Assessment of the Effect of Climate Change on the Productivity of Rainfed Maize (Zea mays L.) Using Crop Growth Model AquaCrop in Central Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Agricultural Data
2.3. Climatic Data
2.4. Climate Change Scenarios
2.5. Reference Evapotranspiration (ET0)
2.6. FAO AquaCrop Model
2.6.1. Calibration and Validation Process: AquaCrop Model
2.6.2. Evaluation of Model Performance
3. Results
3.1. Climate Change Scenario Subsection
3.2. Evaluation Metrics
3.3. Observed vs. Simulated Maize Yields
3.4. Maize Yields Under Climate Change Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Li, K.; Pan, J.; Xiong, W.; Xie, W.; Ali, T. The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade. Sci. Rep. 2022, 12, 17268. [Google Scholar] [CrossRef] [PubMed]
- Rawat, M.; Sharda, V.; Lin, X.; Roozeboom, K. Climate Change Impacts on Rainfed Maize Yields in Kansas: Statistical vs. Process-Based Models. Agronomy 2023, 13, 2571. [Google Scholar] [CrossRef]
- Waqas, M.; Naseem, A.; Humphries, U.W.; Hlaing, P.T.; Shoaib, M.; Hashim, S. A comprehensive review of the impacts of climate change on agriculture in Thailand. Farming Syst. 2025, 3, 100114. [Google Scholar] [CrossRef]
- Abbas, G.; Ahmed, M.; Fatima, Z.; Hussain, S.; Kheir, A.M.S.; Ercişli, S.; Ahmad, S. Modeling the potential impact of climate change on maize-maize cropping system in semi-arid environment and designing of adaptation options. Agric. For. Meteorol. 2023, 341, 109674. [Google Scholar] [CrossRef]
- Cruz-González, A.; Arteaga-Ramírez, R.; Sánchez-Cohen, I.; Soria-Ruiz, J.; Monterroso-Rivas, A.I. Impacts of climate change on corn production in Mexico. Rev. Mex. Cienc. Agric. 2024, 15, 1–13. [Google Scholar]
- Chauhdary, J.N.; Li, H.; Akbar, N.; Javaid, M.; Rizwan, M.; Akhlaq, M. Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios. Agric. Water Manag. 2024, 293, 108691. [Google Scholar] [CrossRef]
- FAO. FAOSTAT-Agriculture Database. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 January 2024).
- Aakash, N.S.; Singh, M.K.; Bhayal, L.; Meena, K.; Choudhary, S.K.; Kumawat, N.; Singh, R.K.; Singh, U.P.; Singh, S.K.; Sanodiya, P.; et al. Sustainability in Rainfed Maize (Zea mays L.) Production Using Choice of Corn Variety and Nitrogen Scheduling. Sustainability 2022, 14, 3116. [Google Scholar] [CrossRef]
- Roy, A.; Moradkhani, H.; Mekonnen, M.; Moftakhari, H.; Magliocca, N. Towards strategic interventions for global food security in 2024. Sci. Total Environ. 2024, 954, 176811. [Google Scholar] [CrossRef]
- SIAP. Avance de Siembras y Cosechas Resumen por Estado; Servicio de Información Agroalimentaria y Pesquera: Ciudad de México, México, 2025. [Google Scholar]
- Jaramillo, A.J.G.; Peña, O.B.V.; Hernández, S.J.H.; Díaz, R.R.; Espinosa, C.A. Caracterización de productores de maíz de temporal en Tierra Blanca, Veracruz. Rev. Mex. Cienc. Agric. 2018, 5, 911–923. [Google Scholar]
- Cruz-González, A.; Arteaga-Ramírez, R.; Soria-Ruiz, J.; Sánchez-Cohen, I.; Monterroso-Rivas, A.I. Quevedo-Nolasco, A. Climate change projections in temperature and precipitation using cmip6 in Central Mexico. Theor. Appl. Clim. 2025, 156, 97. [Google Scholar] [CrossRef]
- Ramírez-Jaspeado, R.; García-Salazar, J.A.; García-Mata, R.; Garza-Bueno, L.E.; Escalona-Maurice, M.J.; Portillo-Vásquez, M. Determination of the Most Competittive Corn Regions in the State of Mexico in Function of Potential Production. Interciencia 2020, 45, 150–157. [Google Scholar]
