Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Scheme
2.2. Data Analysis
3. Results
3.1. Spatial and Temporal Variations in Water Quality Parameters
3.1.1. Hydrology
3.1.2. Inflows of Stormwater Discharge and Wastewater Discharge
3.2. Pearson Rank Correlations of Physico-Chemical Parameters
3.3. Uptake and Release of Dissolved and Particulate Nutrients in the Wetland
4. Discussion
4.1. Seasonal and Spatial Variations in Water Quality Parameters
4.2. Nutrient Uptake Capacity of the Lubigi Wetland
5. Conclusions
5.1. Implications for the Management and Restoration of the Lubigi Wetland
5.2. Recommendations for Future Research in the Lubigi Wetland
- -
- Inform evidence-based planning in policy and management decisions, when integrating wetlands into urban infrastructure as Nature-Based Solutions (NBS). City planners, research scientists, and environmental managers will be able to assess whether wetlands can sustain their ecosystem services over decades.
- -
- Assess climate and land use synergies in cities and towns through long-term monitoring and evaluation to understand the impacts of multiple stressors on wetland resilience, such as shifts in water regimes, functioning of microbial and vegetation communities.
- -
- Capture ecological lag effects such as gradual biodiversity loss and sediment build-up, among others, and their delayed responses to disturbances, which may become evident over time. This way, we minimize the risks of underestimating long-term degradation or overestimating resilience.
- -
- Conduct mechanistic analyses to explain nutrient removal processes. While many investigations report reductions in nutrient concentrations, they often fail to elucidate the underlying biological and physicochemical pathways driving these changes. Specifically, microbial processes such as nitrification, denitrification, and phosphorus cycling, including plant-mediated mechanisms like nutrient uptake, oxygen release into the rhizosphere, and root–microbe interactions, are rarely quantified with their threshold values. This omission limits the predictive power of these aquatic systems under variable environmental conditions and hampers the ability to optimize wetland design for enhanced performance.
- -
- Furthermore, without mechanistic insight, it becomes difficult to replicate or scale successful models across different ecological contexts. For further research, incorporating microbial, plant physiological, and biogeochemical analyses is essential to move beyond descriptive assessments and toward a more process-based understanding of wetlands as nature-based solutions in ecosystem recovery and response to multiple urban stressors.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edokpayi, J.; Odiyo, J.; Msagati, T.; Popoola, E. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 7300–7320. [Google Scholar] [CrossRef] [PubMed]
- Schoebitz, L.; Bischoff, F.; Lohri, C.; Niwagaba, C.; Siber, R.; Strande, L. GIS Analysis and Optimisation of Faecal Sludge Logistics at City-Wide Scale in Kampala, Uganda. Sustainability 2017, 9, 194. [Google Scholar] [CrossRef]
- Hein, T.; Auhser, A.; Byekwaso, F.; Graf, W.; Hoevel, A.; Schmid, M.; Stockinger, M.; Stumpp, C.; Tschikof, M.; Tuerk, H.; et al. Research on Coupled Socio-ecohydrological Systems—Implementing a Highly Integrative and Interdisciplinary Research Agenda in the Doctoral School “Human River Systems in the 21st Century (HR21)”. River Res. Appl. 2024, 40, 1754–1765. [Google Scholar] [CrossRef]
- McConville, J.R.; Kvarnström, E.; Maiteki, J.M.; Niwagaba, C.B. Infrastructure Investments and Operating Costs for Fecal Sludge and Sewage Treatment Systems in Kampala, Uganda. Urban Water J. 2019, 16, 584–593. [Google Scholar] [CrossRef]
- Haddis, A.; Van Der Bruggen, B.; Smets, I. Constructed Wetlands as Nature Based Solutions in Removing Organic Pollutants from Wastewater under Irregular Flow Conditions in a Tropical Climate. Ecohydrol. Hydrobiol. 2020, 20, 38–47. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Seddon, N. Harnessing the Potential of Nature-Based Solutions for Mitigating and Adapting to Climate Change. Science 2022, 376, 1410–1416. [Google Scholar] [CrossRef]
