Assessment and Monitoring of Groundwater Contaminants in Heavily Urbanized Areas: A Review of Methods and Applications for Philippines
Abstract
1. Introduction
2. Urbanization and Groundwater Challenges in the Philippines
3. Review Methodology
3.1. Literature Sourced and Selection Criteria
3.2. Thematic Classification
3.3. Temporal and Source Distribution
4. Groundwater Monitoring Methods and Technique
4.1. Technology Integration in Groundwater Monitoring
4.1.1. IoT-Based Monitoring Systems and Remote Sensing
4.1.2. Remote Sensing and GIS
4.1.3. DRASTIC Method
4.2. AI and Real-Time Data Monitoring
4.2.1. Artificial Intelligence and Machine Learning
4.2.2. Real-Time Data Analytics
4.2.3. Limitations and Challenges
4.3. Emerging Groundwater Monitoring Techniques
4.3.1. Biosensors
4.3.2. DNA-Based Methods
4.4. Summary of Groundwater Monitoring Techniques
5. Groundwater Contaminants Due to Heavy Urbanization
5.1. Common Groundwater Contaminants
5.2. Detection and Monitoring Strategies
5.3. Remediation Strategies
5.4. Integrated Perspective and Local Context
6. Synthesis, Research Gaps, and Future Directions
6.1. Synthesis of Findings
6.2. Conceptual Framework for Integrated Groundwater Monitoring
6.3. Determination of Research and Implementation Gaps
6.4. Future Research and Policy Direction
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shrestha, S.; Pandey, V.P. Groundwater as an Environmental Issue in Asian Cities. In Groundwater Environment in Asian Cities; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–13. [Google Scholar]
- Friends of Groundwater in the World Water Quality Alliance (WWQA). Assessing Groundwater Quality: A Global Perspective Importance, Methods and Potential Data Sources; WWQA: Nairobi, Kenya, 2021. [Google Scholar]
- Brindha, K.; Schneider, M. Impact of Urbanization on Groundwater Quality. In GIS and Geostatistical Techniques for Groundwater Science; Venkatramanan, S., Prasanna, M.V., Chung, S.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–196. ISBN 978-0-12-815413-7. [Google Scholar]
- Zacchaeus, O.O.; Adeyemi, M.B.; Azeem Adedeji, A.; Adegoke, K.A.; Anumah, A.O.; Taiwo, A.M.; Ganiyu, S.A. Effects of Industrialization on Groundwater Quality in Shagamu and Ota Industrial Areas of Ogun State, Nigeria. Heliyon 2020, 6, e04353. [Google Scholar] [CrossRef] [PubMed]
- Lwimbo, Z.D.; Komakech, H.C.; Muzuka, A.N.N. Impacts of Emerging Agricultural Practices on Groundwater Quality in Kahe Catchment, Tanzania. Water 2019, 11, 2263. [Google Scholar] [CrossRef]
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef]
- Dao, P.U.; Heuzard, A.G.; Le, T.X.H.; Zhao, J.; Yin, R.; Shang, C.; Fan, C. The Impacts of Climate Change on Groundwater Quality: A Review. Sci. Total Environ. 2024, 912, 169241. [Google Scholar] [CrossRef]
- Alao, J.O.; Fahad, A.; Abdo, H.G.; Ayejoto, D.A.; Almohamad, H.; Ahmad, M.S.; Nur, M.S.; Danjuma, T.T.; Yusuf, M.A.; Francis, O.T. Effects of Dumpsite Leachate Plumes on Surface and Groundwater and the Possible Public Health Risks. Sci. Total Environ. 2023, 897, 165469. [Google Scholar] [CrossRef] [PubMed]
- Agada, L.E.; Yakubu, M.S. Effects of poor solid waste management on groundwater: A case study of damaturu, northeast nigeria. Fudma J. Sci. 2023, 7, 77–86. [Google Scholar] [CrossRef]
- Groundwater Contamination—The Groundwater Foundation. Available online: https://groundwater.org/threats/contamination/ (accessed on 15 May 2025).
- Samaniego, J.O.; Reven Gibaga, C.L.; Mendoza, N.D.; Darwin Racadio, C.T.; Tanciongco, A.M.; Rastrullo, R.M. Mercury and Other Heavy Metals in Groundwater in the Abandoned Mercury Mine in Puerto Princesa City, Philippines. Philipp. J. Sci. 2024, 149, 897–901. [Google Scholar] [CrossRef]
- Apostol, G.L.C.; Valenzuela, S.; Seposo, X. Arsenic in Groundwater Sources from Selected Communities Surrounding Taal Volcano, Philippines: An Exploratory Study. Earth 2022, 3, 448–459. [Google Scholar] [CrossRef]
- Solis, K.L.B.; Macasieb, R.Q.; Parangat, R.C.; Resurreccion, A.C.; Ocon, J.D. Spatiotemporal Variation of Groundwater Arsenic in Pampanga, Philippines. Water 2020, 12, 2366. [Google Scholar] [CrossRef]
- Galarpe, V.K.R.; Parilla, R. Analysis of Heavy Metals in Cebu City Sanitary Landfill, Philippines. J. Environ. Sci. Manag. 2014, 17, 50–59. [Google Scholar] [CrossRef]
- Inson, J.G.M.; Supsup, C.E.; Flores, M.J.C. Spatial Mapping of Groundwater Quality in the Municipality of Santa Ignacia, Tarlac, Philippines. Appl. Water Sci. 2021, 11, 174. [Google Scholar] [CrossRef]
- Mendoza, R.U.; Torres, A.G. Anatomy of a Water Crisis. SSRN Electron. J. 2019, 19-007. [Google Scholar] [CrossRef]
- Faulmino, C.J.P.; Rola, A.C. Arsenic in Philippine Groundwaters: Exploring Governance Limitations for Drinking Water Safety. J. Environ. Sci. Manag. 2023, 1, 14–27. [Google Scholar] [CrossRef]
- Groundwater—More About the Hidden Resource—IAH—The International Association of Hydrogeologists. Available online: https://iah.org/education/general-public/groundwater-hidden-resource (accessed on 15 May 2025).
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and Human Development: Synergies and Trade-Offs within the Context of the Sustainable Development Goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef]
- THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 15 May 2025).
- Water Tables and Aquifers. Available online: https://education.nationalgeographic.org/resource/water-tables-and-aquifers/ (accessed on 15 May 2025).
- Sidiropoulos, P. Groundwater Pollution: Sources, Mechanisms, and Prevention. Hydrology 2024, 11, 98. [Google Scholar] [CrossRef]
- Liu, Y.; Fei, Y.; Li, Y.; Bao, X.; Zhang, P.; Liu, Y.; Fei, Y.; Li, Y.; Bao, X.; Zhang, P. Pollution Source Identification Methods and Remediation Technologies of Groundwater: A Review. China Geol. 2023, 7, 125–137. [Google Scholar] [CrossRef]
- Urban Population of the Philippines (2020 Census of Population and Housing)|Philippine Statistics Authority|Republic of the Philippines. Available online: https://psa.gov.ph/content/urban-population-philippines-2020-census-population-and-housing (accessed on 18 May 2025).
