Patterns, Risks, and Forecasting of Irrigation Water Quality Under Drought Conditions in Mediterranean Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data and Drought Characterization
2.3. Sampling Strategy
2.4. Irrigation Water Quality Assessment
2.5. Exploratory Statistical Analyses
2.6. Machine Learning Models
3. Results and Discussion
3.1. Meteorological Trends and Drought Characterization
3.2. Irrigation Water Quality
3.3. Correlation, Factor Analysis, and Cluster Analysis
- Cluster 1, positively related to salinity (Factor 1) and sodicity (Factor 2), was composed of 16 cases, with no samples in 2018, eight cases in 2019, and eight cases in 2020; cases were mostly of the Post-cycle (P) stage (10 samples). This structure suggests a degradation of water quality following the peak water demand by crops in Mediterranean regions, that is, a pattern of salt accumulation in water sources resulting from high evapotranspiration during summer and limited water recharge due to drought occurrence and expansion of irrigation areas [57,58].
- Cluster 2, in the second quadrant, thus positively related to salinity, grouped 32 cases, mainly in 2019 (14 samples), with the remaining equally distributed between 2018 and 2020 cases; no samples belonged to the initial period, being mostly of the Middle (M) (13) and Late (L) (11) stages. This result reinforces the idea of the cumulative effects of evaporation and decreased freshwater recharge as the season progresses. A similar trend was reported by [59] in an irrigation district in southern Portugal, where the risk of salinity build-up was high to very high during very dry years in most fields. In wetlands located in arid/semi-arid zones, periods of higher salinity can occur as a consequence of the highly evaporative conditions and water resources’ depletion [60].
- Cluster 3, negatively related to both salinity and sodicity, presented 32 samples, largely of 2018 (18) and 2020 (13), from the I (16) and M (9) stages of the irrigation season.
- Cluster 4, in the 4th quadrant, grouped 13 samples of 2018 (5) and 2019 (8), the majority being of the I (8) period. Together with Cluster 4, this structure reflects the dilution effect of winter rainfall, which improves water quality at the start of the spring–summer crop cycle.
3.4. Random Forest and Gradient Boosting Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic Conditions in Europe under Climate Change. Glob. Change Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef]
- Páscoa, P.; Gouveia, C.M.; Russo, A.; Trigo, R.M. Drought Trends in the Iberian Peninsula over the Last 112 Years. Adv. Meteorol. 2017, 2017, 4653126. [Google Scholar] [CrossRef]
- Jones, E.; van Vliet, M.T.H. Drought Impacts on River Salinity in the Southern US: Implications for Water Scarcity. Sci. Total Environ. 2018, 644, 844–853. [Google Scholar] [CrossRef]
- de León, G.S.; Ramos-Leal, J.A.; Ramírez, J.M.; Almanza-Tovar, O.G. Drought and Water Quality in a Semi-Arid Area: Effects in Livestock Production, Agriculture and Use Urban. Water Resour. Manag. 2025, 39, 1605–1621. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A Review of the Potential Impacts of Climate Change on Surface Water Quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of Climate Change on Surface Water Quality in Relation to Drinking Water Production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.-J. Salinisation of Rivers: An Urgent Ecological Issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Phogat, V.; Cox, J.W.; Šimůnek, J. Identifying the Future Water and Salinity Risks to Irrigated Viticulture in the Murray-Darling Basin, South Australia. Agric. Water Manag. 2018, 201, 107–117. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Wenng, H.; Bechmann, M.; Krogstad, T.; Skarbøvik, E. Climate Effects on Land Management and Stream Nitrogen Concentrations in Small Agricultural Catchments in Norway. Ambio 2020, 49, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fang, H. Impacts of Climate Change on Water Erosion: A Review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Ramião, J.P.; Pascoal, C.; Pinto, R.; Carvalho-Santos, C. Mitigating Water Pollution in a Portuguese River Basin under Climate Change through Agricultural Sustainable Practices. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 25. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of Soil Salinity and Their Correlation with Climate Change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Palma, P.; Köck-Schulmeyer, M.; Alvarenga, P.; Ledo, L.; Barbosa, I.R.; López de Alda, M.; Barceló, D. Risk Assessment of Pesticides Detected in Surface Water of the Alqueva Reservoir (Guadiana Basin, Southern of Portugal). Sci. Total Environ. 2014, 488–489, 208–219. [Google Scholar] [CrossRef]