- Zhu, D.; Ryan, M.C.; Gao, H. The Role of Water and Mass Balances in Treatment Assessment of a Flooded Natural Wetland Receiving Wastewater Effluent (Frank Lake, Alberta, Canada). Ecol. Eng. 2019, 137, 34–45. [Google Scholar] [CrossRef]
- Lenart-Boroń, A.; Wolanin, A.; Jelonkiewicz, Ł.; Chmielewska-Błotnicka, D.; Żelazny, M. Spatiotemporal Variability in Microbiological Water Quality of the Białka River and Its Relation to the Selected Physicochemical Parameters of Water. Water Air Soil. Pollut. 2016, 227, 22. [Google Scholar] [CrossRef]
- Schwammberger, P.F.; Yule, C.M.; Tindale, N.W. Rapid Plant Responses Following Relocation of a Constructed Floating Wetland from a Construction Site into an Urban Stormwater Retention Pond. Sci. Total Environ. 2020, 699, 134372. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Richards, K.G.; Healy, M.G.; Gill, L.; Müller, C.; Johnston, P.; Fenton, O. Carbon and Nitrogen Dynamics and Greenhouse Gas Emissions in Constructed Wetlands Treating Wastewater: A Review. Hydrol. Earth Syst. Sci. 2016, 20, 109–123. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef] [PubMed]
- Mburu, N.; Tebitendwa, S.M.; Van Bruggen, J.J.A.; Rousseau, D.P.L.; Lens, P.N.L. Performance Comparison and Economics Analysis of Waste Stabilization Ponds and Horizontal Subsurface Flow Constructed Wetlands Treating Domestic Wastewater: A Case Study of the Juja Sewage Treatment Works. J. Environ. Manag. 2013, 128, 220–225. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E.; et al. Wetland Buffer Zones for Nitrogen and Phosphorus Retention: Impacts of Soil Type, Hydrology and Vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef]
- Were, D.; Kansiime, F.; Fetahi, T.; Cooper, A.; Jjuuko, C. Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. Earth Syst. Environ. 2019, 3, 327–340. [Google Scholar] [CrossRef]
- Lynch, L.M.; Sutfin, N.A.; Fegel, T.S.; Boot, C.M.; Covino, T.P.; Wallenstein, M.D. River Channel Connectivity Shifts Metabolite Composition and Dissolved Organic Matter Chemistry. Nat. Commun. 2019, 10, 459. [Google Scholar] [CrossRef]
- Stefanakis, A. The Use of Nature-Based Solutions for Circular Water Management: International Case Studies and Examples of Ecological Engineering. In Water Management and Circular Economy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 67–80. [Google Scholar] [CrossRef]
- Olago, D.O.; Downing, T.A.; Githiora, Y.; Borgemeister, C.; Kamau, J.; Kuiper, G.; Koné, N.A.; Omuombo, C. Nature-Based Solutions in the Savanna Belt of Africa: Insights from a Systematic Review. Nat. Based Solut. 2024, 6, 100154. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. The Removal of Nitrogen and Organics in Vertical Flow Wetland Reactors: Predictive Models. Bioresour. Technol. 2011, 102, 1205–1213. [Google Scholar] [CrossRef]
- García-Ávila, F.; Patiño-Chávez, J.; Zhinín-Chimbo, F.; Donoso-Moscoso, S.; Flores Del Pino, L.; Avilés-Añazco, A. Performance of Phragmites Australis and Cyperus Papyrus in the Treatment of Municipal Wastewater by Vertical Flow Subsurface Constructed Wetlands. Int. Soil. Water Conserv. Res. 2019, 7, 286–296. [Google Scholar] [CrossRef]
- Kassa, Y.; Mengistou, S. Nutrient Uptake Efficiency and Growth of Two Aquatic Macrophyte Species under Constructed Wetlands, Ethiopia. Ethiop. J. Sci. 2014, 37, 95–104. [Google Scholar]
- Africa Development Bank. Kampala Sanitation Program, Phase 1 and Supplementary Loan to Kampala Sanitation Program; Project Completion Report RDGE/AHWS/COUG; National Water and Sewerage Corporation (NSWC) and Kampala Capital City Authority: Kampala, Uganda, 2021; pp. 1–38. Available online: https://www.afdb.org/sites/default/files/documents/projects-and-operations/uganda_-_kampala_sanitation_program_phase_1_and_supplementary_loan_to_kampala_sanitation_program_-_project_completion_report.pdf (accessed on 24 January 2025).
