Accumulation of Heavy Metals and Antibiotic Resistance Genes in Sediments from Eriocheir sinensis Ponds and Their Correlation with Bacterial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Detection of Heavy Metals in Sediments
2.3. Calculation of Enrichment Factor and Potential Ecological Risk of Heavy Metal
2.4. Determination of ARGs in Sediments
2.5. 16S rRNA Sequencing and Statistical Analysis
2.6. Data Statistics and Correlation Analysis
3. Results
3.1. Distribution, EF, and RI of Extractable Heavy Metals in Sediments
3.2. Characterization of ARG Species in Sediments
3.3. Bacteria Community in Sediments
3.4. Bacteria Diversity in Sediments
3.5. Correlation Between Different Environmental Factors and Bacterial Communities
4. Discussion
4.1. E. sinensis Aquaculture Increased the Accumulation of Typical Heavy Metals and Potential Ecological Risks in Sediments
4.2. Increase of Typical Resistance Genes Abundance and Decrease of Diversity of Bacterial Community in the Sediment of E. sinensis Aquaculture
4.3. ARGs Associated with Heavy Metals and Bacterial Community in the Sediment of E. sinensis Aquaculture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Yu, M.F.; Chen, L.; Liu, G.; Liu, W.; Yang, Y. Metagenomic deciphers the mobility and bacterial hosts of antibiotic resistance genes under antibiotics and heavy metals co-selection pressures in constructed wetlands. Environ. Res. 2025, 269, 120921. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhu, L.; Liu, J.; Cheng, Y.; Waiho, K.; Chen, A.; Wang, Y. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis. Sci. Total Environ. 2022, 829, 154586. [Google Scholar] [CrossRef]
- Sharma, P.; Pal, N.; Kumawat, M.; Singh, S.; Das, D.; Tilwari, A.; Prakash, A.; Tiwari, R.R.; Kumar, M. Investigating the antibiotic resistance genes and mobile genetic elements in water systems impacted with anthropogenic pollutants. Environ. Res. 2025, 269, 120814. [Google Scholar] [CrossRef]
- Choudhury, T.R.; Moniruzzaman, M.; Anonna, T.A.; Asad, H.A.; Samanta, P.; Islam, F. Evaluation of heavy metal contamination in soil, water, and fish in an industrial zone in Bangladesh: Ecological and potential health risk. Reg. Stud. Mar. Sci. 2025, 86, 104162. [Google Scholar] [CrossRef]
- Khanam, T.; Md, A.E.; Shadiqur, R.M.; Jabed, H.; Zannatul, F.; Fazle, R.M.; Md, S. Impacts of heavy metals on early development, growth and reproduction of fish—A review. Toxicol. Rep. 2022, 9, 858–868. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Wang, L.; Zhang, W.; Niu, L.; Hu, T. Unraveling antibiotic resistomes associated with bacterial and viral communities in intertidal mudflat aquaculture area. J. Hazard. Mater. 2023, 459, 132087. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017, 123, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: Occurrence, contamination, and transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef]
- Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, A.M.; Packmann, A.I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 2016, 14, 251–263. [Google Scholar] [CrossRef]
- Lemaire, O.N.; Méjean, V.; Iobbi-Nivol, C. The Shewanella genus: Ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol. Rev. 2020, 44, 155–170. [Google Scholar] [CrossRef]
- Mu, X.; Huang, Z.; Ohore, O.E.; Yang, J.; Peng, K.; Li, S.; Li, X. Impact of antibiotics on microbial community in aquatic environment and biodegradation mechanism: A review and bibliometric analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 66431–66444. [Google Scholar] [CrossRef] [PubMed]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, D.; Pandey, J. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India). Ecotoxicol. Environ. Saf. 2018, 150, 104–115. [Google Scholar] [CrossRef]
