Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Hydrogeological Stage
2.3.2. Remote Sensing
2.3.3. WSN Sensor Networks
2.3.4. Control and Optimisation
2.3.5. Aquifer Resilience and Management Strategies
3. Results
- at 1% and 3% (blue and cyan): Show the highest levels of optimal extraction, indicating that with low recharge rates, greater extraction is allowed to maintain the aquifer’s target level.
- at 10% (green): Shows moderate extraction levels, generally lower than the 1% and 3% cases.
- at 40% (red): Presents the lowest levels of optimal extraction, suggesting that with a high natural recharge rate, less artificial extraction is needed to maintain the aquifer level.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDVI | Normalised Difference Vegetation Index |
NDWI | Normalised Difference Water Index |
EVI | Enhanced Vegetation Index |
ROI | Region of Interest |
IGAC | Instituto Geográfico Agustín Codazzi (Colombia) |
IDEAM | Instituto de Hidrología, Meteorología y Estudios Ambientales (Colombia) |
LORA Tx | Long Range Transmitter |
PSO | Particle Swarm Optimisation |
AG | Directory of open access journals |
LULC | Land Use and Land Cover |
MPC | Model Predictive Control |
Appendix A
- a.
- Water balance: The model ensures that the change in water level is due to the difference between recharge and extraction.Extraction limits:
- b.
- Where is the maximum sustainable extraction capacity determined in the previous studies.
- c.
- Recharge (): Recharge is a function of precipitation , land use and land cover , and geological parameters K.To calculate the effective precipitation that contributes to recharge after considering evaporation and surface runoff,Geological parameters (K) include factors such as permeability (k) and porosity (), which affect the ability of the soil to transmit water.The contribution from all areas was then calculated to obtain the total recharge:
References
- Karn, A.; Kumar, S. The Sustainable Development Goals: A Global Agenda for Transformative Change Towards a Sustainable World. In New Paradigms of Sustainability in the Contemporary Era; CSMFL Publications: Jagadhri, India, 2024; p. 70. Available online: https://books.csmflpublications.com/book-9788195732289/ (accessed on 24 June 2025).
- Mohan, C.; Gleeson, T.; Forstner, T.; Famiglietti, J.S.; de Graaf, I. Quantifying Groundwater’s Contribution to Regional Environmental-Flows in Diverse Hydrologic Landscapes. Water Resour. Res. 2023, 59, 6. [Google Scholar] [CrossRef]
- du Plessis, A. Water resources from a global perspective. In South Africa’s Water Predicament: Freshwater’s Unceasing Decline; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–25. [Google Scholar]
- Biswas, A.K.; Tortajada, C. Groundwater: An unseen, overused, and unappreciated resource. Int. J. Water Resour. Dev. 2024, 40, 1–6. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Wang, S.; Sun, W.; Wang, J.; Di, H. Experimental study on soil deformation caused by overexploitation of groundwater. Water Environ. Res. 2024, 96, e11111. [Google Scholar] [CrossRef] [PubMed]
- Mialyk, O.; Schyns, J.F.; Booij, M.J.; Su, H.; Hogeboom, R.J.; Berger, M. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data 2024, 11, 206. [Google Scholar] [CrossRef]
- Pérez, A.J.; Hurtado-Patiño, J.; Herrera, H.M.; Carvajal, A.F.; Pérez, M.L.; Gonzalez-Rojas, E.; Pérez-García, J. Assessing sub-regional water scarcity using the groundwater footprint. Ecol. Indic. 2019, 96, 32–39. [Google Scholar] [CrossRef]
- Hera-Portillo, Á.D.L.; López-Gutiérrez, J.; Mayor, B.; López-Gunn, E.; Henriksen, H.J.; Gejl, R.N.; Martínez-Santos, P. An initial framework for understanding the resilience of aquifers to groundwater pumping. Water 2021, 13, 519. [Google Scholar] [CrossRef]
- Kpegli, K.A.R.; Alassane, A.; van der Zee, S.E.; Boukari, M.; Mama, D. Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. J. Hydrol. Reg. Stud. 2018, 18, 50–67. [Google Scholar] [CrossRef]
- Yidana, S.M.; Dzikunoo, E.A.; Tetteh, J.D.; Mejida, R.A. Multiple Conceptual Model Approach for Assessing Groundwater Resources Sustainability Under Multiple Stresses. Water Resour. Manag. 2024, 38, 173–191. [Google Scholar] [CrossRef]
- Atanacković, N.; Štrbački, J.; Živanović, V.; Davidović, J.; Gardijan, S.; Stojadinović, S. Hydrochemistry-Based Statistical Model for Sourcing Groundwater Inrush into Underground Mining Works: A Case Study in Eastern Serbia. Mine Water Environ. 2024, 38, 1–13. [Google Scholar] [CrossRef]