- Kayima, J.K.; Mayo, A.W. Ecological Characteristics and Morphological Features of the Lubigi Wetland. Environ. Ecol. Res. 2018, 6, 218–228. [Google Scholar] [CrossRef]
- Kayima, J.K.; Mayo, A.W.; Nobert, J.K. The Fate of Nitrogen and Faecal Coliform in the Lubigi Wetland. Tanzan. J. Eng. Technol. 2018, 37, 137–154. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Smith, G. Step Away from Stepwise. J. Big Data 2018, 5, 32. [Google Scholar] [CrossRef]
- Twesigye, C.K.; Igunga, K.; Nakayinga, R. Effect of Land Use Activities on Water Quality and Vegetation Cover Change in Nsooba-Lubigi Wetland System, Kampala City. East. Afr. J. Biophys. Comput. Sci. 2024, 5, 13–28. [Google Scholar] [CrossRef]
- Kayima, J.K.; Mayo, A.W. Nitrogen Removal Buffer Capacity of the Lubigi Wetland in Uganda. Phys. Chem. Earth Parts A/B/C 2020, 117, 102883. [Google Scholar] [CrossRef]
- Kibira, W.N.; Aremu, A.; Masaba, S. Assessing Wetland Health through Decomposition in Degraded and Semi-Intacted Wetlands in Uganda. East. Afr. J. Environ. Nat. Resour. 2024, 7, 17–34. [Google Scholar] [CrossRef]
- Hawumba, J.F. The Impact of Kalerwe Abattoir Wastewater Effluent on the Water Quality of the Nsooba Channel. ARTOAJ 2017, 6, 555677. [Google Scholar] [CrossRef]
- Białowiec, A.; Albuquerque, A.; Randerson, P.F. The Influence of Evapotranspiration on Vertical Flow Subsurface Constructed Wetland Performance. Ecol. Eng. 2014, 67, 89–94. [Google Scholar] [CrossRef]
- Atwebembeire, J.; Andama, M.; Yatuha, J.; Lejju, J.B.; Rugunda, G.K.; Bazira, J. The Physico-Chemical Quality of Effluents of Selected Sewage Treatment Plants Draining into River Rwizi, Mbarara Municipality, Uganda. J. Water Resour. Prot. 2019, 11, 20–36. [Google Scholar] [CrossRef]
- Arinabo, D. Understanding the Evolving Nature of Urban Flood Risks in Sub-Saharan Africa: The Case of Kampala City, Uganda. In Floods—Hydraulics and Hydrology [Working Title]; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Osibanjo, O.; Adie, G.U. Impact of Effluent from Bodija Abattoir on the Physico-Chemical Parameters of Oshunkaye Stream in Ibadan City, Nigeria. Afr. J. Biotechnol. 2007, 6, 1806–1811. [Google Scholar] [CrossRef]
- Kansiime, F.; Kateyo, E.; Oryem-Origa, H.; Mucunguzi, P. Nutrient Status and Retention in Pristine and Disturbed Wetlands in Uganda: Management Implications. Wetl. Ecol. Manag. 2007, 15, 453–467. [Google Scholar] [CrossRef]
- Semiyaga, S.; Okure, M.A.E.; Niwagaba, C.B.; Katukiza, A.Y.; Kansiime, F. Decentralized Options for Faecal Sludge Management in Urban Slum Areas of Sub-Saharan Africa: A Review of Technologies, Practices and End-Uses. Resour. Conserv. Recycl. 2015, 104, 109–119. [Google Scholar] [CrossRef]