- Cruz-González, A.; Arteaga-Ramírez, R.; Sánchez-Cohen, I.; Soria-Ruiz, J.; Monterroso-Rivas, A.I.; Flores-Magdaleno, H. Tendencia y variabilidad climática: Efecto en la producción de maíz en el Distrito de Desarrollo Rural Atlacomulco. Ecosis. Recur. Agropec. 2023, 10, e3868. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Agroclimatology and wheat production: Coping with climate change. Front. Plant Sci. 2018, 9, 263551. [Google Scholar] [CrossRef] [PubMed]
- Adeboye, O.B.; Schultz, B.; Adeboye, A.P.; Chukalla, A.; Shittu, K.A. Assessment of the AquaCrop model to simulate the impact of soil fertility management on evapotranspiration, yield, and water productivity of maize (Zea May L.) in the sub-humid agro-ecology of Nigeria. Discov. Agric. 2024, 2, 419–443. [Google Scholar] [CrossRef]
- Eshete, D.G.; Sinshaw, B.G.; Gizaw, H.D.; Zerihun, B.A. Simulating maize water productivity at deficit irrigated field in north west Ethiopia. Sustain. Water Resour. Manag. 2022, 8, 186. [Google Scholar]
- Farias, D.B.D.S.; Rodrigues, L.N.; Souza, S.A. AquaCrop model assessment for simulating soybean response under water stress. Cienc. Rural. 2024, 54, e20230168. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agric. Water Manag. 2019, 224, 105753. [Google Scholar] [CrossRef]
- Bannayan, M.; Hoogenboom, G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Res. 2009, 111, 290–302. [Google Scholar] [CrossRef]
- Jones, C.A.; Ritchie, J.T. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; pp. 49–111. [Google Scholar]
- Stoeckle, M.; Janzen, D.; Hallwachs, W.; Hanken, J. Draft conference report. In Taxonomy, DNA and the Barcode of Life; Banbury Center, Cold Spring Harbor Laboratory: New York, NY, USA, 2003. [Google Scholar]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Diepen Van, C.A. Application of simple interpolation methods in agrometeorology. In Proceedings of the Workshop on Dealing on Spatialisation, Toulouse, France, 24–25 September 1996; Gozzini, B., Hims, M., Eds.; EUR 18473 EN. Office for Official Publications of the EU: Luxembourg, 1989; pp. 3–17. [Google Scholar]
- Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, C.T.; Elias, F. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Mibulo, T.; Kiggundu, N. Evaluation of FAO AquaCrop model for simulating rainfed maize growth and yields in Uganda. Agronomy 2018, 8, 238. [Google Scholar] [CrossRef]
- Barati, M.K.; Soundharajan, B.S.; Nikoo, M.R. Simulation of climate-adaptation responses to rainfall variability on rainfed yield anomalies. Environ. Sustain. Indic. 2024, 22, 100411. [Google Scholar] [CrossRef]
- Martini, L.C.P. Análise de sensibilidade de parâmetros do AquaCrop para milho de sequeiro no Sul do Brasil. Pesqui. Agropecu. Bras. 2018, 53, 934–942. [Google Scholar] [CrossRef]
- Gómez, J.; Flores, R.; Monterroso, A. Current aptitude under climate change scenarios for three crops in Mexico. Rev. Mex. Cienc. Agric. 2020, 11, 777–788. [Google Scholar]
- Flores-Gallardo, H.; Ojeda-Bustamante, W.; Flores-Magdaleno, H.; Sifuentes-Ibarra, E.; Mejía-Saénz, E. Simulación del rendimiento de maíz (Zea mays L.) en el Norte de Sinaloa usando el modelo AquaCrop. Agrociencia 2013, 47, 347–359. [Google Scholar]