- Philippine Statistic Authority Country’s Overall Water Use Efficiency Increased by 5.5 Percent in 2022. Available online: https://psa.gov.ph/content/countrys-overall-water-use-efficiency-increased-55-percent-2022 (accessed on 18 May 2025).
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global Depletion of Groundwater Resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Sandoval, J.A.; Tiburan, C.L. Identification of Potential Artificial Groundwater Recharge Sites in Mount Makiling Forest Reserve, Philippines Using GIS and Analytical Hierarchy Process. Appl. Geogr. 2019, 105, 73–85. [Google Scholar] [CrossRef]
- Rodolfo, K.S.; Eco, R.C.; Joyce Sulapas, J.; Morales Rivera, A.M.; Mahar Lagmay, A.F.; Amelung, F. Disaster in Slow Motion: Widespread Land Subsidence in and Around Metro Manila, Philippines Quantified By Insar Time-Series Analysis. JSM Environ. Sci. Ecol. 2020, 8, 1068. [Google Scholar]
- Karlo, K.; Saguin, C.; Chanco, C.J.; Tan, I.S.; Andre, A.; Ortega, C. Reclaiming Social Equity in Land Use Planning for Sustainable Cities. Public. Policy J. 2017, 18, 99–126. [Google Scholar]
- Septic System Impacts on Water Sources|US EPA. Available online: https://www.epa.gov/septic/septic-system-impacts-water-sources (accessed on 18 May 2025).
- Rola, A.C.; Pulhin, J.M.; Tabios Iii, G.Q.; Lizada, J.C.; Helen, M.; Dayo, F. Challenges of Water Governance in the Philippines. Philipp. J. Sci. 2015, 144, 197–208. [Google Scholar]
- WEPA State of Water: Philippines. Available online: https://wepa-db.net/archive/policies/state/philippines/overview.htm (accessed on 18 May 2025).
- Magwilang, E.B.; Paredes, A.L.Y.; Armas, F.C.; Bugnay, H.G.P.; Dagupen, R.D. Physico-Chemical and Microbiological Assessment of Domestic Water Supply in Bontoc, Mountain Province, Philippines. H2Open J. 2023, 6, 242–255. [Google Scholar] [CrossRef]
- Ysabel, D.; Trocio, C.; Paguntalan, D.P. Review on the Use of Arbuscular Mycorrhizal Fungi in Bioremediation of Heavy Metal Contaminated Soils in the Philippines. Philipp. J. Sci. 2023, 152, 1139. [Google Scholar]
- Dey, U.; Sarkar, S.; Duttagupta, S.; Bhattacharya, A.; Das, K.; Saha, S.; Mukherjee, A. Influence of Hydrology and Sanitation on Groundwater Coliform Contamination in Some Parts of Western Bengal Basin: Implication to Safe Drinking Water. Front. Water 2022, 4, 875624. [Google Scholar] [CrossRef]
- Espíndola, J.C.; Scaccia, N.; Barbosa Segundo, I.; da Silva Diniz, D.; Uelton Diniz, J.; Mierzwa, J.C. Evaluation of the Pathway of Contaminants in the Environment: A Case Study of Different Aquatic Environmental Compartments. Sustainability 2024, 16, 3927. [Google Scholar] [CrossRef]
- Bhagat, J.; Singh, N.; Shimada, Y. Southeast Asia’s Environmental Challenges: Emergence of New Contaminants and Advancements in Testing Methods. Front. Toxicol. 2024, 6, 1322386. [Google Scholar] [CrossRef]
- Taclan, L.B.; Taclan, E.Y.; Taclan, E.C.B. Present Status and Extent of Saltwater Intrusion in Philippine Coastal Aquifers. In Proceedings of the 2024 ASABE Annual International Meeting, Anaheim, CA, USA, 28–31 July 2024; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2024. [Google Scholar]
- Venkatesh, J.; Partheeban, P.; Baskaran, A.; Krishnan, D.; Sridhar, M. Wireless Sensor Network Technology and Geospatial Technology for Groundwater Quality Monitoring. J. Ind. Inf. Integr. 2024, 38, 100569. [Google Scholar] [CrossRef]
- Oppus, C.M.; Guzman, M.A.L.G.; Guico, M.L.C.; Monje, J.C.N.; Retirado, M.G.F.; Kwong, J.C.T.; Ngo, G.C.; Domingo, A.J. Design of a Remote Real-Time Groundwater Level and Water Quality Monitoring System for the Philippine Groundwater Management Plan Project. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1007–1012. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.; Wei, G.H. The Design and Application of the Groundwater Monitoring System Based on the Internet of Things in the HeiHe River Basin. Appl. Mech. Mater. 2014, 511–512, 319–325. [Google Scholar] [CrossRef]
- Barnhart, K.; Urteaga, I.; Han, Q.; Jayasumana, A.; Illangasekare, T. On Integrating Groundwater Transport Models with Wireless Sensor Networks. Ground Water 2010, 48, 771–780. [Google Scholar] [CrossRef]
- Essamlali, I.; Nhaila, H.; El Khaili, M. Advances in Machine Learning and IoT for Water Quality Monitoring: A Comprehensive Review. Heliyon 2024, 10, e27920. [Google Scholar] [CrossRef]
- Yoon, J.; Park, S.; Han, K. Research on Real-Time Groundwater Quality Monitoring System Using Sensors around Livestock Burial Sites. Agriculture 2024, 14, 1278. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Gupta, M.; Mukherjee, S. Mapping Spatial Distribution of Pollutants in Groundwater of a Tropical Area of India Using Remote Sensing and GIS. Appl. Geomat. 2012, 4, 21–32. [Google Scholar] [CrossRef]
- Asadi, S.S.; Rajani, G.; Reddy, M.A. Analysis and Interpretation of Groundwater Contamination Using Remote Sensing and GIS: A Case Study. Curr. World Environ. 2007, 2, 115–126. [Google Scholar] [CrossRef]
- Ghosh, A.R.; Parial, K. Applications of Remote Sensing, Geographic Information System and Geostatistics in the Study of Arsenic Contamination in Groundwater. In Recent Trends in Modelling of Environmental Contaminants; Springer: New Delhi, India, 2014; pp. 197–212. ISBN 9788132217831. [Google Scholar] [CrossRef]
- Barańska, A.M.; Eckes, K. Application of GIS to Assess the Quality of Life of Inhabitants in Urbanized Areas. Geoinformatica Pol. 2022, 21, 113–120. [Google Scholar] [CrossRef]
- Bruner, B.G. Use of Geographic Information System Technology to Assess Vulnerability to Shallow Groundwater Contamination; Louisiana State University and Agricultural & Mechanical College: Baton Rouge, LA, USA, 1996. [Google Scholar] [CrossRef]
- Duarte, L.; Marques, J.E.; Teodoro, A.C. An Open Source GIS-Based Application for the Assessment of Groundwater Vulnerability to Pollution. Environments 2019, 6, 86. [Google Scholar] [CrossRef]