- Krzeminski, P.; Vogelsang, C. Conventional Wastewater Treatment Methods and Their Ability to Remove EDCs. In Environmental Contaminants and Endocrine Health; Elsevier: Amsterdam, The Netherlands, 2023; pp. 309–328. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Liu, H.; Gao, L.; Wang, W.; Wang, Z.; Zhou, T.; Wang, Q. Climate Change Impacts on Wastewater Infrastructure: A Systematic Review and Typological Adaptation Strategy. Water Res. 2023, 242, 120282. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Stensel, D.H.; Tsuchihashi, R.; Burton, F.; Abu-Orf, M.; Bowden, G.; Pfrang, W. Metcalf & Eddy. In Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; Albert Einstein College of Medicine, Ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Kujawa-Roeleveld, K.; Zeeman, G. Anaerobic Treatment in Decentralised and Source-Separation-Based Sanitation Concepts. Rev. Environ. Sci. Biotechnol. 2006, 5, 115–139. [Google Scholar] [CrossRef]
- Muhoozi, E.; Ayugi, G.; Muyimbwa, D.; Oruru, B.; Kyagulanyi, H.; Wabwile, R. Heavy Metals and Naturally Occurring Radionuclides Distribution Risk Assessment in Wetlands in Kampala, Uganda. J. Rad. Nucl. Appl. 2023, 8, 127–133. [Google Scholar] [CrossRef]
- Vymazal, J. The Use of Hybrid Constructed Wetlands for Wastewater Treatment with Special Attention to Nitrogen Removal: A Review of a Recent Development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Okurut, O.O.; Rijs, G.B.J.; van Bruggen, J.A. Design and Performance of Experimental Constructed Wetlands in Uganda, Planted with Cyperus Papyrus and Phragmites Mauritianus. Water Sci. Technol. 1999, 40, 265–271. [Google Scholar] [CrossRef]
- Dagne, A.; Lakew, A.; Tadesse, S.; Hailemichael, F. Comparative Nutrient Removal Efficiency of Three Cyperus Species in Vertical Flow Type of Constructed Wetlands, Sebeta, Ethiopia. J. Agri. Environ. Sci. 2024, 9, 1–10. [Google Scholar] [CrossRef]
- Chang, J.; Wu, S.; Liang, K.; Wu, Z.; Liang, W. Responses of Microbial Abundance and Enzyme Activity in Integrated Vertical-Flow Constructed Wetlands for Domestic and Secondary Wastewater. Desalination Water Treat. 2015, 56, 2082–2091. [Google Scholar] [CrossRef]
- Matovu, B.; Sarfo, I.; Bbira, Y.; Yeboah, E.; Muhoozi, Y.; Lukambagire, I. Navigating through Complexity by Profiling the Main Threats to Sustainable Tropical Wetlands Management and Governance: A Case Study of Mityana District, Uganda. Discov. Environ. 2024, 2, 18. [Google Scholar] [CrossRef]
- James Gideon, O.; Bernard, B. Effects of Human Wetland Encroachment on the Degradation of Lubigi Wetland System, Kampala City Uganda. Environ. Ecol. Res. 2018, 6, 562–570. [Google Scholar] [CrossRef]
Sampling Points | UTM Coordinates | Distance (km) from S3 | Bed Type | Average Stream Width (m) | Minimal and Maximum Water Depth (m) | Description |
---|---|---|---|---|---|---|
Stormwater S1 | 36N 450318 38482 | Run | 3.2 | 0.14–0.36 | Stormwater channel | |
Wastewater S2 | 36N 449256 38402 | Run | 0.6 | 0.04–0.11 | Sewage Treatment Plant, STP | |