- Cetina, M.; Taupin, J.D.; Gómez, S.; Patris, N. Hydrodynamic conceptual model of groundwater in the headwater of the Rio de Oro, Santander (Colombia) by geochemical and isotope tools. Water Supply 2020, 20, 1567–1579. [Google Scholar] [CrossRef]
- Ying, Z.; Tetzlaff, D.; Freymueller, J.; Comte, J.C.; Goldhammer, T.; Schmidt, A.; Soulsby, C. Developing a conceptual model of groundwater–Surface water interactions in a drought sensitive lowland catchment using multi-proxy data. J. Hydrol. 2024, 20, 628–649. [Google Scholar] [CrossRef]
- Mustaquim, S.M. Utilizing Remote Sensing Data and ArcGIS for Advanced Computational Analysis in Land Surface Temperature Modeling and Land Use Property Characterisation. World J. Adv. Res. Rev. 2024, 21, 1496–1507. [Google Scholar] [CrossRef]
- Al-Kindi, K.M.; Al Nadhairi, R.; Al Akhzami, S. Dynamic Change in Normalised Vegetation Index (NDVI) from 2015 to 2021 in Dhofar, Southern Oman in Response to the Climate Change. Agriculture 2023, 13, 592. [Google Scholar] [CrossRef]
- Bajany, D.M.; Zhang, L.; Xia, X. Model predictive control for water management and energy security in arid/semiarid regions. J. Autom. Intell. 2022, 1, 100001. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
- Li, W.; Ma, Z.; Li, J.; Li, Q.; Li, Y.; Yang, J. Digital twin smart water conservancy: Status, challenges, and prospects. Water 2024, 16, 2038. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, C.; Pena-Regueiro, I.; García, Ó. Digital Twin Platform for Water Treatment Plants Using Microservices Architecture. Sensors 2024, 24, 1568. [Google Scholar] [CrossRef]
- Cavalieri, S.; Gambadoro, S. Digital Twin of a Water Supply System Using the Asset Administration Shell. Sensors 2024, 24, 1360. [Google Scholar] [CrossRef]
- Giustolisi, O. Digital transition, digital twin and digital water: History, concepts and overview for the application to aqueducts. Digit. Water 2023, 1, 2313975. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, V. Proposing a digital twin-based sustainable water governance system for rural Indian villages. Int. J. Inf. Technol. 2025, 1, 628–649. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Schneider, R.; Koch, J.; Ondracek, M.; Troldborg, L.; Seidenfaden, I.K.; Stisen, S. A new digital twin for climate change adaptation, water management, and disaster risk reduction (HIP digital twin). Water 2022, 15, 25. [Google Scholar] [CrossRef]
- Anker, C. Digital Twin Paradigms Towards Monitoring Insights for Deep Aquifer Pumps. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2023. [Google Scholar]
- Morales Ortega, L.R. A Digital Twin for Ground Water Table Monitoring. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2023. [Google Scholar]
- Marshall, S.R.; Tran, T.N.D.; Tapas, M.R.; Nguyen, B.Q. Integrating artificial intelligence and machine learning in hydrological modeling for sustainable resource management. Int. J. River Basin Manag. 2025, 1–17. [Google Scholar] [CrossRef]
- Olaleye, O.; Akintola, O.; Jımoh, R.; Gbadebo, O.; Faloye, O. Review and Comparative Study of Hydrological Models for Rainfall-Runoff Modelling. Int. J. Environ. Geoinform. 2023, 11, 119–129. [Google Scholar] [CrossRef]
- Navarro Mercado, J.L. Monitoreo de las Obras Piloto de Recarga Artificial en el Acuífero Morroa, Departamento de Sucre, Colombia. Bachelor’s Thesis, Universidad Eafit, Antioquia, Colombia, 2020. [Google Scholar]
- Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). Estudio Nacional del Agua 2022; Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2023. [Google Scholar]
- Duan, H.; Zhao, H.; Li, Q.; Xu, H.; Han, C. Estimation of Evapotranspiration Based on a Modified Penman–Monteith–Leuning Model Using Surface and Root Zone Soil Moisture. Water 2023, 15, 1418. [Google Scholar] [CrossRef]
- Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.C.; Ezzahar, J.; Chehbouni, G. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. 2014, 18, 1165–1188. [Google Scholar] [CrossRef]
- Guerschman, J.P.; McVicar, T.R.; Vleeshower, J.; Van Niel, T.G.; Peña-Arancibia, J.L.; Chen, Y. Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. J. Hydrol. 2022, 11, 206. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theor. Basis Doc. Collect. 2013, 5, 600. Available online: https://eospso.nasa.gov/content/algorithm-theoretical-basis-documents (accessed on 25 February 2025).