- Gárfias-Soliz, J.; Bibiano-Cruz, L.; Llanos-Acebo, H.; Vitoria-Gasteiz, G.; Vasco, P. Uso racional y sostenible de los recursos hídricos del acuífero del valle de Toluca. Cienc. Ergo Sum. 2007, 15, 61–72. [Google Scholar]
- Cruz-González, A.; Arteaga-Ramírez, R.; Sánchez-Cohen, I.; Monterroso-Rivas, I.A.; Soria-Ruiz, J. Indices to Identify Historical and Future Periods of Drought for the Maize Crop (Zea mays L.) in Mexico. Agronomy. 2025, 15, 460. [Google Scholar] [CrossRef]
- Vázquez-Carrillo, M.G.; Martínez-Gutiérrez, A.; Zamudio-González, B.; Espinosa-Calderón, A.; Tadeo-Robledo, M.; Turrent Fernández, A. Estabilidad de rendimiento y características fisicoquímicas de grano de híbridos de maíz en Valles Altos de México. Rev. Mex. Cienc. Agríc. 2020, 11, 1803–1814. [Google Scholar] [CrossRef]
- Jasso-Miranda, M.; Soria-Ruiz, J.; Antonio-Némiga, X. Pérdida de superficies cultivadas de maíz de temporal por efecto de heladas en el Valle de Toluca. Rev. Mex. Cienc. Agric. 2022, 13, 207–222. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, A.; Zamudio-González, B.; Tadeo-Robledo, M.; Espinosa-Calderón, A.; Cardoso-Galvão, J.C.; Vázquez-Carrillo, M.G. Rendimiento de híbridos de maíz en respuesta a la fertilización foliar con bioestimulantes. Rev. Mex. Cienc. Agríc. 2022, 13, 289–301. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, G.; Ortiz-Solorio, C.A.; Gutiérrez-Castorena, M.D.C.; Ordaz-Chaparro, V.M.; Licona-Vargas, A.L. Ethnopedological Study of the Ejido San Juan and San Agustín in Jocotitlán, State of Mexico. Terra Latinoam. 2024, 42, e2062. [Google Scholar] [CrossRef]
- CONAGUA. Normales Climatológicas por Estado; Servicio Meteorológico Nacional: Mexico City, Mexico, 2024. [Google Scholar]
- Rodríguez-Moreno, V.M. ESSENGER. Sistema de base de datos meteorológicos. X Congreso Nacional sobre conservación y utilización de los recursos zoogenéticos. XXII simposio Iberoamericano y X Congreso Nacional CONBIAND. Benemérita Universidad Autónoma de Puebla, Puebla de Zaragoza, México. RPDA INIFAP-03-2021-120109052200-01. 2021. Available online: https://clima.inifap.gob.mx/lnmysr/DatosIndirectos/NEssenger (accessed on 4 December 2024).
- Semenov, M.A.; Senapati, N.; Coleman, K.; Collins, A.L. A dataset of CMIP6-based climate scenarios for climate change impact assessment in Great Britain. Data Brief. 2024, 55, 110709. [Google Scholar] [CrossRef]
- Abdulsahib, S.M.; Zubaidi, S.L.; Almamalachy, Y.; Dulaimi, A. Temperature and precipitation change assessment in the North of Iraq using LARS-WG and CMIP6 models. Water 2024, 16, 2869. [Google Scholar] [CrossRef]
- Allen, R.G. REF-ET: Reference Evapotranspiration Calculation Software for FAO and ASCE Standardized Equations, version 4.1; University of Idaho: Moscow, ID, USA, 2016.
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Raes, D. AquaCrop Training Handbook I. Understanding AquaCrop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: https://www.fao.org/aquacrop/resources/traininghandbooks/en/ (accessed on 5 January 2025).
- USDA. Irrigation Water Requirements; Technical Release no. 21; USDA Soil Conservation Service: Washington, DC, USA, 1970. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO Irrigation and Drainage Paper 66; FAO: Rome, Italy, 2012; p. 505. Available online: https://www.fao.org/3/i2800e/i2800e00.htm (accessed on 2 January 2025).