- Alves-Ferreira, J.; Vara, M.G.; Catarino, A.; Martins, I.; Mourinha, C.; Fabião, M.; Costa, M.J.; Barbieri, M.V.; de Alda, M.L.; Palma, P. Pesticide Water Variability and Prioritization: The First Steps towards Improving Water Management Strategies in Irrigation Hydro-Agriculture Areas. Sci. Total Environ. 2024, 917, 170304. [Google Scholar] [CrossRef]
- Cerdà, A.; Daliakopoulos, I.N.; Terol, E.; Novara, A.; Fatahi, Y.; Moradi, E.; Salvati, L.; Pulido, M. Long-Term Monitoring of Soil Bulk Density and Erosion Rates in Two Prunus Persica (L) Plantations under Flood Irrigation and Glyphosate Herbicide Treatment in La Ribera District, Spain. J. Environ. Manag. 2021, 282, 111965. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture–Systems at Breaking Point; Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Hillel, D.; Braimoh, A.K.; Vlek, P.L.G. Soil Degradation Under Irrigation. In Land Use and Soil Resources; Braimoh, A.K., Vlek, P.L.G., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 101–119. ISBN 978-1-4020-6778-5. [Google Scholar]
- Tomaz, A.; Costa, M.J.; Coutinho, J.; Dôres, J.; Catarino, A.; Martins, I.; Mourinha, C.; Guerreiro, I.; Pereira, M.M.; Fabião, M.; et al. Applying Risk Indices to Assess and Manage Soil Salinization and Sodification in Crop Fields within a Mediterranean Hydro-Agricultural Area. Water 2021, 13, 3070. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of Salt-Induced Land Degradation and Restoration. Nat. Resour. Forum. 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Burke, J. Agriculture and Water Quality Interactions: A Global Overview; SOLAW Background Thematic Report-TR08; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Hillel, D. Salinity Management for Sustainable Irrigation: Integrating Science, Environment, and Economics; The World Bank: Washington, DC, USA, 2000; ISBN 978-0-8213-4773-7. [Google Scholar]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Salgado, R. Spatial and Temporal Dynamics of Irrigation Water Quality under Drought Conditions in a Large Reservoir in Southern Portugal. Environ. Monit. Assess. 2020, 192, 93. [Google Scholar] [CrossRef]
- Abbas, F.; Cai, Z.; Shoaib, M.; Iqbal, J.; Ismail, M.; Arifullah; Alrefaei, A.F.; Albeshr, M.F. Machine Learning Models for Water Quality Prediction: A Comprehensive Analysis and Uncertainty Assessment in Mirpurkhas, Sindh, Pakistan. Water 2024, 16, 941. [Google Scholar] [CrossRef]
- Kamel Elshaarawy, M.; Eltarabily, M.G. Machine Learning Models for Predicting Water Quality Index: Optimization and Performance Analysis for El Moghra, Egypt. Water Supply 2024, 24, 3269–3294. [Google Scholar] [CrossRef]
- Mohan, S.; Kumar, B.; Nejadhashemi, A.P. Integration of Machine Learning and Remote Sensing for Water Quality Monitoring and Prediction: A Review. Sustainability 2025, 17, 998. [Google Scholar] [CrossRef]
- Shams, M.Y.; Elshewey, A.M.; El-kenawy, E.-S.M.; Ibrahim, A.; Talaat, F.M.; Tarek, Z. Water Quality Prediction Using Machine Learning Models Based on Grid Search Method. Multimed. Tools Appl. 2024, 83, 35307–35334. [Google Scholar] [CrossRef]
- Alnahit, A.O.; Mishra, A.K.; Khan, A.A. Stream Water Quality Prediction Using Boosted Regression Tree and Random Forest Models. Stoch. Environ. Res. Risk Assess. 2022, 36, 2661–2680. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A.; Brouziyne, Y. Groundwater Quality Forecasting Using Machine Learning Algorithms for Irrigation Purposes. Agric. Water Manag. 2021, 245, 106625. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A. Prediction of Irrigation Water Quality Parameters Using Machine Learning Models in a Semi-Arid Environment. J. Saudi Soc. Agric. Sci. 2020, 19, 439–451. [Google Scholar] [CrossRef]
- Mokhtar, A.; Elbeltagi, A.; Gyasi-Agyei, Y.; Al-Ansari, N.; Abdel-Fattah, M.K. Prediction of Irrigation Water Quality Indices Based on Machine Learning and Regression Models. Appl. Water Sci. 2022, 12, 76. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A. State-of-the Art-on Irrigation Water Quality Management Using Data-Driven Methods: Practical Application, Limitations, and Prospective Directions. Phys. Chem. Earth Parts A/B/C 2024, 136, 103794. [Google Scholar] [CrossRef]
- IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015; FAO: Rome, Italy, 2014.
