Groundwater Level Response to Precipitation and Potential Climate Trends
Abstract
1. Introduction
2. Materials and Methods
2.1. Nonstationary Methods for Analyzing Extreme Events
2.2. Data Acquisition Criteria and Sources
3. Results
3.1. Groundwater Level Response to Precipitation
3.2. Potential Climate Trends
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.-C.; Medina, M.A., Jr. Incorporating transient storage in conjunctive stream–aquifer modeling. Adv. Water Resour. 2003, 26, 1001–1019. [Google Scholar] [CrossRef]
- Kazezyılmaz-Alhan, C.M.; Medina, M.A.; Richardson, C.J. A Wetland Hydrology and Water Quality Model Incorporating Surface Water/Groundwater Interactions. Water Resour. Res. 2007, 43, 1–16. [Google Scholar] [CrossRef]
- Barnard, P.L.; Befus, K.M.; Danielson, J.J.; Engelstad, A.C.; Erikson, L.H.; Foxgrover, A.C.; Hayden, M.K.; Hoover, D.J.; Leijnse, T.W.B.; Massey, C.; et al. Projections of multiple climate-related coastal hazards for the US Southeast Atlantic. Nat. Clim. Change 2024, 15, 101–109. [Google Scholar] [CrossRef]
- Cortez, N.A.; Esterson, K.; Coronado, C.; Maran, C. Chapter 2B: Water and Climate Resilience Metrics; South Florida Environmental Report; South Florida Water Management District: West Palm Beach, FL, USA, 2023; Volume I, pp. 2B1–2B45. [Google Scholar]
- Obeysekera, J.; Salas, J.D. Quantifying the Uncertainty of Design Floods under Nonstationary Conditions. J. Hydrol. Eng. 2014, 19, 1438–1446. [Google Scholar] [CrossRef]
- Kidmose, J.; Refsgaard, J.C.; Troldborg, L.; Seaby, L.P.; Escrivà, M.M. Climate change impact on groundwater levels: Ensemble modelling of extreme values. Hydrol. Earth Syst. Sci. 2013, 17, 1619–1634. [Google Scholar] [CrossRef]
- Kupfersberger, H.; Rock, G.; Draxler, J.C. Combining Groundwater Flow Modeling and Local Estimates of Extreme Groundwater Levels to Predict the Groundwater Surface with a Return Period of 100 Years. Geosciences 2020, 10, 373. [Google Scholar] [CrossRef]
- Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary Extreme Value Analysis in a Changing Climate. Clim. Change 2014, 127, 353–369. [Google Scholar] [CrossRef]
- Gilleland, E.; Katz, R.W. extRemes2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 2016, 72, 1–39. [Google Scholar] [CrossRef]
- Gilleland, E.R. Package extRemes—Weather and Climate Applications of Extreme Value Analysis (EVA), extRemes 2.2; U.S. National Oceanic and Atmospheric Administration Internet Source: Washington, DC, USA, 2024. [Google Scholar]
- Gilleland, E.; Ribatet, M.; Stephenson, A.G. A software review for extreme value analysis. Extremes 2013, 16, 103–119. [Google Scholar] [CrossRef]
- Nederhoff, K.; Saleh, R.; Tehranirad, B.; Herdman, L.; Erikson, L.; Barnard, P.L.; van der Wegen, M. Drivers of extreme water levels in a large, urban, high-energy coastal estuary—A case study of the San Francisco Bay. Coast. Eng. 2021, 170, 103984. [Google Scholar] [CrossRef]
- NOAA Precipitation Frequency Data Server (PFDS). Available online: https://hdsc.nws.noaa.gov/pfds/ (accessed on 19 June 2025.).
- Bradner, A.; McPherson, B.F.; Miller, R.L.; Kish, G.; Bernard, B. Quality of Ground Water in the Biscayne Aquifer in Miami-Dade, Broward, and Palm Beach Counties, Florida, 1996–1998, with Emphasis on Contaminants; Open-File Report 2004-1438; U.S. Geological Survey: Reston, VA, USA, 2005; pp. 1–25. [Google Scholar]
- Medina, M.A. Do Record Storm Events Produce Floods of the Same Magnitude? In Engineering Methods for Precipitation Under a Changing Climate; Rolf, O.J., Adamec, K.T., Eds.; ASCE: Reston, VA, USA, 2020; Chapter 2; ISBN 978-0-7844-1552-8. [Google Scholar] [CrossRef]
- Shellie, H.; Fletcher, C.H.; Barbee, M.M.; Fornace, K.L. Hidden Threat: The Influence of Sea-Level Rise on Coastal Groundwater and the Convergence of Impacts on Municipal Infrastructure. Annu. Rev. Mar. Sci. 2024, 16, 81–103. [Google Scholar] [CrossRef]
- NOAA Tides and Currents. Available online: https://tidesandcurrents.noaa.gov/sltrends/plots/8723214_meantrend.png (accessed on 19 June 2025).
- Pinellas County Flood Map Service–Sea Level Rise Map of Tampa Bay. Available online: https://floodmaps.pinellas.gov/pages/sea-level-rise (accessed on 19 June 2025).
- Commonwealth of Massachusetts Sea Level Rise Profile. Available online: https://www.mass.gov/info-details/sea-level-rise (accessed on 19 June 2025).