- Adeboye, O.B.; Schultz, B.; Adeboye, A.P.; Adekalu, K.O.; Osunbitan, J.A. Application of the AquaCrop model in decision support for optimization of nitrogen fertilizer and water productivity of soybeans. Inf Process Agric. 2021, 8, 419–436. [Google Scholar] [CrossRef]
- Takács, S.; Csengeri, E.; Pék, Z.; Bíró, T.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Performance evaluation of AquaCrop model in processing tomato biomass, fruit yield and water stress indicator modelling. Water 2021, 13, 3587. [Google Scholar] [CrossRef]
- Moksony, F.; Heged, R. Small is beautiful. The use and interpretation of R2 in social research. Szociol. Szle. 1990, 1, 130–138. [Google Scholar]
- Jacovides, C.P.; Kontoyiannis, H. Statistical procedures for the evaluation of evapotranspiration computing models. Agric. Water Manag. 1995, 27, 365–371. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J. On the evaluation of model performance in physical geography. In Spatial Statistics and Models; Springer: Dordrecht, The Netherlands, 1984; Volume 40, pp. 443–460. [Google Scholar]
- Estrada-Porrúa, F.; Zavala-Hidalgo, J.; Martínez-Arroyo, A.; Raga, G.; Gay-García, C. Estado y Perspectivas Del Cambio Climático en México: Un Punto de Partida Perspectivas Cambio Climático En México. Un Punto de Partida, Programa de Investigación en Cambio Climático—UNAM: Ciudad de México, México, 2023. [Google Scholar]
- Manzanilla-Quiñonez, U.; Aguirre-Calderón, O.A.; Jiménez-Pérez, J.; Treviño-Garza, E.J.; Yerena-Yamallel, J.I. Escenarios De cambio climático (CMIP-5) para tres áreas naturales protegidas en El Eje Neovolcánico Transversal. Rev. Mex. Cienc. For. 2018, 9, 50. [Google Scholar] [CrossRef]
- da Conceição, C.G.; Robaina, A.D.; Peiter, M.X.; Ben, L.H.B.; Ferreira, L.D.; Parizi, A.R.C. Performance of the AquaCrop model for corn hybrids under different irrigation strategies. Desempenho do modelo AquaCrop para híbridos de milho sob diferentes estratégias de irrigação. Rev. Bras. Eng. Agric. Ambient. 2022, 26, 441–450. [Google Scholar] [CrossRef]
- Yersaw, B.T.; Ebstu, E.T.; Areru, D.A.; Asres, L.A. Performance Evaluation of AquaCrop Model of Tomato under Stage Wise Deficit Drip Irrigation at Southern Ethiopia. Adv. Agric. 2024, 1, 7201523. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Mebane, V.J.; Day, R.L.; Hamlett, J.M.; Watson, J.E.; Roth, G.W. Validating the FAO AquaCrop model for rainfed maize in Pennsylvania. Agron. J. 2013, 105, 419–427. [Google Scholar] [CrossRef]
- Thamer, T.; Nassif, N.; Almaeini, A.; Al-Ansari, N.; Hassan, D. Modeling of Different Irrigation Methods for Maize Using AquaCrop Model: Case Study. Engineering 2021, 13, 472–492. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, K.; Liu, Y.; Guo, R.; Chen, L. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model. Agric. Syst. 2021, 189, 103040. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R.; Langat, P. Modelling Impacts of Climate Change on Maize (Zea mays, L.) Growth and Productivity: A Review of Models, Outputs and Limitations. J. Geosci. Environ. Prot. 2019, 07, 76–95. [Google Scholar]
