert-Monson, L. Denitrification Potential in Geographically Isolated Wetlands of North Carolina and Florida, USA. Wetlands 2015, 35, 459–471. [Google Scholar] [CrossRef]
- Bohonak, A.J.; Jenkins, D.G. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 2003, 6, 783–796. [Google Scholar] [CrossRef]
- Thomas, J.A.; Bourn, N.A.D.; Clarke, R.T.; Stewart, K.E.; Simcox, D.J.; Pearman, G.S.; Curtis, R.; Goodger, B. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1791–1796. [Google Scholar] [CrossRef]
- Nilsson, K.A.; Rains, M.C.; Lewis, D.B.; Trout, K.E. Hydrologic characterization of 56 geographically isolated wetlands in west-central Florida using a probabilistic method. Wetl. Ecol. Manag. 2012, 21, 1–14. [Google Scholar] [CrossRef]
- Jiang, B.; Wong, C.P.; Cui, L.; Ouyang, Z. Wetland economic valuation approaches and prospects in China. Chin. Geogr. Sci. 2016, 26, 143–154. [Google Scholar] [CrossRef]
- Li, X.; Li, J. Phosphorus Behavior at Sediment-Water Interface in Coastal Wetland. Agric. Sci. Technol. 2016, 17, 194. [Google Scholar]
- Cook, B.J. Temporary Hydrologic Connections Make “Isolated” Wetlands Function at the Landscape Scale; University of Montana: Missoula, MT, USA, 2001. [Google Scholar]
- Kirkman, L.; Golladay, S.; Laclaire, L.; Sutter, R. Biodiversity in southeastern, seasonally ponded, isolated wetlands: Management and policy perspectives for research and conservation. J. N. Am. Benthol. Soc. 1999, 18, 553–562. [Google Scholar] [CrossRef]
- Burrow, A.K.; Lance, S. Restoration of Geographically Isolated Wetlands: An Amphibian-Centric Review of Methods and Effectiveness. Diversity 2022, 14, 879. [Google Scholar] [CrossRef]
- Ameli, A.A.; Creed, I.F. Quantifying hydrologic connectivity of wetlands to surface water systems. Hydrol. Earth Syst. Sc. 2017, 21, 1791–1808. [Google Scholar] [CrossRef]
- Thorslund, J.; Cohen, M.J.; Jawitz, J.W.; Destouni, G.; Creed, I.F.; Rains, M.C.; Badiou, P.; Jarsjö, J. Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degrad. Dev. 2018, 29, 3954–3962. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G. A review of hydrological regulation functions of watershed wetlands. Shuikexue Jinzhan 2021, 32, 458–469. [Google Scholar]
- Song, T.; An, Y.; Wen, B.; Tong, S.; Jiang, L. Very fine roots contribute to improved soil water storage capacity in semi-arid wetlands in Northeast China. Catena 2022, 211, 105966. [Google Scholar] [CrossRef]
- Fossey, M.; Rousseau, A.N.; Savary, S. Assessment of the impact of spatio-temporal attributes of wetlands on stream flows using a hydrological modelling framework: A theoretical case study of a watershed under temperate climatic conditions. Hydrol. Process. 2016, 30, 1768–1781. [Google Scholar] [CrossRef]
- Golden, H.E.; Lane, C.R.; Amatya, D.M.; Bandilla, K.W.; Raanan Kiperwas, H.; Knightes, C.D.; Ssegane, H. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environ. Modell. Softw. 2014, 53, 190–206. [Google Scholar] [CrossRef]
- Evenson, G.R.; Golden, H.E.; Lane, C.R.; D’Amico, E. Geographically isolated wetlands and watershed hydrology: A modified model analysis. J. Hydrol. 2015, 529, 240–256. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Hu, B.; Zhang, G.; Rousseau, A.N. Wetland-based solutions against extreme flood and severe drought: Efficiency evaluation of risk mitigation. Clim. Risk Manag. 2023, 40, 100505. [Google Scholar] [CrossRef]
- Lane, C.R.; D’Amico, E. Calculating the Ecosystem Service of Water Storage in Isolated Wetlands using LiDAR in North Central Florida, USA. Wetlands 2010, 30, 967–977. [Google Scholar] [CrossRef]
- Leibowitz, S.G.; Brooks, R.T. Hydrology and landscape connectivity of vernal pools. In Science and Conservation of Vernal Pools in Northeastern North America; CRC Press: Boca Raton, FL, USA, 2008; pp. 31–53. [Google Scholar]
- McLaughlin, D.L.; Cohen, M.J. Realizing ecosystem services: Wetland hydrologic function along a gradient of ecosystem condition. Ecol. Appl. 2013, 23, 1619–1631. [Google Scholar] [CrossRef]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban wetlands: A review on ecological and cultural values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Bedford, B.L.; Godwin, K.S. Fens of the United States: Distribution, characteristics, and scientific connection versus legal isolation. Wetlands 2003, 23, 608–629. [Google Scholar] [CrossRef]