Junction S3 | 36N 449243 38453 | 0 | Pool | 3.5 | 0.14–0.18 | Stormwater and wastewater junction |
S4 | 36N 446470 35605 | 3.2 | Pool | 2.6 | 0.98–1.2 | P. mauritianus |
S5 | 36N 446082 34828 | 4.7 | riffle | 2.2 | 0.41–0.45 | C. papyrus |
S6 | 36N 445846 34651 | 6.0 | pool | 3.5 | 0.16–0.2 | C. papyrus |
Hydrological Gradient | Season | Sampling Sites (S1–S6) from Upstream, Midstream, to Downstream Reaches | |||||
---|---|---|---|---|---|---|---|
Stormwater, S1 | Wastewater, S2 | Junction, S3 | S4 | S5 | S6 | ||
Discharge (m3 s−1) | Dry | 0.20 ± 0.16 | 0.04 ± 0.05 | 0.13 ± 0.14 | 0.19 ± 0.09 | 0.42 ± 0.4 | 0.32 ± 0.17 |
Wet | 0.39 ± 0.33 | 0.09 ± 0.06 | 0.23 ± 0.25 | 0.35 ± 0.26 | 0.44 ± 0.34 | 0.43 ± 0.32 |
Season | Sampling Sites (S1–S6) from Upstream, Midstream, to Downstream Reaches of the Lubigi Wetland | ||||||||
---|---|---|---|---|---|---|---|---|---|
Physico-chemical parameters | Stormwater S1 | Wastewater S2 | Junction S3 | S4 | S5 | S6 | WHO (2017), NEMA (2020) | p value (One-way ANOVA) | |
Electrical Conductivity (µS/cm) | D | 1196 ± 802 | 6697 ± 5104 | 1477 ± 1039 | 1198 ± 995 | 1144 ± 885 | 1079 ± 339 | 1000 | Site < 2 × 10−16 Season 0.04 |
W | 1596 ± 1011 | 8722 ± 4829 | 1985 ± 1141 | 1593 ± 1051 | 1499 ± 958 | 1401 ± 833 | |||
Total Alkalinity (mg L−1) | D | 184.1 ± 74.2 | 1181.6 ± 482.3 | 256 ± 114 | 198.9 ± 92 | 188.5 ± 73.7 | 178.3 ± 84.1 | 150 | Site < 2 × 10−16 Season 7 × 10−3 |
W | 206.5 ± 48.8 | 1321.6 ± 228.8 | 279.6 ± 381.6 | 257.2 ± 77.8 | 211.1 ± 69.6 | 203.7 ± 46 | |||
Dissolved Oxygen DO (mg L−1) | D | 5.1 ± 6.6 | 1.1 ± 1.5 | 0.7 ± 1.1 | 0.8 ± 1.1 | 9.2 ± 16.3 | 1.3 ± 1.3 | N/A | Site 0.01 Season 0.04 |
W | 3.3 ± 9.6 | 1.3 ± 1.2 | 0.7 ± 0.8 | 0.9 ± 1.1 | 8.1 ± 11.2 | 1.2 ± 1.0 | |||
Chemical Oxygen Demand, COD (mg L−1) | D | 115 ± 126 | 711 ± 515 | 120 ± 103 | 72 ± 32 | 98 ± 120 | 73 ± 107 | 70 | Site 2 × 10−16 |
W | 67 ± 467 | 752 ± 498 | 165 ± 183 | 106 ± 134 | 70 ± 82 | 27 ± 15 | |||
Biological Oxygen Demand, BOD5 (mg L−1) | D | 18 ± 5 | 22 ± 4 | 17 ± 3 | 14 ± 5 | 14 ± 4 | 10 ± 5 | 50 | Site 3 × 10−6 Season 4 × 10−2 |
W | 18 ± 7 | 23 ± 5 | 17 ± 7 | 14 ± 6 | 11 ± 4 | 8 ± 5 | |||
NH4-N (mg L−1) | D | 12.8 ± 5.7 | 1.2 ± 0.52 | 54.2 ± 21.5 | 18.2 ± 14.3 | 12.6 ± 6.2 | 12.5 ± 4.9 | 10 | Site 2 × 10−16 |
W | 12.7 ± 4.9 | 6.2 ± 20.2 | 22.7 ± 17.6 | 15.9 ± 13.8 | 11 ± 3.6 | 7.8 ± 3.2 | |||
NO3-N (mg L−1) | D | 1.4 ± 2.8 | 1.8 ± 2.2 | 1.3 ± 2.3 | 1.4 ± 2 | 2.5 ± 4.2 | 0.42 ± 0.5 | 20 | Site 2 × 10−6 Season 2 × 10−4 |
W | 0.6 ± 0.6 | 0.5 ± 0.6 | 0.7 ± 0.6 | 1 ± 1.1 | 0.9 ± 0.88 | 0.9 ± 1.2 | |||
NO2-N (mg L−1) | D | 0.2 ± 0.6 | 0.7 ± 0.9 | 0.3 ± 0.9 | 0.1 ± 0.3 | 0.6 ± 1.4 | 0.03 ± 0.1 | 10 | Site 2 × 10−2 Season 1 × 10−4 |
W | 0.1 ± 0.3 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.2 ± 0.38 | 0.3 ± 0.5 | 0.4 ± 1.2 | |||
PO4-P (mg L−1) | D | 2 ± 3.9 | 22.5 ± 4.5 | 4.3 ± 2.2 | 1.5 ± 1.7 | 0.9 ± 0.6 | 0.8 ± 0.5 | 5 | Site 3 × 10−6 Season 5 × 10−4 |