- Kothari, K.; Ale, S.; Marek, G.W.; Munster, C.L.; Singh, V.P.; Chen, Y.; Marek, T.H.; Xue, Q. Simulating the climate change impacts and evaluating potential adaptation strategies for irrigated corn production in Northern High Plains of Texas. Clim. Risk Manag. 2022, 37, 100446. [Google Scholar] [CrossRef]
- Araya, A.; Kisekka, I.; Lin, X.; Vara, P.V.; Gowda, P.H.; Rice, C.; Andales, A. Evaluating the impact of future climate change on irrigated maize production in Kansas. Clim. Risk Manag. 2017, 17, 139–154. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, Z.; Wu, W.; Yang, Y.; Zhou, Y.; Xu, C. Potential Impacts of Climate Change and Adaptation on Maize in Northeast China. Agron. J. 2017, 109, 1476–1490. [Google Scholar] [CrossRef]
- Umesh, B.; Reddy, K.S.; Polisgowdar, B.S.; Maruthi, V.; Satishkumar, U.; Ayyanagoudar, M.S.; Rao, S.; Veeresh, H. Assessment of climate change impact on maize (Zea mays L.) through AquaCrop model in semi-arid alfisol of southern Telangana. Agric. Water Manag. 2022, 274, 107950. [Google Scholar] [CrossRef]
- Abera, K.; Crespo, O.; Seid, J.; Mequanent, F. Simulating the impact of climate change on maize production in Ethiopia, East Africa. Environ. Syst. Res. 2018, 7, 4. [Google Scholar] [CrossRef]
- Johnston, R.Z.; Sandefur, H.N.; Bandekar, P.; Matlock, M.D.; Haggard, B.E.; Thoma, G. Predicting changes in yield and water use in the production of corn in the United States under climate change scenarios. Ecol. Eng. 2015, 82, 555–565. [Google Scholar] [CrossRef]
- Cruz-González, A.; Arteaga-Ramírez, R.; Monterroso-Rivas, A.I.; Sánchez-Cohen, I.; Soria-Ruiz, J.; Quevedo-Nolasco, A. Climate change impacts on the accumulation of growing degree days for corn in central Mexico. J. Agrometeorol. 2025, 27, 38–42. [Google Scholar] [CrossRef]
- Walne, C.H.; Kambham, R.R. Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Maize (Zea mays L.). Agriculture 2022, 12, 443. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Hernández, L.A.; Carballo, C.A. Caracterización de genotipos de maíz de valles altos por sus requerimientos de unidades calor. Rev. Chapingo 1984, 44, 42–48. [Google Scholar]
- Sheoran, S.; Kaur, Y.; Kumar, S.; Shukla, S.; Rakshit, S.; Kumar, R. Recent Advances for Drought Stress Tolerance in Maize (Zea mays L.): Present Status and Future Prospects. Front. Plant Sci. 2022, 13, 872566. [Google Scholar] [CrossRef]
- FAO. Agricultura Mundial: Hacia los Años 2015–2030. 2002. Available online: http://www.fao.org/docrep/004/y3557s/y3557s00.htm#TopOfPage (accessed on 15 January 2025).
Station Code | Municipality | Longitude | Latitude | Altitude |
---|---|---|---|---|
31 | Ixtlahuaca | −99.818 | 19.631 | 2545 |
35 | San José del Rincón | −100.125 | 19.634 | 2692 |
15076 | San Felipe del Progreso | −99.958 | 19.663 | 2564 |
15128 | El Oro | −100.081 | 19.812 | 2601 |