- Deemy, J.B.; Rasmussen, T.C. Hydrology and water quality of isolated wetlands: Stormflow changes along two episodic flowpaths. J. Hydrol.-Reg. Stud. 2017, 14, 23–36. [Google Scholar] [CrossRef]
- Cohen, M.J.; Brown, M.T. A model examining hierarchical wetland networks for watershed stormwater management. Ecol. Model. 2007, 201, 179–193. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Park, J.; Kumar, M.; Basu, N.B. Disconnectivity matters: The outsized role of small ephemeral wetlands in landscape-scale nutrient retention. Environ. Res. Lett. 2023, 18, 024018. [Google Scholar] [CrossRef]
- Marton, J.M.; Fennessy, M.S.; Craft, C.B. Functional Differences between Natural and Restored Wetlands in the Glaciated Interior Plains. J. Environ. Qual. 2014, 43, 409–417. [Google Scholar] [CrossRef]
- Pester, M. Sulfate-reducing microorganisms in wetlands—Fameless actors in carbon cycling and climate change. Front. Microbiol. 2012, 3, 72. [Google Scholar] [CrossRef]
- Lolu, A.J.; Ahluwalia, A.S.; Sidhu, M.C.; Reshi, Z.A.; Mandotra, S. Carbon sequestration and storage by wetlands: Implications in the climate change scenario. In Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment; Springer: Singapore, 2020; pp. 45–58. [Google Scholar]
- McClellan, M.; Comas, X.; Benscoter, B.; Hinkle, R.; Sumner, D. Estimating Belowground Carbon Stocks in Isolated Wetlands of the Northern Everglades Watershed, Central Florida, Using Ground Penetrating Radar and Aerial Imagery. J. Geophys. Res.-Biogeosci. 2017, 122, 2804–2816. [Google Scholar] [CrossRef]
- Pérez-Rojas, J.; Moreno, F.; Quevedo, J.C.; Villa, J. Soil organic carbon stocks in fluvial and isolated tropical wetlands from Colombia. Catena 2019, 179, 139–148. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 2008, 34, 311–323. [Google Scholar] [CrossRef]
- Dušek, J.; Dařenová, E.; Pavelka, M.; Marek, M. Methane and carbon dioxide release from wetland ecosystems. In Climate Change and Soil Interactions; Elsevier: Brno, Czech Republic, 2020; pp. 509–553. [Google Scholar]
- Harper, E.B.; Rittenhouse, T.A.G.; Semlitsch, R.D. Demographic Consequences of Terrestrial Habitat Loss for Pool-Breeding Amphibians: Predicting Extinction Risks Associated with Inadequate Size of Buffer Zones. Conserv. Biol. 2008, 22, 1205–1215. [Google Scholar] [CrossRef]
- Czapka, S.J.; Kilgo, J.C. Importance of Carolina Bays to the avifauna of pinelands in the Southeastern United States. Southeast. Nat. 2011, 10, 321–332. [Google Scholar] [CrossRef]
- Schöpke, B.; Heinze, J.; Pätzig, M.; Heinken, T. Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats? Plant Ecol. 2019, 220, 801–815. [Google Scholar] [CrossRef]
- Pupins, M.; Nekrasova, O.; Tytar, V.; Garkajs, A.; Petrov, I.; Morozova, A.; Theissinger, K.; Čeirāns, A.; Skute, A.; Georges, J.-Y. Geographically Isolated Wetlands as a Reserve for the Conservation of Amphibian Biodiversity at the Edge of Their Range. Diversity 2023, 15, 461. [Google Scholar] [CrossRef]
- Kouki, J.; Väänänen, A. Impoverishment of resident old-growth forest bird assemblages along an isolation gradient of protected areas in eastern Finland. Ornis Fenn. 2000, 77, 145–154. [Google Scholar]
- Van Dyke, F.; Berthel, A.; Harju, S.M.; Lamb, R.L.; Thompson, D.; Ryan, J.; Pyne, E.; Dreyer, G. Amphibians in forest pools: Does habitat clustering affect community diversity and dynamics? Ecosphere 2017, 8, e01671. [Google Scholar] [CrossRef]
- Liu, Q. Spatial and Temporal Characteristics of Soil Seed Banks in Ditch Systems of the Sanjiang Plain. Master’s Thesis, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China, 2013. [Google Scholar]
- Heitmann, J.B.; Folk, T.H.; Lord, L.J.; McGlinn, D.J. Geographically isolated wetlands have higher alpha diversity than surrounding uplands in pine savanna ecosystems. Wetl. Ecol. Manag. 2024, 32, 18. [Google Scholar] [CrossRef]
- Plumer, M.V.; O’Neal, C.S.; Cooper, S.M.; Stork, R. Red-bellied Mudsnake (Farancia abacura) home ranges increase with precipitation in an isolated wetland. Herpetol. Conserv. Biol. 2020, 15, 160–168. [Google Scholar]
- Prochaska, A.L.; Watson, A.; Callahan, T.; Stewart, K. Lowcountry Landowners’ Wetlands Knowledge and Perceptions and the Impacts of Land Management Actions on Isolated Wetlands. J. South Carol. Water Resour. 2021, 8, 5. [Google Scholar] [CrossRef]