- Yin, H.; Niu, J.; Ren, Y.; Cong, J.; Zhang, X.; Fan, F.; Xiao, Y.; Zhang, X.; Deng, J.; Xie, M.; et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 2015, 5, 14266. [Google Scholar] [CrossRef]
- Hu, X.; Tlili, A.; Schirmer, K.; Bao, M.; Bürgmann, H. Metal concentration in freshwater sediments is linked to microbial biodiversity and community composition. Environ. Int. 2025, 199, 109465. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Liu, B.; Xu, H.; Guo, X.; Wang, J.; Zhang, Y. Distribution and relationship of heavy metals, microbial communities and antibiotic resistance genes in the riparian soils of Daye Lake, China. Environ. Geochem. Health. 2025, 47, 151. [Google Scholar] [CrossRef]
- Yazdankhah, S.; Skjerve, E.; Wasteson, Y. Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microb. Ecol. Health Dis. 2018, 29, 1548248. [Google Scholar] [CrossRef] [PubMed]
- De Mattos D’Avila, D.G.; Ferrari, R.G.; De Almeida Rodrigues, P.; Neves, G.L.; Ramos Filho, A.M.; Baptista Mano, R.F.; Conte Junior, C.A. Bacterial resistance to mercury: A mini-review. Appl. Microbiol. 2024, 4, 1630–1641. [Google Scholar] [CrossRef]
- Zeng, L.; Jiang, S.; Jing, L.; Xue, Y. Source apportionment of heavy metal contamination in urban-agricultural-aquacultural soils near the Bohai Bay Coast, using land-use classification and Google satellite tracing. Remote Sens. 2022, 14, 2436. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Zhao, Z.; Zhu, M.; Hu, T. Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data. Sci. Total Environ. 2022, 833, 155206. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Tan, A.; Zhao, F.; Wang, F.; Gong, H.; Lai, Y.; Huang, Z. Global distribution of antimicrobial resistance genes in aquaculture. One Health Adv. 2025, 3, 6. [Google Scholar] [CrossRef]
- Bai, Y.; Huo, Y.; Liao, K.; Qu, J. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment. Appl. Microbiol. Biotechnol. 2017, 101, 7293–7302. [Google Scholar] [CrossRef]
- Douvris, C.; Vaughan, T.; Bussan, D.; Bartzas, G.; Thomas, R. How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Sci. Total Environ. 2023, 905, 167242. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wu, L.; Xiao, X.; Chen, F.; Zhang, H.; Huang, L.; Rong, L.; Zou, X. New parameters for the quantitative assessment of the proliferation of antibiotic resistance genes dynamic in the environment and its application: A case of sulfonamides and sulfonamide resistance genes. Sci. Total Environ. 2020, 726, 138516. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Almotiri, A.; AlZeyadi, Z.A. Antimicrobial resistance and β-Lactamase production in clinically significant gram-negative bacteria isolated from hospital and municipal wastewater. Antibiotics 2023, 12, 653. [Google Scholar] [CrossRef]
- Wang, L.; Yu, L.; Cai, B. Characteristics of Tetracycline Antibiotic Resistance Gene Enrichment and Migration in Soil-Plant System. Environ. Sci. Pollut. Res. 2024, 46, 427. [Google Scholar] [CrossRef]