15239 | Morelos | −99.640 | 19.753 | 2831 |
15251 | Atlacomulco | −99.874 | 19.798 | 2574 |
15264 | Jiquipilco | −99.668 | 19.616 | 2576 |
36756 | Jocotitlán | −99.713 | 19.663 | 2560 |
37673 | Acambay | −99.885 | 19.915 | 2513 |
860124 | Temascalcingo | −100.027 | 19.933 | 2379 |
Conservative Parameters | Default | Calibrated | Unit |
---|---|---|---|
Base temperature | 8 | 7 | °C |
Cutoff temperature | 30 | 27 | °C |
Canopy cover per seedling | 6.5 | 6.5 | cm2 plant−1 |
Canopy growth coefficient (CGC) | 16.3 | 14.9 | % day−1 |
Maximum canopy cover (CCx) (fraction soil cover) | 0.96 | 0.7 | % |
Canopy decline coefficient (CDC) | 11.7 | 11.7 | % day−1 |
Water productivity normalized for ETo and CO2 (WP *) | 33.7 | 33.7 | (g/m2) |
Reference harvest index (HIo) | 48 | 27 | |
Shape factor for the water stress coefficient for canopy expansion | 4 | 2.9 |
Non-Conservative Parameters | Default | Calibrated | Unit |
---|---|---|---|
Minimum growing temperature required for full crop transpiration | 12 | 12 | °C |
Minimum effective rooting depth | 0.3 | 0.3 | m |
Maximum effective rooting depth | 2.3 | 0.65 | m |
Number of plants per hectare | 75,000 | 65,000 | Plant ha−1 |
Maximum canopy cover (CCx) (fraction soil cover) | 0.96 | 0.7 | % |
Calendar days: from sowing to emergence | 6 | 11 | Day |
Calendar days: from sowing to the maximum rooting depth | 108 | 90 | Day |
Calendar days: from sowing to senescence | 107 | 119 | Day |
Calendar days: from sowing to maturity | 132 | 160 | Day |
Calendar days: from sowing to flowering | 66 | 89 | Day |
Length of the flowering stage | 13 | 23 | Day |
Reference harvest index (HIo) | 48 | 27 | % |
Dry matter content of fresh yield | 90 | 85 | % |
Minimum effective rooting depth | 0.3 | 0.3 | m |
Maximum effective rooting depth | 2.3 | 0.65 | m |
No. | Statistical Indicators | Formulas | References |
---|---|---|---|
1 | Pearson correlation coefficient | Moksony and Heged [51] | |
2 | Root mean square error (RMSE) | Jacovides and Kontoyiannis [52] | |
3 | Quadratic root mean normalized error | Bannayan and Hoogenboom [21] | |
4 | Nash–Sutcliffe model efficiency coefficient | Nash and Sutcliffe [53] | |
5 | Willmott’s index of agreement | Willmott [54] |
Season | Period | K–S | p | Assessment |
---|---|---|---|---|
D–J–F | Wet | 0.086 | 1.000 | Perfect |
Dry | 0.138 | 0.971 | Very good | |
M–A–M | Wet | 0.121 | 0.993 | Very good |
Dry | 0.062 | 1.000 | Perfect | |
J–J–A | Wet | 0.135 | 0.976 | Very good |
Dry | 0.087 | 1.000 | Perfect | |
S–O–N | Wet | 0.061 | 1.000 | Perfect |
Dry | 0.030 | 1.000 | Perfect |
Station Code | Municipality | 1985–2020 | SSP2-4.5 (2021–2080) | SSP5-8.5 (2021–2080) | |||
---|---|---|---|---|---|---|---|
EP | TAVG | EP | TAVG | EP | TAVG | ||
31 | Ixtlahuaca | 605 | 14.9 | −15.0 | 15.9 | −17.5 | 19.2 |
35 | San José del Rincón | 680 | 14.5 | 2.0 | 11.8 | −1.2 | 15.1 |
15076 | San Felipe del Progreso | 691 | 14.4 | −13.0 | 11.7 | −15.8 | 15.1 |
15128 | El Oro | 790 | 11.5 | −3.4 | 16.3 | −6.3 | 12.1 |