- Wang, C.; Liu, L.; Zhou, Y.; Liu, X.; Wu, J.; Tan, W.; Xiong, X. Comparison between satellite derived solar-induced chlorophyll fluorescence, NDVI and kndvi in detecting water stress for dense vegetation across southern China. Remote. Sens. 2013, 16, 1735. [Google Scholar] [CrossRef]
- Anthony, T.; Kafy, A.A.; Hakeem, A.; Alsulamy, S.; Khedher, K.M.; Shohan, A. Spatial analysis of land cover changes for detecting environmental degradation and promoting sustainability in Abeokuta, South Nigeria. Kuwait J. Sci. 2024, 51, 100197. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Folorunsho, A.H.; Ayegbusi, K.I.; Bobde, V.; Adeliyi, T.E.; Ndehedehe, C.E.; Akinsanola, A.A. Land surface dynamics and meteorological forcings modulate land surface temperature characteristics. Sustain. Cities Soc. 2024, 101, 105072. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Z.L.; Duan, S.B.; Liu, X.; Zheng, X.; Leng, P.; Shang, G. Estimation of Daily Mean Land Surface Temperature at Global Scale Using Pairs of Daytime and Nighttime MODIS Instantaneous Observations. J. Photogramm. Remote. Sens. 2021, 178, 51–67. [Google Scholar] [CrossRef]
- Universidad Antonio Nariño (UAN). Modelo Hidrogeológico-Ambiental para el Departamento de Sucre. In Convenio Sistema Nacional de Regalías 036/2013; Universidad Antonio Nariño: Bogotá, Colombia, 2017. [Google Scholar]
- Wahab, F.; Al-Abadi, A.; Al-Ozeer, A. Groundwater depletion and annual groundwater recharge estimation in Nineveh Plain, Northern Iraq using GRACE, GLDAS, and field data. Model. Earth Syst. Environ. 2025, 11, 117. [Google Scholar] [CrossRef]
- Hasan, M.S.U.; Saif, M.M.; Ahmad, N.; Rai, A.K.; Khan, M.A.; Aldrees, A.; Yaseen, Z.M. Spatiotemporal analysis of future trends in terrestrial water storage anomalies at different climatic zones of India using GRACE/GRACE-FO. Sustainability 2023, 15, 1572. [Google Scholar] [CrossRef]
- Abdullahi, I.; Longo, S.; Samie, M. Towards a Distributed Digital Twin Framework for Predictive Maintenance in Industrial Internet of Things (IIoT). Sensors 2024, 24, 2663. [Google Scholar] [CrossRef]
- Bierkens, M.F.; van Beek, L.R.; Wanders, N. Gisser-Sánchez revisited: A model of optimal groundwater withdrawal under irrigation including surface–groundwater interaction. J. Hydrol. 2024, 635, 131145. [Google Scholar] [CrossRef]
- Carsucre. Estudio Técnico del Acuífero Morroa. Grupo Aguas. 2017. Available online: https://carsucre.gov.co/wp-content/uploads/2019/01/ESTUDIOTECNICO_ACUIFERO-Morroa_Corregido_c.pdf (accessed on 10 February 2025).