- Zhong, Y.; Guo, J.; Zhang, Z.; Zheng, Y.; Yang, M.; Su, Y. Exogenous NADH promotes the bactericidal effect of aminoglycoside antibiotics against Edwardsiella tarda. Virulence 2024, 15, 2367647. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Xiang, Y.; Xu, R.; Zheng, Y.; Lu, Y.; Jia, M.; Sun, S.; Cao, J.; Xiong, W. Evolutions of Antibiotic Resistance Genes (ARGs), Class 1 Integron-Integrase (intI1) and Potential Hosts of ARGs During Sludge Anaerobic Digestion with the Iron Nanoparticles Addition. Sci. Total Environ. 2020, 724, 138248. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jia, C.; Li, F.; Wu, H. Toxicological responses of juvenile Chinese shrimp Fenneropenaeus chinensis and swimming crab Portunus trituberculatus exposed to cadmium. Ecotoxicol. Environ. Saf. 2022, 234, 113416. [Google Scholar] [CrossRef]
- Kong, W.; Xu, Q.; Lyu, H.; Kong, J.; Wang, X.; Shen, B.; Bi, Y. Sediment and residual feed from aquaculture water bodies threaten aquatic environmental ecosystem: Interactions among algae, heavy metals, and nutrients. J. Environ. Manag. 2022, 326, 116735. [Google Scholar] [CrossRef]
- Mos, B.; Byrne, M.; Dworjanyn, S.A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 2020, 528, 735618. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Melo Júnior, H.D.N.; De Paula Filho, F.J.; Menezes, J.M.C.; De Araújo, J.A.S.; Gonçalves Santana, J.E.; Melo, H.V.S.; Vieira, R.D.S.; De Morais Oliveira-Tintino, C.D.; Tintino, S.R.; Coutinho, H.D.M.; et al. Impacts of the residual trace metals of aquaculture in net cages on the quality of sediment. Life 2023, 13, 338. [Google Scholar] [CrossRef]
- Xiao, K.Q.; Li, B.; Ma, L.; Bao, P.; Zhou, X.; Zhang, T.; Zhu, Y.G. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol. Ecol. 2016, 92, fiw023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Kang, Y.; Zhang, R.; Han, M.; Zeng, W.; Wang, Y.; Yu, K.; Yang, Y. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: Storm caused the increase of antibiotics usage. Sci. Total Environ. 2021, 752, 141882. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, W.; Xu, T.; Zheng, B.; Yin, D. Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai, China. Environ. Sci. Eur. 2019, 31, 81. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.Q.; Gao, P.; Huang, X.H.; Zhu, Y.X.; Xu, M.; Yuan, Q.; Gao, Y.; Shen, X.X. Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Sci. Total Environ. 2023, 860, 160475. [Google Scholar] [CrossRef]
- Tarek, M.H.; Hubbart, J.A.; Garner, E. Tracking sources and dissemination of indicator antibiotic resistance genes at a watershed scale. ACS ES&T Wat. 2024, 4, 399–412. [Google Scholar] [CrossRef]
- Phuong Hoa, P.T.; Nonaka, L.; Hung Viet, P.; Suzuki, S. Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of North Vietnam. Sci. Total Environ. 2008, 405, 377–384. [Google Scholar] [CrossRef]
- Cheng, X.; Lu, Y.; Song, Y.; Zhang, R.; Shang, G.X.; Xu, H.; Liu, C.; Liu, H. Analysis of antibiotic resistance genes, environmental factors, and microbial community from aquaculture farms in five provinces, China. Front. Microbiol. 2021, 12, 4678805. [Google Scholar] [CrossRef] [PubMed]
- Schar, D.; Zhao, C.; Wang, Y.; Larsson, D.G.J.; Gilbert, M.; Van Boeckel, T.P. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nat. Commun. 2021, 12, 5384. [Google Scholar] [CrossRef]
- Suyamud, B.; Chen, Y.; Quyen, D.T.T.; Dong, Z.; Zhao, C.; Hu, J. Antimicrobial resistance in aquaculture: Occurrence and strategies in Southeast Asia. Sci. Total Environ. 2024, 907, 167942. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Xie, S.; Tang, H.; Zhang, L.; Zhang, Y.; Zuo, Z.; Li, X.; Zhao, W.; Xu, G.; Zou, J. The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp Pond. Environ. Sci. Pollut. Res. 2022, 29, 23806–23822. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, J.; Wu, J.; Zhang, Y.; Zhang, C. Proliferation of antibiotic resistance genes in coastal recirculating mariculture system. Environ. Pollut. 2019, 248, 462–470. [Google Scholar] [CrossRef]