- Tamiru, H.; Wagari, M.; Tadese, B. An Integrated Artificial Intelligence and GIS Spatial Analyst Tools for Delineation of Groundwater Potential Zones in Complex Terrain: Fincha Catchment, Abay Basi, Ethiopia. Air Soil Water Res. 2022, 15, 11786221211045972. [Google Scholar] [CrossRef]
- Sadat-Noori, M.; Ebrahimi, K. Groundwater Vulnerability Assessment in Agricultural Areas Using a Modified DRASTIC Model. Environ. Monit. Assess. 2016, 188, 19. [Google Scholar] [CrossRef]
- Al Hallaq, A.H.; Abu Elaish, B.S. Assessment of Aquifer Vulnerability to Contamination in Khanyounis Governorate, Gaza Strip–Palestine, Using the Drastic Model within Gis Environment. Arab. J. Geosci. 2012, 5, 833–847. [Google Scholar] [CrossRef]
- Colins, J.; Sashikkumar, M.C.; Anas, P.A.; Kirubakaran, M. Evaluación Basada En El Sistema de Información Geográfica a La Vulnerabilidad de Un Acuífero a Partir Del Método DRASTIC: Caso de Estudio En La Cuenca Kodaganar. Earth Sci. Res. J. 2016, 20, H1–H8. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Castaldelli, G.; Colombani, N.; Mastrocicco, M. A Combined Methodology to Assess the Intrinsic Vulnerability of Aquifers to Pollution from Agrochemicals. Arab. J. Geosci. 2016, 9, 503. [Google Scholar] [CrossRef]
- Dashti Barmaki, M.; Saberinasr, A.; Yazdani Noori, Z. Optimization of Groundwater Quality Monitoring Network in the Rafsanjan Aquifer Using Geostatistical Kriging Algorithm and Vulnerability Mapping. Kharazmi J. Earth Sci. 2023, 9, 277–306. [Google Scholar] [CrossRef]
- Garewal, S.K.; Vasudeo, A.D.; Ghare, A.D. Optimization of the GIS-Based DRASTIC Model for Groundwater Vulnerability Assessment. Model. Optim. Sci. Technol. 2020, 16, 489–502. [Google Scholar] [CrossRef]
- Barzegar, R.; Asghari Moghaddam, A.; Norallahi, S.; Inam, A.; Adamowski, J.; Alizadeh, M.R.; Bou Nassar, J. Modification of the DRASTIC Framework for Mapping Groundwater Vulnerability Zones. Groundwater 2020, 58, 441–452. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, R.; Bhaumik, S. MCDA Techniques Used in Optimization of Weights and Ratings of DRASTIC Model for Groundwater Vulnerability Assessment. Data Sci. Manag. 2022, 5, 28–41. [Google Scholar] [CrossRef]
- Lakshminarayanan, B.; Ramasamy, S.; Anuthaman, S.N.; Karuppanan, S. New DRASTIC Framework for Groundwater Vulnerability Assessment: Bivariate and Multi-Criteria Decision-Making Approach Coupled with Metaheuristic Algorithm. Environ. Sci. Pollut. Res. 2022, 29, 4474–4496. [Google Scholar] [CrossRef]
- Meng, F.; Liang, X.; Xiao, C.; Wang, G. Integration of GIS, Improved Entropy and Improved Catastrophe Methods for Evaluating Suitable Locations for Well Drilling in Arid and Semi-Arid Plains. Ecol. Indic. 2021, 131, 108124. [Google Scholar] [CrossRef]
- Sakizadeh, M. Artificial Intelligence for the Prediction of Water Quality Index in Groundwater Systems. Model. Earth Syst. Environ. 2016, 2, 8. [Google Scholar] [CrossRef]
- Singh, S.K.; Shirzadi, A.; Pham, B.T. Application of Artificial Intelligence in Predicting Groundwater Contaminants. In Water Pollution and Management Practices; Springer: Singapore, 2021; pp. 71–105. [Google Scholar] [CrossRef]
- Al-Adhaileh, M.H.; Aldhyani, T.H.H.; Alsaade, F.W.; Al-Yaari, M.; Albaggar, A.K.A. Groundwater Quality: The Application of Artificial Intelligence. J. Environ. Public. Health 2022, 2022, 8425798. [Google Scholar] [CrossRef]
- Teimoori, S.; Olya, M.H.; Miller, C.J. Groundwater Level Monitoring Network Design with Machine Learning Methods. J. Hydrol. 2023, 625, 130145. [Google Scholar] [CrossRef]
- Che Nordin, N.F.; Mohd, N.S.; Koting, S.; Ismail, Z.; Sherif, M.; El-Shafie, A. Groundwater Quality Forecasting Modelling Using Artificial Intelligence: A Review. Groundw. Sustain. Dev. 2021, 14, 100643. [Google Scholar] [CrossRef]
- Kuruvilla, E.; Kundapura, S. Performance Comparison of Machine Learning Algorithms in Groundwater Potability Prediction. In Proceedings of the 7th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2022, Mangalore, India, 1–3 December 2022; pp. 53–58. [Google Scholar] [CrossRef]
- Domakonda, V.K.; Sasirekha, K.; Sangeetha, S.; Umasankar, L.; Nagendiran, S.; Kumar, M.J. An Empirical Evaluation of Machine Learning Algorithms for Groundwater Quality Classification. In Proceedings of the 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023, Uttar Pradesh, India, 22–24 February 2023. [Google Scholar] [CrossRef]
- Dong, Z.; Li, F.; Beheshti, B.; Mickelson, A.; Panero, M.; Anid, N. Autonomous Real-Time Water Quality Sensing as an Alternative to Conventional Monitoring to Improve the Detection of Food, Energy, and Water Indicators. J. Environ. Stud. Sci. 2016, 6, 200–207. [Google Scholar] [CrossRef]
- Manzoor, B.; Khan, M.D. Gender Discrimination and Its Impact on Pakistani Women Married to Afghan Refugees (1980–2018). Cent. Asia 2024, 93, 65–83. [Google Scholar] [CrossRef]
- Choughule, R.; Jangam, S.; Chiplunkar, C.; Kulkarni, O.; Mazire, B.; Karkar, P.; Jadhav, S. Real Time Monitoring of Water by Use of Internet of Things. IJARCCE 2017, 6, 817–820. [Google Scholar] [CrossRef]
- Guezouli, L.; Guezouli, L.; Eddine Djeghaba, M.B.; Bentahrour, A. IoT and AI for Real-Time Water Monitoring and Leak Detection. J. Renew. Energ. 2024, 27, 243–281. [Google Scholar] [CrossRef]
- Alshehri, F.; Rahman, A. Coupling Machine and Deep Learning with Explainable Artificial Intelligence for Improving Prediction of Groundwater Quality and Decision-Making in Arid Region, Saudi Arabia. Water 2023, 15, 2298. [Google Scholar] [CrossRef]
- AlAyyash, S.; Al-Fugara, A.; Shatnawi, R.; Al-Shabeeb, A.R.; Al-Adamat, R.; Al-Amoush, H. Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods for Groundwater Potential Mapping. Sustainability 2023, 15, 2499. [Google Scholar] [CrossRef]
- Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H.A.; Soozanipour, A.; Low, Z.X.; Asadnia, M.; Taheri-Kafrani, A.; Razmjou, A. Biosensors for Wastewater Monitoring: A Review. Biosens. Bioelectron. 2018, 118, 66–79. [Google Scholar] [CrossRef]
- Suryan, S.K. Biosensors: A Tool for Environmental Monitoring and Analysis. In Advances in Environmental Biotechnology; Springer: Singapore, 2017; pp. 265–288. [Google Scholar] [CrossRef]
- Ali, J.; Najeeb, J.; Asim Ali, M.; Farhan Aslam, M.; Raza, A. Biosensors: Their Fundamentals, Designs, Types and Most Recent Impactful Applications: A Review. J. Biosens. Bioelectron. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Ali, R.; Singh, D.V. Biosensors: A Biotechnological Tool for Monitoring Environmental Pollution. Bioremediation Biotechnol. 2020, 3, 331–348. [Google Scholar] [CrossRef]
- Srivastava, P.; Mittal, Y.; Gupta, S.; Abbassi, R.; Garaniya, V. Recent Progress in Biosensors for Wastewater Monitoring and Surveillance. In Artificial Intelligence and Data Science in Environmental Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 245–267. [Google Scholar] [CrossRef]
- Hui, Y.; Huang, Z.; Alahi, M.E.E.; Nag, A.; Feng, S.; Mukhopadhyay, S.C. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. Biosensors 2022, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Dei, J.; Bandyopadhyay, R.; Behera, B.K. Nano-Biosensor Applications for Water Quality Monitoring. In Current Trends in Fisheries Biotechnology; Springer Nature: Singapore, 2024; pp. 65–78. [Google Scholar] [CrossRef]
- Tan, B.F.; Ng, C.; Nshimyimana, J.P.; Loh, L.L.; Gin, K.Y.H.; Thompson, J.R. Next-Generation Sequencing (NGS) for Assessment of Microbial Water Quality: Current Progress, Challenges, and Future Opportunities. Front. Microbiol. 2015, 6, 1027. [Google Scholar] [CrossRef] [PubMed]
- Vierheilig, J.; Savio, D.; Farnleitner, A.H.; Reischer, G.H.; Ley, R.E.; Mach, R.L.; Farnleitner, A.H.; Reischer, G.H. Potential Applications of next Generation DNA Sequencing of 16S RRNA Gene Amplicons in Microbial Water Quality Monitoring. Water Sci. Technol. 2015, 72, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Buccheri, M.A.; Salvo, E.; Coci, M.; Quero, G.M.; Zoccarato, L.; Privitera, V.; Rappazzo, G. Investigating Microbial Indicators of Anthropogenic Marine Pollution by 16S and 18S High-Throughput Sequencing (HTS) Library Analysis. FEMS Microbiol. Lett. 2019, 366, fnz179. [Google Scholar] [CrossRef]
- Lyons, K.J.; Ikonen, J.; Hokajärvi, A.M.; Räsänen, T.; Pitkänen, T.; Kauppinen, A.; Kujala, K.; Rossi, P.M.; Miettinen, I.T. Monitoring Groundwater Quality with Real-Time Data, Stable Water Isotopes, and Microbial Community Analysis: A Comparison with Conventional Methods. Sci. Total Environ. 2023, 864, 161199. [Google Scholar] [CrossRef]
- Dahan, O. Real-Time Monitoring of the Vadose Zone as a Key to Groundwater Protection from Pollution Hazard. Water Resour. Manag. VIII 2015, 1, 351–362. [Google Scholar] [CrossRef]
- Chenevey, B.; Buchberger, S. Impact of Urban Development on Local Water Balance. In Proceedings of the World Environmental and Water Resources Congress 2013: Showcasing the Future, Cincinnati, OH, USA, 19–23 May 2013; pp. 2625–2636. [Google Scholar] [CrossRef]
- Barron, O.V.; Barr, A.D.; Donn, M.J. Effect of Urbanisation on the Water Balance of a Catchment with Shallow Groundwater. J. Hydrol. 2013, 485, 162–176. [Google Scholar] [CrossRef]
- Belen, M.A.; Jacinto, J.L.; Go, N.; Santos, L.T.; Zagala, A.J.C.; Santos, R.A.; Apodaca, D.C. Assessment of the Impact of Open Waste Dumpsite on Groundwater Quality: A Case Study of the Payatas Dumpsite in Quezon City, Philippines. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 012050. [Google Scholar] [CrossRef]
- Sakawi, Z.; Rozaimi Ariffin, M.; Mastura, S.S.A.; Jali, M.F.M. The Analysis of Heavy Metal Concentration per Distance and Depth around the Vicinity of Open Landfill. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 8619–8625. [Google Scholar] [CrossRef]
- Srinivasa, K.G.; Shikhar, A.; Naveen, J.S.; Sowmya, B.J. Social Impacts of Using Internet of Things and Data Analytics to Prevent and Reduce the Rate of Accidents. Int. J. Appl. Evol. Comput. 2016, 7, 60–76. [Google Scholar] [CrossRef]
- Ashraf, S.; Abbas, F.; Ibrahim, M.; Rashid, U.; Khalid, S.; Ahmad, H.R.; Hakeem, K.R.; Majeed, T. Application of GIS for the Identification and Demarcation of Selective Heavy Metal Concentrations in the Urban Groundwater. J. Geogr. Sci. 2015, 25, 225–235. [Google Scholar] [CrossRef]
- Lal, K.; Minhas, P.S.; Yadav, R.K. Long-Term Impact of Wastewater Irrigation and Nutrient Rates II. Nutrient Balance, Nitrate Leaching and Soil Properties under Peri-Urban Cropping Systems. Agric. Water Manag. 2015, 156, 110–117. [Google Scholar] [CrossRef]
- Gooddy, D.C.; Macdonald, D.M.J.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J. Nitrogen Sources, Transport and Processing in Peri-Urban Floodplains. Sci. Total Environ. 2014, 494–495, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Bouman, B.A.M.; Castañeda, A.R.; Bhuiyan, S.I. Nitrate and Pesticide Contamination of Groundwater under Rice-Based Cropping Systems: Past and Current Evidence from the Philippines. Agric. Ecosyst. Environ. 2002, 92, 185–199. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.; Zeng, D.; Su, Y.; Zhang, Y. Nitrate Recovery from Groundwater and Simultaneous Upcycling into Single-Cell Protein Using a Novel Hybrid Biological-Inorganic System. Water Res. 2024, 263, 122127. [Google Scholar] [CrossRef]
- Shayestehfar, M.; Rezaei, A.; Mousavi, S.B.F.; Yashooa, N.K. Evaluation of Groundwater Quality and Health Risk Assessment of Nitrate Concentration in the Rayen Basin, Kerman, Southeast Iran. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Richa, A.; Touil, S.; Fizir, M. Recent Advances in the Source Identification and Remediation Techniques of Nitrate Contaminated Groundwater: A Review. J. Environ. Manag. 2022, 316, 115265. [Google Scholar] [CrossRef]