- Mushet, D.M.; Calhoun, A.J.K.; Alexander, L.C.; Cohen, M.J.; DeKeyser, E.S.; Fowler, L.; Lane, C.R.; Lang, M.W.; Rains, M.C.; Walls, S.C. Geographically Isolated Wetlands: Rethinking a Misnomer. Wetlands 2015, 35, 423–431. [Google Scholar] [CrossRef]
- Furlan, L.M.; Ferreira, M.E.; Moreira, C.A.; de Alencar, P.G.; Casagrande, M.F.S.; Rosolen, V. Satellite, UAV, and Geophysical Data to Identify Surface and Subsurface Hydrodynamics of Geographically Isolated Wetlands: Understanding an Undervalued Ecosystem at the Atlantic Forest-Cerrado Interface of Brazil. Remote Sens. 2023, 15, 1870. [Google Scholar] [CrossRef]
- Thiere, G.; Milenkovski, S.; Lindgren, P.E.; Sahlén, G.; Berglund, O.; Weisner, S.E. Wetland creation in agricultural landscapes: Biodiversity benefits on local and regional scales. Biol. Conserv. 2009, 142, 964–974. [Google Scholar] [CrossRef]
- Préau, C.; Tournebize, J.; Lenormand, M.; Alleaume, S.; Boussada, V.G.; Luque, S. Habitat connectivity in agricultural landscapes improving multi-functionality of constructed wetlands as nature-based solutions. Ecol. Eng. 2022, 182, 106725. [Google Scholar] [CrossRef]
- Cui, L.J.; Lei, Y.R.; Zhang, M.Y.; Li, W. Review on small wetlands: Definition, typology and ecological services. Shengtai Xuebao 2021, 41, 2077–2085. [Google Scholar]
Academic Field OR Disciplinary Perspective | Definition OR Category | Country | References |
---|---|---|---|
Hydrological connectivity | A wetland completely surrounded by upland. | USA | [14] |
Surface water connection | Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. | USA | [17] |
Multi-pond systems | Geographically isolated wetland constructed for collecting rainwater for irrigation of crops. The ponds are interconnected with each other by ditches lacking persistent surface hydrological connectivity. | Jiangsu Province, China | [18] |
Geomorphology | Geographically isolated wetlands (GIWs) are commonly reported as having hardpan or low hydraulic conductivity units underneath that produce perched groundwater, which can sustain surface water levels independently of regional aquifer fluctuations. | Kentucky, USA | [19] |
Hydrology | GIWs to simply represent single depressions embedded into the landscape and not permanently connected to stream networks. | Florida, USA | [20] |
Hydrological perspective and spatial perspective | Wetlands that lack contact with other water bodies and are relatively isolated in the landscape. | China | [15] |
Method | References |
---|---|
GIS and RS Methods | [49] |
Multi-temporal Sub-pixel Landsat ETM+ Classification | [48] |
Three-way combination of NWI, SSURGO, and DRGs | [50] |
Geographic object-based image analysis | [51] |
A Machine Learning Approach | [52] |
Area OR Angle | Functions | References |
---|---|---|
Ecological | (1) Hydrologic and water quality functions (2) Habitat function | [77] |
Landscape Connectivity | (1) Hydrological connectivity (2) Biogeochemical connectivity (3) Biological connectivity | [2] |
Ecological | Maintain the biodiversity of many plant, invertebrate, and vertebrate groups (such as amphibians) | [76] |
Centered Around Amphibians | (1) Hydrology (2) Vegetation (3) Ecological processes (4) Landscape-level restoration | [88] |
(1) Climate function (2) Hydrology and water quality functions (3) Habitat function | [15] | |
(1) Hydrologic function (2) Habitat function (3) Geochemical cycle function | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, M.; Pei, W.; Guan, Q.; Liu, J.; Chen, Y.; Liu, J.; Zhang, Q. Research Overview on Isolated Wetlands. Water 2025, 17, 2013. https://doi.org/10.3390/w17132013
Wang Y, Zhao M, Pei W, Guan Q, Liu J, Chen Y, Liu J, Zhang Q. Research Overview on Isolated Wetlands. Water. 2025; 17(13):2013. https://doi.org/10.3390/w17132013
Chicago/Turabian StyleWang, Yingpu, Mingjie Zhao, Wenhan Pei, Qiang Guan, Jiafu Liu, Yanhui Chen, Jiping Liu, and Qiyue Zhang. 2025. "Research Overview on Isolated Wetlands" Water 17, no. 13: 2013. https://doi.org/10.3390/w17132013
APA StyleWang, Y., Zhao, M., Pei, W., Guan, Q., Liu, J., Chen, Y., Liu, J., & Zhang, Q. (2025). Research Overview on Isolated Wetlands. Water, 17(13), 2013. https://doi.org/10.3390/w17132013