- Vergara, V. Manejo de suelos en el acuífero Morroa, Sucre, Colombia, alternativa para el desarrollo agrícola sostenible. Rev. Colomb. Cienc. Anim. Recia 2019, 11, 51–66. [Google Scholar] [CrossRef]
- Pacheco, D.; Villegas, P. Caracterización Hidráulica del Acuífero Morroa Utilizando Pruebas de Bombeo; Universidad de Sucre: Sincelejo, Colombia, 2003; p. 100. [Google Scholar]
- Rodelo Bejarano, G.; Argumedo Vivas, H. Caracterización Hidroquímica y Bacteriológica del Acuifero de Morroa en los Municipios de Sampués; Sincelejo, Morroa, Corozal y Los Palmitos en el departamento de Sucre. 2002. Available online: https://agris.fao.org/search/en/providers/124942/records/67122c0f7f591113e2a4c47c (accessed on 2 February 2025).
- López Ramírez, S.E. Actualización del Modelo Numérico del Acuífero Morroa Utilizando Visual Modflow Flex. Available online: https://repositorio.uniandes.edu.co/entities/publication/23db7d3d-b189-478d-be67-1b6f104e88c5 (accessed on 2 February 2025).
- Nazir, J.; Ali, M.; Sarwar, A.; Khan, S.; Rehman, K.; Fahim, B.; Iqbal, B. Delineation and validation of GIS-based groundwater potential zones under arid to semi-arid environment using multi-influence-factors approach. Geol. Ecol. Landscapes 2024, 24, 1–17. [Google Scholar] [CrossRef]
- Chukwuka, A.V.; Adegboyegun, A.D.; Oluwale, F.V.; Oni, A.A.; Omogbemi, E.D.; Adeogun, A.O. Microplastic dynamics and risk projections in West African coastal areas: Developing a vulnerability index, adverse ecological pathways, and mitigation framework using remote-sensed oceanographic profiles. Sci. Total Environ. 2024, 24, 175963. [Google Scholar] [CrossRef]
- Zowam, F.J.; Milewski, A.M. Groundwater Level Prediction Using Machine Learning and Geostatistical Interpolation Models. Water 2024, 16, 2771. [Google Scholar] [CrossRef]
- Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent advances in internet of things solutions for early warning systems: A review. Sensors 2022, 22, 2124. [Google Scholar] [CrossRef]
- Michael, J.; Blankenbach, J.; Derksen, J.; Finklenburg, B.; Fuentes, R.; Gries, T.; Walther, G. Integrating models of civil structures in digital twins: State-of-the-Art and challenges. J. Infrastruct. Intell. Resil. 2024, 26, 100100. [Google Scholar] [CrossRef]
- Kumar, R.; Saxena, A. Smart Water Management and Resource Conservation. In Sustainable Smart Cities and the Future of Urban Development; Global Scientific Publishing: Faridabad, India, 2025; pp. 235–262. [Google Scholar] [CrossRef]
- Sajil Kumar, P.J.; Schneider, M.; Elango, L. The state-of-the-art estimation of groundwater recharge and water balance with a special emphasis on India: A critical review. Sustainability 2021, 14, 340. [Google Scholar] [CrossRef]
- Hesamfar, F.; Ketabchi, H.; Ebadi, T. Simulation-based multi-objective optimisation framework for sustainable management of coastal aquifers in semi-arid regions. J. Environ. Manag. 2023, 3382, 117785. [Google Scholar] [CrossRef]
- Sakamoto, S.; Nakamura, S.; Barolli, L.; Takizawa, M. A Comparison Study Between Cuckoo Search and Particle Swarm Optimisation Based Intelligent Systems for Optimisation of Mesh Routers in a Small-Scale WMN. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing; Springer Nature: San Benedetto del Tronto, Italy, 2024; pp. 121–132. [Google Scholar] [CrossRef]
- Sahoo, S.; Singha, C.; Govind, A.; Sharma, P. Review of aquifer storage and recovery opportunities and challenges in India. Environ. Earth Sci. 2025, 84, 122. [Google Scholar] [CrossRef]
- Saad, S.; Javadi, A.A.; Chugh, T.; Farmani, R. Optimal management of mixed hydraulic barriers in coastal aquifers using multi-objective Bayesian optimisation. J. Hydrol. 2022, 612, 128021. [Google Scholar] [CrossRef]