- Kumarathilaka, P.; Jayawardhana, Y.; Basnayake, B.F.A.; Mowjood, M.I.M.; Nagamori, M.; Saito, T.; Kawamoto, K.; Vithanage, M. Characterizing Volatile Organic Compounds in Leachate from Gohagoda Municipal Solid Waste Dumpsite, Sri Lanka. Groundw. Sustain. Dev. 2016, 2–3, 1–6. [Google Scholar] [CrossRef]
- Parao, A.E. Volatile Organic Compounds in Urban and Industrial Areas in the Philippines. Master’s Dissertation, Universiteit Gent, Gent, Belgium, 2012. [Google Scholar]
- Ainscough, T.J.; Oatley-Radcliffe, D.L.; Barron, A.R. Groundwater Remediation of Volatile Organic Compounds Using Nanofiltration and Reverse Osmosis Membranes—A Field Study. Membranes 2021, 11, 61. [Google Scholar] [CrossRef]
- Bagordo, F.; Brigida, S.; Grassi, T.; Caputo, M.C.; Apollonio, F.; De Carlo, L.; Savino, A.F.; Triggiano, F.; Turturro, A.C.; De Donno, A.; et al. Factors Influencing Microbial Contamination of Groundwater: A Systematic Review of Field-Scale Studies. Microorganisms 2024, 12, 913. [Google Scholar] [CrossRef]
- Oon, Y.L.; Oon, Y.S.; Ayaz, M.; Deng, M.; Li, L.; Song, K. Waterborne Pathogens Detection Technologies: Advances, Challenges, and Future Perspectives. Front. Microbiol. 2023, 14, 1286923. [Google Scholar] [CrossRef]
- Al-Hashimi, O.; Hashim, K.; Loffill, E.; Marolt Čebašek, T.; Nakouti, I.; Faisal, A.A.H.; Al-Ansari, N. A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Molecules 2021, 26, 5913. [Google Scholar] [CrossRef]
- Twinomucunguzi, F.R.B.; Nyenje, P.M.; Semiyaga, S.; Kebirungi, P.; Kulabako, R.N.; Kansiime, F. Antibiotics in Shallow Groundwater Underlying Urban Informal Settlements in Developing Countries: Influence of on-Site Sanitation Practices and Risk Assessment. Urban. Water J. 2023, 20, 1731–1743. [Google Scholar] [CrossRef]
- Karimi, K.J.; Ngumba, E.; Ahmad, A.; Duse, A.G.; Olago, D.; Ndwigah, S.N.; Mwanthi, M.A.; Ayah, R.; Dulo, S. Contamination of Groundwater with Sulfamethoxazole and Antibiotic Resistant Escherichia Coli in Informal Settlements in Kisumu, Kenya. PLoS Water 2023, 2, e0000076. [Google Scholar] [CrossRef]
- Balseiro-Romero, M.; Monterroso, C.; Casares, J.J. Environmental Fate of Petroleum Hydrocarbons in Soil: Review of Multiphase Transport, Mass Transfer, and Natural Attenuation Processes. Pedosphere 2018, 28, 833–847. [Google Scholar] [CrossRef]
- Varjani, S.J.; Joshi, R.R.; Senthil Kumar, P.; Srivastava, V.K.; Kumar, V.; Banerjee, C.; Praveen Kumar, R. Polycyclic Aromatic Hydrocarbons from Petroleum Oil Industry Activities: Effect on Human Health and Their Biodegradation. In Energy, Environment, and Sustainability; Springer Nature: Singapore, 2018; pp. 185–199. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. Fate of Total Petroleum Hydrocarbons in the Environment. In Total Petroleum Hydrocarbons; Springer: Cham, Switzerland, 2020; pp. 57–77. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. Ecological Impacts of Total Petroleum Hydrocarbons. In Total Petroleum Hydrocarbons; Springer: Cham, Switzerland, 2020; pp. 95–138. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, X.; Li, M.; Ma, Y.; Wang, J.; Liu, X. Occurrence and Risk Assessment of Pharmaceuticals and Personal Care Products and Endocrine Disrupting Chemicals in Reclaimed Water and Receiving Groundwater in China. Ecotoxicol. Environ. Saf. 2015, 119, 74–80. [Google Scholar] [CrossRef]
- Peng, X.; Ou, W.; Wang, C.; Wang, Z.; Huang, Q.; Jin, J.; Tan, J. Occurrence and Ecological Potential of Pharmaceuticals and Personal Care Products in Groundwater and Reservoirs in the Vicinity of Municipal Landfills in China. Sci. Total Environ. 2014, 490, 889–898. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Vizintin, G.; Souvent, P.; Veselič, M.; Cencur Curk, B. Determination of Urban Groundwater Pollution in Alluvial Aquifer Using Linked Process Models Considering Urban Water Cycle. J. Hydrol. 2009, 377, 261–273. [Google Scholar] [CrossRef]
- Schiedek, T.; Beier, M.; Ebhardt, G. An Integrative Method to Quantify Contaminant Fluxes in the Groundwater of Urban Areas. J. Soils Sediments 2007, 7, 261–269. [Google Scholar] [CrossRef]
- White, D.; Lapworth, D.J.; Stuart, M.E.; Williams, P.J. Hydrochemical Profiles in Urban Groundwater Systems: New Insights into Contaminant Sources and Pathways in the Subsurface from Legacy and Emerging Contaminants. Sci. Total Environ. 2016, 562, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Mughal, A.; Sultan, K.; Ashraf, K.; Hassan, A.; Zaman, Q.; Haider, F.U.; Shahzad, B. Risk Analysis of Heavy Metals and Groundwater Quality Indices in Residential Areas: A Case Study in the Rajanpur District, Pakistan. Water 2022, 14, 3551. [Google Scholar] [CrossRef]
- Senoro, D.B.; de Jesus, K.L.M.; Mendoza, L.C.; Apostol, E.M.D.; Escalona, K.S.; Chan, E.B. Groundwater Quality Monitoring Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method. Appl. Sci. 2022, 12, 132. [Google Scholar] [CrossRef]
- Velusamy, K.; Periyasamy, S.; Kumar, P.S.; Rangasamy, G.; Nisha Pauline, J.M.; Ramaraju, P.; Mohanasundaram, S.; Nguyen Vo, D.V. Biosensor for Heavy Metals Detection in Wastewater: A Review. Food Chem. Toxicol. 2022, 168, 113307. [Google Scholar] [CrossRef]
- Bansod, B.K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Mukhopadhyay, S.C. Detection Methods of Nitrate in Water: A Review. Sens. Actuators A Phys. 2018, 280, 210–221. [Google Scholar] [CrossRef]
- Singh, P.; Singh, M.K.; Beg, Y.R.; Nishad, G.R. A Review on Spectroscopic Methods for Determination of Nitrite and Nitrate in Environmental Samples. Talanta 2019, 191, 364–381. [Google Scholar] [CrossRef]
- Li, R.; Merchant, J.W.; Chen, X.H. A Geospatial Approach for Assessing Groundwater Vulnerability to Nitrate Contamination in Agricultural Settings. Water Air Soil Pollut. 2014, 225, 2214. [Google Scholar] [CrossRef]