- IPMA Climate Normals-1981-2010-Beja. Available online: https://www.ipma.pt/en/oclima/normais.clima/1981-2010/#562 (accessed on 6 June 2024).
- COTR SAGRA-Sistema Agrometeorológico Para a Gestão Da Rega No Alentejo (Agrometeorological System for Irrigation Management in Alentejo). Available online: http://www.cotr.pt/servicos/sagranet.php (accessed on 5 January 2025).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- IPMA Long Series (Beja). Available online: https://www.ipma.pt/pt/oclima/series.longas/?loc=Beja&type=raw (accessed on 2 April 2025).
- APHA Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association and Water Environmental Federation: Washington, DC, USA, 1998.
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture. In FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; ISBN 978-92-5-102263-4. [Google Scholar]
- Tomaz, A.; Palma, J.F.; Ramos, T.; Costa, M.N.; Rosa, E.; Santos, M.; Boteta, L.; Dôres, J.; Patanita, M. Yield, Technological Quality and Water Footprints of Wheat under Mediterranean Climate Conditions: A Field Experiment to Evaluate the Effects of Irrigation and Nitrogen Fertilization Strategies. Agric. Water Manag. 2021, 258, 107214. [Google Scholar] [CrossRef]
- Tomaz, A.; Martins, I.; Catarino, A.; Mourinha, C.; Dôres, J.; Fabião, M.; Boteta, L.; Coutinho, J.; Patanita, M.; Palma, P. Insights into the Spatial and Temporal Variability of Soil Attributes in Irrigated Farm Fields and Correlations with Management Practices: A Multivariate Statistical Approach. Water 2022, 14, 3216. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA (Data Analysis Software System); Scientific Research: Wuhan, China, 2004. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2000, 29, 1189–1232. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 12, 2825–2830. [Google Scholar]
- IPMA Drought Monitoring. Available online: https://www.ipma.pt/pt/oclima/observatorio.secas/ (accessed on 30 August 2023).
- Catarino, A.; Martins, I.; Mourinha, C.; Santos, J.; Tomaz, A.; Anastácio, P.; Palma, P. Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal). Water 2024, 16, 514. [Google Scholar] [CrossRef]
- World Health Organization Water Safety in Distribution Systems; WHO Document Production Services: Geneva, Switzerland, 2014.
- Tong, H.; Li, Z.; Hu, X.; Xu, W.; Li, Z. Metals in Occluded Water: A New Perspective for Pollution in Drinking Water Distribution Systems. Int. J. Environ. Res. Public Health 2019, 16, 2849. [Google Scholar] [CrossRef]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Costa, M.; Salgado, R. Risk Assessment of Irrigation-Related Soil Salinization and Sodification in Mediterranean Areas. Water 2020, 12, 3569. [Google Scholar] [CrossRef]
- do Nascimento, T.V.M.; de Oliveira, R.P.; Condesso de Melo, M.T. Impacts of Large-Scale Irrigation and Climate Change on Groundwater Quality and the Hydrological Cycle: A Case Study of the Alqueva Irrigation Scheme and the Gabros de Beja Aquifer System. Sci. Total Environ. 2024, 907, 168151. [Google Scholar] [CrossRef]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought Impacts on Water Quality and Potential Implications for Agricultural Production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Liu, D.; Yu, H.; Feng, H.; Gao, H.; Zhu, Y. Revealing Heavy Metal Correlations with Water Quality and Tracking Its Latent Factors by Canonical Correlation Analysis and Structural Equation Modeling in Dongjianghu Lake. Environ. Monit. Assess. 