- Carsucre. Informe Técnico y de Seguimiento del acuífero Morroa; MADS-Colombia: Sincelejo, Colombia, 2023. [Google Scholar]
- Alvarez Cordero, A.A.; Schmalbach Amorocho, L.I. Estudio Sobre la Disponibilidad a Pagar Por Mantener el uso del Agua Potable del Acuífero Morroa; Universidad de Sucre: Sincelejo, Colombia, 2018. [Google Scholar]
- Azizi, H.R.; Azizi, H. Development of an integrated multi-objective approach to formulate optimal harvesting policies with the aim of sustainable management of groundwater resources: Study area: Varamin Plain. J. Hydroinform. 2023, 25, 469–490. [Google Scholar] [CrossRef]
- Khan, M.; Almazah, M.M.; EIlahi, A.; Niaz, R.; Al-Rezami, A.Y.; Zaman, B. Spatial interpolation of water quality index based on Ordinary kriging and Universal kriging. Geomat. Nat. Hazards Risk 2023, 14, 2190853. [Google Scholar] [CrossRef]
- Carsucre. Informe de Gestión del Plan de Acción Institucional, PAI 2020–2023. 2022. Available online: https://carsucre.gov.co/wp-content/uploads/2023/03/INFORME-AVANCE-PAI-CARSUCRE-_31-DE-DICIEMBRE-2022_V3-MinAmbiente2.pdf (accessed on 14 February 2025).
- IDEAM. Anexo 7. Aguas Subterráneas. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). 2024. Available online: https://www.ideam.gov.co/sites/default/files/prensa/boletines/2024-08-23/anexo_7_aguas_subterraneas_0.pdf (accessed on 12 February 2025).
- Diaz Baldovino, M. Análisis de la Dinámica de Los Niveles de Agua del Acuífero de Morroa Desde los Pozos Operados por la Empresa Veolia, Aguas de la Sabana SAESP. Sincelejo, Colombia. 2024. Available online: https://repositorio.unicordoba.edu.co/entities/publication/ca5b2005-d4ac-4e12-9e8f-3d18415c4699 (accessed on 1 February 2025).
- Servicio Geológico Colombiano (SGC). Memoria Técnica del Mapa de Aguas Subterráneas del Departamento de Sucre en Escala 1:250,000. Exploración y Evaluación de Aguas Subterráneas. Ingeominas: Bogotá, Colombia. 2025. Available online: https://recordcenter.sgc.gov.co/B3/12006025002778/documento/pdf/0101027781101000.pdf (accessed on 13 February 2025).
- Cohen Manrique, C.; Villa, J.L.; Month, A.A.; Velilla, G.P. Application of Artificial Intelligence Tools, Data Processing, and Analysis in the Forecasting of Level and Flow Variables in Wells with Little Data from the Morroa Aquifer. In Workshop on Engineering Applications; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 228–239. [Google Scholar]
- Liang, J.; Ren, C.; Li, Y.; Yue, W.; Wei, Z.; Song, X.; Lin, X. Using enhanced gap-filling and Whittaker smoothing to reconstruct high spatiotemporal resolution NDVI time series based on Landsat 8, Sentinel-2, and MODIS imagery. ISPRS Int. J.-Geo-Inf. 2023, 12, 214. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Xu, Z.; Luo, Y.; Li, J. Sentinel-2 satellite imagery for urban land cover classification by optimized random forest classifier. Appl. Sci. 2021, 11, 543. [Google Scholar] [CrossRef]
- Sapitang, M.; Dullah, H.; Latif, S.D.; Ng, J.L.; Huang, Y.F.; Malek, M.B.A.; Ahmed, A.N. Application of Integrated Artificial Intelligence Geographical Information System in Managing Water Resources: A Review. Remote. Sens. Appl. Soc. Environ. 2024, 35, 101236. [Google Scholar] [CrossRef]
- Cohen-Manrique, C.S.; Correa, Y.T.S.; Villa-Ramírez, J.L.; Alvarez-Month, A. Impact of land cover variations on the Morroa aquifer (Colombia) static and dynamic levels through remote sensing analysis. Geospat. Inform. XIV 2024, 13037, 19–27. [Google Scholar]
- DNV. A204: Qualification and Assurance of Digital Twins. In Recommended Practice DNV-RP-A204; DNV: Oslo, Norway, 2021; Available online: https://www.dnv.com/energy/standards-guidelines/dnv-rp-a204-assurance-of-digital-twins/ (accessed on 9 February 2025).