- Rebolledo, B.; Gil, A.; Flotats, X.; Sánchez, J.Á. Assessment of Groundwater Vulnerability to Nitrates from Agricultural Sources Using a GIS-Compatible Logic Multicriteria Model. J. Environ. Manag. 2016, 171, 70–80. [Google Scholar] [CrossRef]
- Saida, S.; Tarik, H.; Abdellah, A.; Farid, H.; Hakim, B. Assessment of Groundwater Vulnerability to Nitrate Based on the Optimised DRASTIC Models in the GIS Environment (Case of Sidi Rached Basin, Algeria). Geosciences 2017, 7, 20. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated Volatile Organic Compounds (Cl-VOCs) in Environment—Sources, Potential Human Health Impacts, and Current Remediation Technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- Jianyin, X.; Huang, S. Volatile Organic Compounds (VOCs). In Handbook of Indoor Air Quality; Springer Nature: Cham, Switzerland, 2022; pp. 1–28. [Google Scholar] [CrossRef]
- Grembi, J.A.; Mayer-Blackwell, K.; Luby, S.P.; Spormann, A.M. High-Throughput Multiparallel Enteropathogen Detection via Nano-Liter QPCR. Front. Cell Infect. Microbiol. 2020, 10, 351. [Google Scholar] [CrossRef]
- Walker, D.I.; McQuillan, J.; Taiwo, M.; Parks, R.; Stenton, C.A.; Morgan, H.; Mowlem, M.C.; Lees, D.N. A Highly Specific Escherichia Coli QPCR and Its Comparison with Existing Methods for Environmental Waters. Water Res. 2017, 126, 101–110. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Murinda, S.E.; Park, S.; Obayiuwana, A.; Murry, M.A.; Schwartz, G.; Lundquist, T. Comparative Use of Quantitative Pcr (Qpcr), Droplet Digital Pcr (Ddpcr), and Recombinase Polymerase Amplification (Rpa) in the Detection of Shiga Toxin-Producing e. Coli (Stec) in Environmental Samples. Water 2020, 12, 3507. [Google Scholar] [CrossRef]
- Bourelly, C.; Bria, A.; Ferrigno, L.; Gerevini, L.; Marrocco, C.; Molinara, M.; Cerro, G.; Cicalini, M.; Ria, A. A Preliminary Solution for Anomaly Detection in Water Quality Monitoring. In Proceedings of the 2020 IEEE International Conference on Smart Computing, SMARTCOMP 2020, Bologna, Italy, 14–17 September 2020; pp. 410–415. [Google Scholar] [CrossRef]
- Raman MR, G.; Somu, N.; Mathur, A.P. A Multilayer Perceptron Model for Anomaly Detection in Water Treatment Plants. Int. J. Crit. Infrastruct. Prot. 2020, 31, 100393. [Google Scholar] [CrossRef]
- Li, D.; Liu, S. Groundwater Quality Detection. In Water Quality Monitoring and Management; Academic Press: Cambridge, MA, USA, 2019; pp. 269–302. [Google Scholar] [CrossRef]
- Guimarães, L.; Guilhermino, L.; Afonso, M.J.; Marques, J.M.; Chaminé, H.I. Assessment of Urban Groundwater: Towards Integrated Hydrogeological and Effects-Based Monitoring. Sustain. Water Resour. Manag. 2019, 5, 217–233. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An Overview of Permeable Reactive Barriers for in Situ Sustainable Groundwater Remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef]
- He, Q.; Si, S.; Yang, J.; Tu, X. Application of Permeable Reactive Barrier in Groundwater Remediation. E3S Web Conf. 2019, 136, 06021. [Google Scholar] [CrossRef]
- Thakur, A.K.; Vithanage, M.; Das, D.B.; Kumar, M. A Review on Design, Material Selection, Mechanism, and Modelling of Permeable Reactive Barrier for Community-Scale Groundwater Treatment. Environ. Technol. Innov. 2020, 19, 100917. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, K.; Zhao, Q.; Yang, L.; Wang, G.; Jiang, M.; Li, L. An Overview of in Situ Remediation for Groundwater Co-Contaminated with Heavy Metals and Petroleum Hydrocarbons. J. Environ. Manag. 2024, 349, 119342. [Google Scholar] [CrossRef] [PubMed]
- Dhir, B. Bioremediation Technologies for the Removal of Pollutants. In Advances in Environmental Biotechnology; Springer: Singapore, 2017; pp. 69–91. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Mahmoud, Y.A.G. Technological Approach of Bioremediation Using Microbial Tools: Bacteria, Fungi, and Algae. In Handbook of Research on Inventive Bioremediation Techniques; IGI Global: Hershey, PA, USA, 2017; pp. 134–154. [Google Scholar] [CrossRef]
- Speight, J.G. Natural Water Remediation: Chemistry and Technology; Butterworth-Heinemann: Oxford, UK, 2019; pp. 1–392. [Google Scholar] [CrossRef]
- Ciampi, P.; Esposito, C.; Bartsch, E.; Alesi, E.J.; Petrangeli Papini, M. Pump-and-Treat (P&T) vs Groundwater Circulation Wells (GCW): Which Approach Delivers More Sustainable and Effective Groundwater Remediation? Environ. Res. 2023, 234, 116538. [Google Scholar] [CrossRef]
- Casasso, A.; Tosco, T.; Bianco, C.; Bucci, A.; Sethi, R. How Can We Make Pump and Treat Systems More Energetically Sustainable? Water 2020, 12, 67. [Google Scholar] [CrossRef]
- Reddy, K.R. Technical Challenges to In-Situ Remediation of Polluted Sites. Geotech. Geol. Eng. 2010, 28, 211–221. [Google Scholar] [CrossRef]
- Maddah, H.A. Industrial Membrane Processes for the Removal of VOCs from Water and Wastewater. Int. J. Eng. Appl. Sci. (IJEAS) 2019, 6, 21–26. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I. Hybrid and Sequential Chemical and Electrochemical Processes for Water Decontamination. In Electrochemical Water and Wastewater Treatment; Butterworth-Heinemann: Oxford, UK, 2018; pp. 267–304. [Google Scholar] [CrossRef]
- Anandan, S.; Kumar Ponnusamy, V.; Ashokkumar, M. A Review on Hybrid Techniques for the Degradation of Organic Pollutants in Aqueous Environment. Ultrason. Sonochem 2020, 67, 105130. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and Tracks in Removal of Emerging Contaminants from the Wastewater through Hybrid Treatment Systems: A Review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef] [PubMed]
- Hosono, T.; Siringan, F.; Yamanaka, T.; Umezawa, Y.; Onodera, S.; Nakano, T.; Taniguchi, M. Application of Multi-Isotope Ratios to Study the Source and Quality of Urban Groundwater in Metro Manila, Philippines. Appl. Geochem. 2010, 25, 900–909. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef]