2021, 193, 717. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; A.A. Balkema Publishers: Amsterdam, The Netherlands, 2005; ISBN 04-1536-421-3. [Google Scholar]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Huang, S.; Wortmann, M.; Duethmann, D.; Menz, C.; Shi, F.; Zhao, C.; Su, B.; Krysanova, V. Adaptation Strategies of Agriculture and Water Management to Climate Change in the Upper Tarim River Basin, NW China. Agric. Water Manag. 2018, 203, 207–224. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Oliveira, A.R.; Farzamian, M.; Monteiro, T.; Castanheira, N.; Paz, A.; Alexandre, C.; Gonçalves, M.C.; Pereira, L.S. Water Use, Soil Water Balance and Soil Salinization Risks of Mediterranean Tree Orchards in Southern Portugal under Current Climate Variability: Issues for Salinity Control and Irrigation Management. Agric. Water Manag. 2023, 283, 108319. [Google Scholar] [CrossRef]
- Jolly, I.D.; McEwan, K.L.; Holland, K.L. A Review of Groundwater–Surface Water Interactions in Arid/Semi-Arid Wetlands and the Consequences of Salinity for Wetland Ecology. Ecohydrology 2008, 1, 43–58. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016; ISBN 978-0-13-325448-8. [Google Scholar]
- Corwin, D.L.; Rhoades, J.D.; Šimůnek, J. Leaching Requirement for Soil Salinity Control: Steady-State versus Transient Models. Agric. Water Manag. 2007, 90, 165–180. [Google Scholar] [CrossRef]
- Wallender, W.W.; Tanji, K.K. Agricultural Salinity Assessment and Management, 2nd ed.; American Society of Civil Engineers: Reston, VA, USA, 2011; ISBN 978-0-7844-1169-8. [Google Scholar]
- Hanson, B.R.; Grattan, S.R.; Fulton, A. Agricultural Salinity and Drainage. In Water Management Series Publication; University of California Irrigation Program: Davis, CA, USA, 2006. [Google Scholar]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with Salinity in Irrigated Agriculture: Crop Evapotranspiration and Water Management Issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Machado, R.; Serralheiro, R. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Tanji, K.K.; Kielen, N.C. Agricultural Drainage Water Management in Arid and Semi-Arid Areas; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; ISBN 978-92-5-104839-9. [Google Scholar]
- O’Shaughnessy, S.; Evett, S.; Colaizzi, P.; Andrade, M.; Marek, T.; Heeren, D.; Lamm; LaRue, J. Identifying Advantages and Disadvantages of Variable Rate Irrigation: An Updated Review. Appl. Eng. Agric. 2019, 35, 837–852. [Google Scholar] [CrossRef]
Year | H5 (37°58′12.74″ N; 7°33′18.17″ W) | H6 (37°58′22.99″ N; 7°33′26.61″ W) | H7 (37°56′1.01″N; 7° 31′25.40″ W) | H16 (37°59′53.28″ N; 7°32′21.02″ W) | H21 (37°56′48.39″ N; 7°30′17.74″ W) | H22 (37°57′12.65″ N; 7°29′21.08″ W) | H23 (37°57′22.32″ N; 7°30′36.72″ W) | H33 (37°57′36.03″ N; 7°29′18.35″ W) |
---|---|---|---|---|---|---|---|---|
2018 | Grapevine (Vitis vinifera L. Cv. ‘Aragonez) | Maize (Zea mays L.) | Sunflower (Helianthus annus L.) | Grapevine (Vitis vinifera L. Cv. ‘Antão Vaz) | Olive (Olea europaea L. Cv. ‘Cobrançosa’) | Permanent Pasture ((grasses (70%), legumes (18%) and others (12%)) | Grapevine (Vitis vinifera L. Cv. ‘Antão Vaz) | Alfalfa (Medicago sativa L.) |
Olive (Olea europaea L. Cv. ‘Cordovil’) | Sunflower (Helianthus annus L.) | |||||||