- Adhikari, R.K.; Mohanasundaram, S.; Srestha, S. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environ. Res. 2020, 185, 109440. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, R.; Javadi, S.; Shourian, M.; Golmohammadi, G. Determining the optimal aquifer exploitation under artificial recharge using the combination of numerical models and particle swarm optimisation. Hydrology 2023, 10, 100. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Pathways for Hydrological Resilience: Strategies for Adaptation in a Changing Climate. Earth Syst. Environ. 2025, 10, 29. [Google Scholar] [CrossRef]
- Morlot, M.; Rigon, R.; Formetta, G. Hydrological digital twin model of a large anthropized Italian alpine catchment: The Adige river basin. J. Hydrol. 2024, 629, 130587. [Google Scholar] [CrossRef]
- Aliagas, C.; Pérez-Foguet, A.; Meseguer, R.; Millán, P.; Molina, C. A Low-Cost and Do-It-Yourself Device for Pumping Monitoring in Deep Aquifers. Electronics 2022, 11, 3788. [Google Scholar] [CrossRef]
- Promput, S.; Maithomklang, S.; Panya-Isara, C. Design and analysis performance of IoT-based water quality monitoring system using LoRa technology. TEM J. 2023, 12, 29. [Google Scholar] [CrossRef]
- Kombo, O.H.; Kumaran, S.; Bovim, A. Design and application of a low-cost, low-power, LoRa-GSM, IoT enabled system for monitoring of groundwater resources with energy harvesting integration. IEEE Access 2021, 9, 128417–128433. [Google Scholar] [CrossRef]
- Jabbar, W.A.; Ting, T.M.; Hamidun, M.F.I.; Kamarudin, A.H.C.; Wu, W.; Sultan, J.; Ali, M.A. Development of LoRaWAN-based IoT system for water quality monitoring in rural areas. Expert Syst. Appl. 2024, 242, 122862. [Google Scholar] [CrossRef]
- Truong, V.T.; Nayyar, A.; Lone, S.A. System performance of wireless sensor network using LoRa-Zigbee hybrid communication. Comput. Mater. Contin. 2021, 68, 1615–1635. [Google Scholar] [CrossRef]
- CIMA Foundation. A Digital Twin for the Water Cycle. Available online: https://www.cimafoundation.org/en/news/a-digital-twin-for-the-water-cycle/ (accessed on 13 April 2025).
- Brocca, L.; Barbetta, S.; Camici, S.; Ciabatta, L.; Dari, J.; Filippucci, P.; Massari, C.; Modanesi, S.; Tarpanelli, A.; Bonaccorsi, B.; et al. A Digital Twin of the terrestrial water cycle: A glimpse into the future through high-resolution Earth observations. Front. Sci. 2024, 1, 1190191. [Google Scholar] [CrossRef]
- Alperen, C.I.; Artigue, G.; Kurtulus, B.; Pistre, S.; Johannet, A. A hydrological digital twin by artificial neural networks for flood simulation in Gardon de Sainte-Croix Basin, France. In IOP Conf. Ser. Earth Environ. Sci. 2021, 906, 012112. [Google Scholar] [CrossRef]
- Reinecke, R.; Pianosi, F.; Wagener, T. How to use the impossible map–Considerations for a rigorous exploration of Digital Twins of the Earth. Socio-Environ. Syst. Model. 2024, 6, 18786. [Google Scholar] [CrossRef]
- Ahmed, T.; Creedon, L.; Gharbia, S.S. Low-cost sensors for monitoring coastal climate hazards: A systematic review and meta-analysis. Sensors 2023, 23, 1717. [Google Scholar] [CrossRef]