W | 0.8 ± 0.3 | 22.6 ± 2.5 | 2.9 ± 3.9 | 0.9 ± 0.6 | 0.6 ± 0.3 | 0.3 ± 0.2 | |||
Total Nitrogen, TN (mg L−1) | D | 24.4 ± 15.1 | 69.3 ± 53.1 | 59.9 ± 28.1 | 37.6 ± 29.7 | 18.8 ± 7.6 | 19.2 ± 9.9 | 35 | Site 3 × 10−3 |
W | 25.1 ± 16.7 | 67.5 ± 60.1 | 53.3 ± 37.8 | 27.7 ± 22.3 | 20 ± 13.6 | 14.6 ± 9.3 | |||
Total Phosphorus, TP (mg L−1) | D | 1.7 ± 0.9 | 27.9 ± 2.9 | 6.4 ± 3.7 | 2.8 ± 2.9 | 2.2 ± 2.1 | 1.8 ± 1.4 | 10 | Site 2 × 10−3 |
W | 1.4 ± 0.5 | 26.4 ± 1.9 | 3.9 ± 4.1 | 1.8 ± 0.9 | 1.1 ± 0.4 | 0.6 ± 0.4 | |||
Total Suspended Solids, TSS (mg L−1) | D | 100 ± 125 | 326 ± 341 | 97 ± 94 | 59 ± 47 | 50 ± 39 | 40 ± 23 | 100 | Season 7 × 10−3 |
W | 237 ± 672 | 434 ± 150 | 216 ± 382 | 252 ± 483 | 210 ± 605 | 40 ± 21 |
TSS | DO | COD | BOD5 | NH4-N | NO3-N | TN | PO4-P | TP | |
---|---|---|---|---|---|---|---|---|---|
DO | NS | 1 | |||||||
COD | 0.6 *** | −0.14 * | 1 | ||||||
BOD5 | 0.37 *** | −0.16 * | 0.62 *** | 1 | |||||
NH4-N | −0.37 *** | −0.24 ** | −0.26 *** | NS | 1 | ||||
NO3-N | 0.14 * | 0.16 * | NS | NS | NS | 1 | |||
TN | 0.28 *** | −0.26 *** | 0.4 *** | 0.35 *** | 0.19 ** | NS | 1 | ||
PO4-P | 0.43 *** | −0.25 *** | 0.61 *** | 0.57 *** | NS | −0.17 * | 0.52 *** | 1 | |
TP | 0.44 *** | −0.28 *** | 0.63 *** | 0.35 *** | NS | −0.21 ** | 0.51 *** | 0.92 *** | 1 |
NH4-N kg d−1 | NO2-N kg d−1 | NO3-N kg d−1 | PO4-P kg d−1 | TN kg d−1 | TP kg d−1 | |
---|---|---|---|---|---|---|
Dry season | ||||||
Median | −4.1 | +27.6 | +2.5 | −4.4 | −1.9 | −3.0 |
Min | −530.2 | −5.5 | −2.8 | −253.1 | −500.7 | −229.0 |
Max | +1.1 | +2217.8 | +734.0 | −0.5 | 226.4 | −0.2 |
Reduction/ Increase by | −43% | +3900% | +210% | −48% | −36% | −43% |
Wet season | ||||||
Median | −2.5 | +2.5 | +2.6 | −3.4 | −3.7 | −4.5 |
Min | −38.2 | −7.9 | −7.4 | −84.8 | −72.2 | −99.4 |
Max | −1.1 | +5980.0 | +393.3 | −1.1 | +8.3 | +1 |
Reduction/ Increase by | −20% | +2140% | +230% | −58% | −39% | −54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byekwaso, F.; Weigelhofer, G.; Kaggwa, R.; Kansiime, F.; Langergraber, G.; Hein, T. Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments. Water 2025, 17, 1821. https://doi.org/10.3390/w17121821
Byekwaso F, Weigelhofer G, Kaggwa R, Kansiime F, Langergraber G, Hein T. Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments. Water. 2025; 17(12):1821. https://doi.org/10.3390/w17121821
Chicago/Turabian StyleByekwaso, Flavia, Gabriele Weigelhofer, Rose Kaggwa, Frank Kansiime, Guenter Langergraber, and Thomas Hein. 2025. "Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments" Water 17, no. 12: 1821. https://doi.org/10.3390/w17121821
APA StyleByekwaso, F., Weigelhofer, G., Kaggwa, R., Kansiime, F., Langergraber, G., & Hein, T. (2025). Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments. Water, 17(12), 1821. https://doi.org/10.3390/w17121821