- Mason, L.R. Gender and Asset Dimensions of Seasonal Water Insecurity in Urban Philippines. Weather Clim. Soc. 2012, 4, 20–33. [Google Scholar] [CrossRef]
- Husana, D.E.; Yamamuro, M. Groundwater Quality in Karst Regions in the Philippines. Limnology 2013, 14, 293–299. [Google Scholar] [CrossRef]
- Buagas, D.J.B.; Megraso, C.C.F.; Namata, J.D.O.; Lim, P.J.Y.; Gatus, K.P.; Cañete, A.M.L. Tracking Quicksilver: Estimation of Mercury Waste from Consumer Products and Subsequent Verification by Analysis of Soil, Water, Sediment, and Plant Samples from the Cebu City, Philippines, Landfill. Environ. Monit. Assess. 2015, 187, 138. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, W.G.; Busby, A.L.; Orprecio, J.L.; Bago-Labis, J.P.; Cequiña, E.Y. Community-Based Hydrological and Water Quality Assessments in Mindanao, Philippines. In Forests, Water and People in the Humid Tropics: Past, Present and Future Hydrological Research for Integrated Land and Water Management; Cambridge University Press: Cambridge, UK, 2005; pp. 134–150. [Google Scholar] [CrossRef]
- Serrona, K.R.B.; Yu, J.; Aguinaldo, E.; Florece, L.M. Developing a Monitoring and Evaluation Framework to Integrate and Formalize the Informal Waste and Recycling Sector: The Case of the Philippine National Framework Plan. Waste Manag. Res. 2014, 32, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Pausta, C.M.J.; Razon, L.F.; Promentilla, M.A.B.; Saroj, D.P. Life Cycle Assessment of a Retrofit Wastewater Nutrient Recovery System in Metro Manila. Chem. Eng. Trans. 2018, 70, 337–342. [Google Scholar] [CrossRef]
- Condor, B.; Patiño, C.; Sinogaya, J. Design of Groundwater Monitoring Network for Coastal Aquifers Based on Seawater Intrusion Vulnerability: A Case Study of Mandaue City, Philippines. IOP Conf. Ser. Earth Environ. Sci. 2022, 1094, 012002. [Google Scholar] [CrossRef]
- Foster, S.; Garduño, H. Groundwater-Resource Governance: Are Governments and Stakeholders Responding to the Challenge? Hydrogeol. J. 2013, 21, 317–320. [Google Scholar] [CrossRef]
Region, Province, and Highly Urbanized City | Total Population | Urban Population | Percent Urban | |||
---|---|---|---|---|---|---|
2020 | 2015 | 2020 | 2015 | 2020 | 2015 | |
PHILIPPINES | 109,033,245 | 100,979,303 | 58,930,729 | 51,728,697 | 54.0 | 51.2 |
NATIONAL CAPITAL REGION (NCR) | 13,484,462 | 12,877,253 | 13,484,462 | 12,877,253 | 100.0 | 100.0 |
CORDILLERA ADMINISTRATIVE REGION (CAR) | 1,797,660 | 1,722,006 | 598,688 | 524,672 | 33.3 | 30.5 |
REGION I (ILOCOS REGION) | 5,301,139 | 5,026,128 | 1,351,205 | 1,029,562 | 25.5 | 20.5 |
REGION II (CAGAYAN VALLEY) | 3,685,744 | 3,451,410 | 717,788 | 663,695 | 19.5 | 19.2 |
REGION III (CENTRAL LUZON) | 12,422,172 | 11,218,177 | 8,230,254 | 6,914,703 | 66.3 | 61.6 |
REGION IV-A (CALABARZON) | 16,195,042 | 14,414,774 | 11,415,742 | 9,564,515 | 70.5 | 66.4 |
MIMAROPA REGION | 3,228,558 | 2,963,360 | 1,138,021 | 905,666 | 35.2 | 30.6 |
REGION V (BICOL REGION) | 6,082,165 | 5,796,989 | 1,447,370 | 1,344,903 | 23.8 | 23.2 |
REGION VI (WESTERN VISAYAS) | 7,954,723 | 7,536,383 | 3,353,205 | 2,868,795 | 42.2 | 38.1 |
REGION VII (CENTRAL VISAYAS) | 8,081,988 | 7,396,898 | 4,196,639 | 3,656,628 | 51.9 | 49.4 |
REGION VIII (EASTERN VISAYAS) | 4,547,150 | 4,440,150 | 666,473 | 529,902 | 14.7 | 11.9 |
REGION IX (ZAMBOANGA PENINSULA) | 3,875,576 | 3,629,783 | 1,489,443 | 1,373,274 | 38.4 | 37.8 |
REGION X (NORTHERN MINDANAO) | 5,022,768 | 4,689,302 | 2,528,239 | 2,272,001 | 50.3 | 48.5 |
REGION XI (DAVAO REGION) | 5,243,536 | 4,893,318 | 3,504,533 | 3,108,872 | 66.8 | 63.5 |
REGION XII (SOCCSKSARGEN) | 4,360,974 | 4,053,514 | 2,418,843 | 2,031,361 | 55.5 | 50.1 |
REGION XIII (CARAGA) | 2,804,788 | 2,596,709 | 1,027,223 | 869,195 | 36.6 | 33.5 |
BARMM | 4,944,800 | 4,273,149 | 1,362,601 | 1,193,700 | 27.6 | 27.9 |
Year | Total Water Withdrawals (in mcm) | Total Water Withdrawals (in bcm) | Level of Water Stress |
---|---|---|---|
2010 | 83,336.25 | 83.34 | 25.48% |
2011 | 84,104.91 | 84.10 | 25.71% |
2012 | 84,292.17 | 84.29 | 25.77% |
2013 | 84,482.09 | 84.48 | 25.83% |
2014 | 84,628.06 | 84.63 | 25.87% |
2015 | 85,556.47 | 85.56 | 26.16% |
2016 | 86,298.74 | 86.30 | 26.38% |
2017 | 91,920.20 | 91.92 | 28.10% |
2018 | 92,282.29 | 92.28 | 28.21% |
2019 | 85,994.51 | 85.99 | 26.29% |
2020 | 87,477.27 | 87.48 | 26.74% |
2021 | 89,000.36 | 89.00 | 27.21% |
2022 | 91,036.89 | 91.04 | 27.83% |
Focus Area | Approximate No. of References |
---|---|
Groundwater contamination and pollutant profiles | 58 |
Monitoring technologies and assessment methods | 56 |
Remediation techniques and planning integration | 35 |
Philippine-specific case studies and governance | 42 |
Reviews and global frameworks (cross-cutting) | 34 |
Category | Technique | Description | Advantages | Challenges | Applicable Contaminants | References |
---|---|---|---|---|---|---|
Technology-Based | IoT-Based Monitoring | Real-time data acquisition using sensor networks and microcontrollers | Continuous monitoring, cost-effective, scalable | Initial cost, sensor maintenance, data transmission issues | pH, EC, salinity, turbidity, nitrates | [39,40,41,42] |
Remote Sensing & GIS | Remote sensors and GIS tools for spatial analysis of contaminants | Large-scale coverage, mapping capabilities | Affected by weather, resolution limitations | Nitrate, chloride, ammonium | [44,45,46,47] | |
DRASTIC Method | Hydrogeological vulnerability mapping | Identifies high-risk zones, widely accepted | Data-intensive, lacks temporal dynamics | Multiple pollutants (risk zones only) | [52,53,54,55,56] | |
AI & Real-Time | Machine Learning (ANN, SVM, ANFIS) | Predictive models for groundwater quality indices | High accuracy, reduces lab analysis needs | Requires large datasets and training expertise | Heavy metals, nitrates, multi-parameter indices | [62,63,64,65,66,67,68] |