15239 | Morelos | 614 | 12.8 | −4.7 | 25.9 | −6.9 | 29.7 |
15251 | Atlacomulco | 703 | 14.2 | −5.7 | 14.5 | −8.0 | 17.9 |
15264 | Jiquipilco | 562 | 15.1 | −5.8 | 12.4 | −8.1 | 15.6 |
36756 | Jocotitlán | 675 | 15.0 | −8.0 | 10.9 | −10.2 | 14.1 |
37673 | Acambay | 665 | 11.6 | −9.7 | 17.1 | −11.5 | 21.2 |
860124 | Temascalcingo | 497 | 16.3 | −17.4 | 14.0 | −19.3 | 16.9 |
Station Code | Municipality | RMSE (ton ha−1) | d-Index | NRMSE (%) | EF | r |
---|---|---|---|---|---|---|
31 | Ixtlahuaca | 0.8 | 0.8 | 0.2 | −0.1 | 0.7 |
35 | San José del Rincón | 1.3 | 0.7 | 0.3 | 0.1 | 0.7 |
15076 | San Felipe del Progreso | 1.0 | 0.8 | 0.3 | −0.7 | 0.8 |
15128 | El Oro | 1.2 | 0.1 | 0.7 | −4.1 | 0.4 |
15239 | Morelos | 1.1 | 0.5 | 0.4 | −0.2 | 0.7 |
15251 | Atlacomulco | 1.2 | 0.4 | 0.3 | −0.3 | 0.6 |
15264 | Jiquipilco | 0.8 | 0.7 | 0.2 | 0.1 | 0.6 |
36756 | Jocotitlán | 0.9 | 0.7 | 0.2 | 0.3 | 0.7 |
37673 | Acambay | 1.0 | 0.6 | 0.3 | −1.4 | 0.6 |
860124 | Temascalcingo | 0.7 | 0.8 | 0.2 | 0.3 | 0.6 |
Station Code | Municipality | Meas (ton ha−1) | Sim (ton ha−1) | Sim–Meas (ton ha−1) | Pesim (%) |
---|---|---|---|---|---|
31 | Ixtlahuaca | 3.9 | 4.1 | 0.2 | 5.1 |
35 | San José del Rincón | 3.6 | 4.4 | 0.8 | 22.2 |
15076 | San Felipe del Progreso | 3.1 | 3.5 | 0.4 | 12.9 |
15128 | El Oro | 2.7 | 3.5 | 0.8 | 29.6 |
15239 | Morelos | 3.1 | 3.6 | 0.5 | 16.1 |
15251 | Atlacomulco | 3.8 | 3.5 | –0.3 | –7.9 |
15264 | Jiquipilco | 3.7 | 3.9 | 0.2 | 5.4 |
36756 | Jocotitlán | 3.9 | 4.4 | 0.5 | 12.8 |
37673 | Acambay | 3.4 | 3.9 | 0.5 | 14.7 |
860124 | Temascalcingo | 3.9 | 4 | 0.1 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-González, A.; Arteaga-Ramírez, R.; Monterroso-Rivas, A.I.; Soria-Ruiz, J.; Sánchez-Cohen, I.; Rojas-López, A. Assessment of the Effect of Climate Change on the Productivity of Rainfed Maize (Zea mays L.) Using Crop Growth Model AquaCrop in Central Mexico. Water 2025, 17, 1867. https://doi.org/10.3390/w17131867
Cruz-González A, Arteaga-Ramírez R, Monterroso-Rivas AI, Soria-Ruiz J, Sánchez-Cohen I, Rojas-López A. Assessment of the Effect of Climate Change on the Productivity of Rainfed Maize (Zea mays L.) Using Crop Growth Model AquaCrop in Central Mexico. Water. 2025; 17(13):1867. https://doi.org/10.3390/w17131867
Chicago/Turabian StyleCruz-González, Alejandro, Ramón Arteaga-Ramírez, Alejandro Ismael Monterroso-Rivas, Jesús Soria-Ruiz, Ignacio Sánchez-Cohen, and Aracely Rojas-López. 2025. "Assessment of the Effect of Climate Change on the Productivity of Rainfed Maize (Zea mays L.) Using Crop Growth Model AquaCrop in Central Mexico" Water 17, no. 13: 1867. https://doi.org/10.3390/w17131867
APA StyleCruz-González, A., Arteaga-Ramírez, R., Monterroso-Rivas, A. I., Soria-Ruiz, J., Sánchez-Cohen, I., & Rojas-López, A. (2025). Assessment of the Effect of Climate Change on the Productivity of Rainfed Maize (Zea mays L.) Using Crop Growth Model AquaCrop in Central Mexico. Water, 17(13), 1867. https://doi.org/10.3390/w17131867