- Beetle-Moorcroft, F.; Shanafield, M.; Singha, K. Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: The role of geologic controls. J. Hydrol. Reg. Stud. 2021, 35, 100814. [Google Scholar] [CrossRef]
- Schiavo, M.; Riva, M.; Guadagnini, L.; Zehe, E.; Guadagnini, A. Probabilistic identification of Preferential Groundwater Networks. J. Hydrol. 2022, 610, 127906. [Google Scholar] [CrossRef]
- NOAA Atlas 15: Update to the National Precipitation Frequency Standard. Available online: https://water.noaa.gov/about/atlas15 (accessed on 19 June 2025).
Gaging Station | Latitude (dd) | Longitude (dd) | Elevation 2 (m) | Data | Record Length |
---|---|---|---|---|---|
Raleigh-Durham (RDU) | 35.867 | −78.783 | 132.9 | Precipitation | 1950–2024 |
Chapel Hill NC Well | 35.909 | −79.058 | 155.9 | GW Levels | 1948–1997 |
WK-427 | 35.780 | −78.669 | 99.1 | GW Levels | 2020–2024 1 |
WK-428 | 35.780 | −78.669 | 99.1 | GW Levels | 2020–2024 1 |
Fort Lauderdale FL (FLL) | 26.123 | −80.137 | 20.0 | Precipitation | 1946–2024 |
F-291 | 26.003 | −80.147 | 2.8 | GW Levels | 2008–2024 |
G-2147 | 26.250 | −80.101 | 2.8 | GW Levels | 2008–2024 |
G-2900 | 26.058 | −80.194 | 1.8 | GW Levels | 2001–2018 |
Miami FL (MIA) | 25.793 | −80.291 | 3.0 | Precipitation | 1948–2024 |
G-3327 | 26.003 | −80.277 | 2.8 | GW Levels | 1996–2024 |
G-3329 | 25.798 | −80.304 | 2.0 | GW Levels | 1996–2024 |
G-3465 | 25.807 | −80.298 | 2.5 | GW Levels | 1996–2024 |
G-3466 | 25.809 | −80.288 | 2.5 | GW Levels | 1996–2024 |
G-3570 | 25.761 | −80.290 | 3.1 | GW Levels | 1995–2024 |
Tampa FL (TPA) | 27.961 | −82.540 | 7.9 | Precipitation | 1940–2024 |
W.D.FUSSELL 618 | 27.978 | −82.373 | 9.3 | GW Levels | 1973–2007 |
Boston MA (BOS) | 42.361 | −71.011 | 6.0 | Precipitation | 1936–2024 |
Pelham MA | 42.359 | −71.060 | 10.7 | GW Levels | 1960–1997 |
RDU GEV Location Parameters | Estimation Method Used: MLE 1 | |||
---|---|---|---|---|
Negative Log-Likelihood Value: 349.851 | ||||
Estimated parameters: | ||||
mu0 | mu1 | scale | shape | |
67.10071290 | 0.07914207 | 20.16447096 | 0.02822432 | |
Standard Error Estimates: | ||||
mu0 | mu1 | scale | shape | |
2.7509731 | 0.1119234 | 2.0946679 | 0.1164602 | |
Estimated parameter covariance matrix: | ||||
mu0 | mu1 | scale | shape | |
mu0 | 7.56785295 | 0.03601434 | 2.79729262 | −0.14646069 |
mu1 | 0.03601434 | 0.01252685 | 0.03116475 | −0.00286548 |
scale | 2.79729262 | 0.03116475 | 4.38763366 | −0.10570796 |
shape | −0.14646069 | −0.00286548 | −0.10570796 | 0.01356298 |
Well OR-069 GEV Location Parameters | Estimation Method Used: MLE 1 | |||
---|---|---|---|---|
Negative Log-Likelihood Value: 49.23084 | ||||
Estimated parameters: | ||||
mu0 | mu1 | scale | shape | |
142.966295532 | 0.001543837 | 0.641078694 | −0.271583601 | |
Standard Error Estimates: | ||||
mu0 | mu1 | scale | shape | |
0.103101235 | 0.006809236 | 0.076679174 | 0.118332447 | |
Estimated parameter covariance matrix. | ||||
mu0 | mu1 | scale | shape | |
mu0 | 1.062986 × 10−2 | −8.709549 × 10−5 | 0.0009746521 | −0.0053695923 |
mu1 | −8.709549 × 10−5 | 4.636570 × 10−5 | −0.0001075509 | 0.0002830358 |
scale | 9.746521× 10−4 | −1.075509 × 10−4 | 0.0058796958 | −0.0057615950 |
shape | −5.369592 × 10−3 | 2.830358 × 10−4 | −0.0057615950 | 0.0140025680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, M.A., Jr. Groundwater Level Response to Precipitation and Potential Climate Trends. Water 2025, 17, 1882. https://doi.org/10.3390/w17131882
Medina MA Jr. Groundwater Level Response to Precipitation and Potential Climate Trends. Water. 2025; 17(13):1882. https://doi.org/10.3390/w17131882
Chicago/Turabian StyleMedina, Miguel A., Jr. 2025. "Groundwater Level Response to Precipitation and Potential Climate Trends" Water 17, no. 13: 1882. https://doi.org/10.3390/w17131882
APA StyleMedina, M. A., Jr. (2025). Groundwater Level Response to Precipitation and Potential Climate Trends. Water, 17(13), 1882. https://doi.org/10.3390/w17131882