Real-Time Analytics | Integration of AI with real-time sensor data | Early warning, fast response | Dependent on sensor reliability and network access | Sudden shifts in water quality (multi-contaminant) | [65,66,69,70,71,72,73] | |
Emerging | Biosensors | Analytical tools with biological recognition for specific pollutants | Fast, sensitive, low-cost, on-site detection | Limited target range, lifespan and calibration issues | Heavy metals, PPCPs, pathogen | [75,76,77,78,79] |
DNA-Based Methods | Microbial fingerprinting using sequencing data | Identifies contamination source and ecology | Costly, complex interpretation | Pathogens (E. coli, etc.) | [82,83,84,85,86] |
Contaminant Group | Examples | Primary Sources | Reported Levels | Environmental/ Health Risks | References |
---|---|---|---|---|---|
Heavy Metals | Lead, Arsenic, Cadmium, Chromium | Industrial discharge, mining, landfills | Lead—up to 0.03 mg/L (Payatas); Arsenic—0.01–0.05 mg/L (Pampanga) | Neurotoxicity, carcinogenicity, kidney damage | [64,65,66,67,68] |
Nutrients & Pesticides | Nitrate, Ammonia, Glyphosate | Agricultural runoff, septic leakage | Nitrate—up to 72 mg/L (Santa Ignacia, Tarlac) | Eutrophication, blue baby syndrome, hormone disruption | [84,85,86] |
VOCs & Chlorinated Solvents | Benzene, TCE, PCE | Industrial solvents, fuel stations | Benzene—>5 µg/L in select industrial zones | Carcinogenicity, liver/kidney effects | [88,89,90,91] |
Pathogens | E. coli, Salmonella | Improper sewage disposal, septic tank leakage | Total coliforms and E. coli present in La Union wells | Gastrointestinal infections, waterborne disease outbreaks | [92,93] |
Hydrocarbons | Toluene, Xylene, Diesel | Oil spills, underground storage tanks | Presence reported near fuel depots (quantitative data limited) | Soil and water contamination, chronic health impacts | [89] |
Pharmaceuticals & Personal Care Products (PPCPs) | Antibiotics, hormones | Hospital waste, sewage effluent | No quantitative Philippine data yet; global detection at ng/L to µg/L levels | Antibiotic resistance, endocrine disruption | [46] |
Contaminant Type | Common Detection Methods | Preferred Remediation Techniques | Remarks |
---|---|---|---|
Heavy Metals | ICP-MS, AAS, portable XRF [69,70,73] | PRBs with ZVI, chemical precipitation [76,82] | Requires site-specific media selection and long-term monitoring |
Nitrate | Ion chromatography, UV spectrophotometry [85] | Bioremediation, denitrifying biofilters [76,83] | High mobility necessitates continuous tracking and multi-barrier systems |
VOCs & Chlorinated Solvents | GC-MS, in situ fiber-optic sensors [89,90] | PRBs, chemical oxidation, air stripping [87,91] | Often found with hydrocarbons; require stratified sampling and modeling |
Pathogens | qPCR, biosensors [92,93] | Bioremediation, chlorination [83] | Biosensor calibration is key for reliability in field deployment |
Hydrocarbons | GC-MS, Direct Push Technology (DPT) [89] | Anaerobic bioremediation, phytoremediation [49,76] | Often co-occurs with metals and solvents; integrated approaches are ideal |
PPCPs | LC-MS/MS, AI-integrated sensor networks [46] | Reverse osmosis, nanofiltration, hybrid oxidation-membrane [87,91] | Persistent in wastewater; not effectively removed by conventional systems |
Contaminant Type | IoT/WSN | Remote Sensing/GIS | Biosensors | DNA-Based Methods | AI/ML | Field Application in PH | Research Gaps |
---|---|---|---|---|---|---|---|
Heavy Metals | ✓ | ✓ | ✓ | ✘ | ✓ | Cebu, Batangas, Pampanga | Integration of AI with real-time sensors |
Nitrate and Pesticides | ✓ | ✓ | ✘ | ✘ | ✓ | Tarlac, La Union | Hybrid bio-inorganic sensors need local validation |
VOCs and Chlorinated Solv. | ✘ | ✘ | ✘ | ✘ | ✓ | Few, not site-specific | Understudied, urgent risk |
Pathogens (e.g., E. coli) | ✓ | ✘ | ✓ | ✓ | ✘ | La Union, Metro Manila | Biosensor field reliability |
Hydrocarbons | ✘ | ✘ | ✘ | ✘ | ✘ | Rarely studied | Major knowledge gap |
PPCPs (Pharma and Care Prods) | ✘ | ✘ | ✘ | ✓ | ✓ | None yet | No Philippine study so far |
Identified Gap | Why It Matters | Consequence | Suggested Direction |
---|---|---|---|
No AI-integrated real-time monitoring | Limits early detection of pollution | Delayed interventions | Develop unified AI-IoT sensor platforms |
Lack of local biosensor validation | Tools may not work in tropical urban contexts | Reduced trust, wasted funds | Field validation in PH cities |
Understudied emerging contaminants (PPCPs, VOCs) | Cannot regulate what is not understood | Public health risk | Fund studies on PPCPs in Metro Manila/Cebu |
Monitoring not linked to zoning or permits | Developments proceed in vulnerable areas | Long-term groundwater degradation | Integrate DRASTIC/ML maps in urban planning |
Fragmented institutional coordination | Redundancy or inaction in groundwater protection | Governance inefficiency | Create multisector data-sharing and response hub |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles, K.P.V.; Monjardin, C.E.F. Assessment and Monitoring of Groundwater Contaminants in Heavily Urbanized Areas: A Review of Methods and Applications for Philippines. Water 2025, 17, 1903. https://doi.org/10.3390/w17131903
Robles KPV, Monjardin CEF. Assessment and Monitoring of Groundwater Contaminants in Heavily Urbanized Areas: A Review of Methods and Applications for Philippines. Water. 2025; 17(13):1903. https://doi.org/10.3390/w17131903
Chicago/Turabian StyleRobles, Kevin Paolo V., and Cris Edward F. Monjardin. 2025. "Assessment and Monitoring of Groundwater Contaminants in Heavily Urbanized Areas: A Review of Methods and Applications for Philippines" Water 17, no. 13: 1903. https://doi.org/10.3390/w17131903
APA StyleRobles, K. P. V., & Monjardin, C. E. F. (2025). Assessment and Monitoring of Groundwater Contaminants in Heavily Urbanized Areas: A Review of Methods and Applications for Philippines. Water, 17(13), 1903. https://doi.org/10.3390/w17131903