- Snazelle, T.T. Field Comparison of Five in Situ Turbidity Sensors; Report No. 2020-1123; U.S. Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Zamora, P.B.; Cabria, H.B.; Rodolfo, R.S.; Siringan, F.P.; Befus, K.M.; Cardenas, M.B. Enhanced submarine groundwater discharge and freshening of a subterranean estuary from rain. J. Hydrol. 2025, 659, 133253. [Google Scholar] [CrossRef]
- Biazar, S.M.; Golmohammadi, G.; Nedhunuri, R.R.; Shaghaghi, S.; Mohammadi, K. Artificial Intelligence in Hydrology: Advancements in Soil, Water Resource Management, and Sustainable Development. Sustainability 2025, 17, 2250. [Google Scholar] [CrossRef]
- Singha, C.; Sahoo, S.; Tinh, N.D.; Ditthakit, P.; Lu, Q.O.; El-Magd, S.A.; Swain, K C. Climate-resilient strategies for sustainable groundwater management in Mahanadi River basin of Eastern India. Acta Geophys. 2025, 73, 1891–1926. [Google Scholar] [CrossRef]
Identification | Number Well | Location | Flow Rate Delivered (lt/s) |
---|---|---|---|
44-IV-D-PP-31 | 32 | Corozal | 20 |
44-IV-D-PP-35 | 36 | Corozal | 25 |
44-IV-D-PP-38 | 02 | Corozal | 45 |
44-IV-D-PP-37 | 01 | Corozal | 45 |
44-IV-D-PP-42 | 03 | Corozal | 35 |
44-IV-D-PP-43 | 43B | Corozal | 18 |
44-IV-D-PP-44 | 45 | Corozal | 20 |
44-IV-D-PP-46 | 46 | Corozal | 120 |
44-IV-D-PP-47 | 47 | Betulia | 100 |
44-IV-D-PP-48 | 48B | Los Palmitos | 80 |
44-IV-D-PP-51 | 51 | Los Palmitos | 60 |
44-IV-D-PP-16 | 40 | Corozal | 14 |
44-IV-D-PP-01 | 35 | Corozal | 35 |
Heuristic | Hyperparameters | Optimal Parameters for and in the OF | Average Optimal | RMSE, |
---|---|---|---|---|
Grid Search | Grid resolution of 21 × 21 | 0.297 and 0.703 | 9.34 L/s | 3.3127 |
Genetic Algorithm (GA) | Population size | 50 | ||
Number of Generations | 50 | |||
Crossover probability | 0.7 | |||
Mutation probability | 0.2 | |||
(blend crossover) | 0.5 | 9.23 L/s | 3.21 3.13 L/s | |
0.01 | ||||
0.2 | ||||
Mutation probability per generation (%) | 20 | |||
Particle Swarm Optimisation (PSO) | Number of particles | 50 | ||
Number of iterations | 100 | |||
Cognitive coefficient () | 2.05 | 8.3 L/s | 2.61 2.82 L/s | |
Social coefficient () | 2 | |||
Inertia weight | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen-Manrique, C.S.; Villa-Ramírez, J.L.; Camacho-León, S.; Solano-Correa, Y.T.; Alvarez-Month, A.A.; Coronado-Hernández, O.E. Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers. Water 2025, 17, 1973. https://doi.org/10.3390/w17131973
Cohen-Manrique CS, Villa-Ramírez JL, Camacho-León S, Solano-Correa YT, Alvarez-Month AA, Coronado-Hernández OE. Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers. Water. 2025; 17(13):1973. https://doi.org/10.3390/w17131973
Chicago/Turabian StyleCohen-Manrique, Carlos Segundo, José Luis Villa-Ramírez, Sergio Camacho-León, Yady Tatiana Solano-Correa, Alex A. Alvarez-Month, and Oscar E. Coronado-Hernández. 2025. "Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers" Water 17, no. 13: 1973. https://doi.org/10.3390/w17131973
APA StyleCohen-Manrique, C. S., Villa-Ramírez, J. L., Camacho-León, S., Solano-Correa, Y. T., Alvarez-Month, A. A., & Coronado-Hernández, O. E. (2025). Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers. Water, 17(13), 1973. https://doi.org/10.3390/w17131973