2019 | Grapevine (Vitis vinifera L. Cv. ‘Aragonez) | Sunflower (Helianthus annus L.) | Arrowleaf clover (Trifolium vesiculosum Savi) | Grapevine (Vitis vinifera L. Cv. ‘Antão Vaz) | Olive (Olea europaea L. Cv. ‘Cobrançosa’) | Permanent Pasture ((grasses (70%), legumes (18%)) | Grapevine (Vitis vinifera L. Cv. ‘Antão Vaz) | Alfalfa (Medicago sativa L.) |
Olive (Olea europaea L. Cv. ‘Cordovil’) | Garlic (Allium sativum L.) + Maize (Zea mays L.) | |||||||
2020 | Grapevine (Vitis vinifera L. Cv. ‘Aragonez) | Maize (Zea mays L.) | Onion (Allium cepa L.) | Grapevine (Vitis vinifera L. Cv. ‘Antão Vaz) | Olive (Olea europaea L. Cv. ‘Cobrançosa’) | Not sown | Grapevine (Vitis vinifera L. Cv. ‘Antão Vaz) | Not sown |
Olive (Olea europaea L. Cv. ‘Cordovil’) | Sunflower (Helianthus annus L.) |
Pcum | ET0cum | pH | ECw | B | Ca | Mg | Na | Cl | NO3 | SAR | |
---|---|---|---|---|---|---|---|---|---|---|---|
1.000 | 0.294 | −0.371 | −0.330 | −0.168 | −0.387 | 0.105 | −0.258 | −0.076 | −0.111 | 0.010 | Pcum |
1.000 | 0.115 | 0.401 | 0.220 | −0.040 | 0.492 | 0.205 | 0.615 | −0.040 | −0.278 | ET0cum | |
1.000 | 0.193 | −0.069 | −0.112 | 0.137 | −0.175 | 0.071 | −0.183 | −0.171 | pH | ||
<0.200 | 1.000 | 0.493 | 0.393 | 0.529 | 0.426 | 0.576 | 0.250 | −0.454 | ECw | ||
0.200–0.400 | 1.000 | 0.622 | 0.190 | 0.581 | 0.444 | 0.126 | −0.186 | B | |||
0.400–0.600 | 1.000 | −0.073 | 0.485 | 0.251 | 0.139 | −0.238 | Ca | ||||
>0.600 | 1.000 | 0.239 | 0.429 | −0.084 | −0.624 | Mg | |||||
<−0.600 | 1.000 | 0.425 | 0.228 | 0.220 | Na | ||||||
−0.600–−0.400 | 1.000 | 0.222 | −0.282 | Cl | |||||||
−0.400–−0.200 | 1.000 | 0.106 | NO3 | ||||||||
>−0.200 | 1.000 | SAR |
Factor 1 | Factor 2 | Factor 3 | |
---|---|---|---|
Pcum | 0.099 | −0.142 | 0.887 |
ET0cum | 0.691 | 0.090 | 0.318 |
pH | 0.076 | −0.289 | −0.693 |
ECw | 0.703 | 0.156 | −0.102 |
B | 0.356 | −0.135 | 0.229 |
Ca | −0.052 | 0.203 | −0.206 |
Mg | 0.879 | −0.128 | 0.024 |
Na | 0.215 | 0.759 | −0.096 |
Cl | 0.751 | 0.140 | 0.065 |
NO3 | 0.133 | 0.511 | −0.117 |
SAR | −0.574 | 0.666 | 0.144 |
Eigenvalues | 3.160 | 2.057 | 1.485 |
% Total variance | 28.73 | 18.70 | 13.50 |
Variable | Model | R2 | RMSE | MAE | RBIAS (%) |
---|---|---|---|---|---|
ECw | RF | 0.605 | 0.021 | 0.015 | 1.266 |
GB | 0.362 | 0.001 | 0.017 | 2.116 | |
SAR | RF | 0.622 | 0.106 | 0.064 | 1.462 |
GB | 0.670 | 0.099 | 0.058 | 1.306 | |
pH | RF | 0.485 | 0.175 | 0.146 | 0.626 |
GB | 0.256 | 0.044 | 0.161 | 0.733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaz, A.; Catarino, A.; Tomaz, P.; Fabião, M.; Palma, P. Patterns, Risks, and Forecasting of Irrigation Water Quality Under Drought Conditions in Mediterranean Regions. Water 2025, 17, 1783. https://doi.org/10.3390/w17121783
Tomaz A, Catarino A, Tomaz P, Fabião M, Palma P. Patterns, Risks, and Forecasting of Irrigation Water Quality Under Drought Conditions in Mediterranean Regions. Water. 2025; 17(12):1783. https://doi.org/10.3390/w17121783
Chicago/Turabian StyleTomaz, Alexandra, Adriana Catarino, Pedro Tomaz, Marta Fabião, and Patrícia Palma. 2025. "Patterns, Risks, and Forecasting of Irrigation Water Quality Under Drought Conditions in Mediterranean Regions" Water 17, no. 12: 1783. https://doi.org/10.3390/w17121783
APA StyleTomaz, A., Catarino, A., Tomaz, P., Fabião, M., & Palma, P. (2025). Patterns, Risks, and Forecasting of Irrigation Water Quality Under Drought Conditions in Mediterranean Regions. Water, 17(12), 1783. https://doi.org/10.3390/w17121783