- Pillajo, J.Q.; Chapin, L.J.; Quiroz-Moreno, C.D.; Altland, J.E.; Jones, M.L. Nutrient availability and plant phenological stage influence the substrate microbiome in container-grown Impatiens walleriana “Xtreme Red”. BMC Plant Biol. 2024, 24, 176. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, P.; Wang, X.; Hu, B.; Tao, L. Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere 2022, 286, 131648. [Google Scholar] [CrossRef]
- Hua, D.; Fan, Q.; Zhao, Y.; Xu, H.; Chen, L.; Si, H.; Li, Y. Continuous anaerobic digestion of wood vinegar wastewater from pyrolysis: Microbial diversity and functional genes prediction. Front. Bioeng. Biotechnol. 2020, 8, 923. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Fan, X.; Fu, P.; Sun, Y.; Li, Y.; Long, S.; Guo, T.; Zheng, L.; Yang, K.; Hua, D. Microbial community evolution, interaction, and functional genes prediction during anaerobic digestion in the presence of refractory organics. J. Environ. Chem. Eng. 2022, 10, 107789. [Google Scholar] [CrossRef]
- He, L.X.; He, L.Y.; Gao, F.Z.; Wu, D.L.; Ye, P.; Cheng, Y.X.; Chen, Z.Y.; Hu, L.X.; Liu, Y.S.; Chen, J.; et al. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Sci. Total Environ. 2021, 808, 152042. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Sultana, J.; Pingki, F.H.; Nur, A.-A.U.; Mia, M.S.; Abu Bakar, M.; Yu, J.; Paray, B.A.; Arai, T. Accumulation and contamination assessment of heavy metals in sediments of commercial aquaculture farms from a Coastal Area along the Northern Bay of Bengal. Front. Environ. Sci. 2023, 11, 1148360. [Google Scholar] [CrossRef]
- Ge, L.; Yuan, X.; Zhang, L.; Li, H.; Liu, X.; Zhu, X. Uncovering the relationship between soil bacterial community and heavy metals in a copper waste pile. Minerals 2024, 14, 1237. [Google Scholar] [CrossRef]
Level | RI | Risk Level | |
---|---|---|---|
1 | < 40 | RI < 150 | Low |
2 | 40 ≤ < 80 | 150 ≤ RI < 300 | Moderate |
3 | 80 ≤ < 160 | 300 ≤ RI < 600 | Elevated |
4 | 160 ≤ < 320 | 600 ≤ RI < 1200 | Significant |
5 | ≥ 320 | RI ≥ 320 | Critical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Gao, L.; Kong, W.; Wang, X.; Wei, C.; Cao, Y.; Pan, M.; Meng, Q.; Gu, W.; Wang, Q. Accumulation of Heavy Metals and Antibiotic Resistance Genes in Sediments from Eriocheir sinensis Ponds and Their Correlation with Bacterial Communities. Water 2025, 17, 1780. https://doi.org/10.3390/w17121780
Yang G, Gao L, Kong W, Wang X, Wei C, Cao Y, Pan M, Meng Q, Gu W, Wang Q. Accumulation of Heavy Metals and Antibiotic Resistance Genes in Sediments from Eriocheir sinensis Ponds and Their Correlation with Bacterial Communities. Water. 2025; 17(12):1780. https://doi.org/10.3390/w17121780
Chicago/Turabian StyleYang, Guanzheng, Lei Gao, Weishang Kong, Xiaoqing Wang, Chuangchuang Wei, Yawei Cao, Mingxiang Pan, Qingguo Meng, Wei Gu, and Qing Wang. 2025. "Accumulation of Heavy Metals and Antibiotic Resistance Genes in Sediments from Eriocheir sinensis Ponds and Their Correlation with Bacterial Communities" Water 17, no. 12: 1780. https://doi.org/10.3390/w17121780
APA StyleYang, G., Gao, L., Kong, W., Wang, X., Wei, C., Cao, Y., Pan, M., Meng, Q., Gu, W., & Wang, Q. (2025). Accumulation of Heavy Metals and Antibiotic Resistance Genes in Sediments from Eriocheir sinensis Ponds and Their Correlation with Bacterial Communities. Water, 17(12), 1780. https://doi.org/10.3390/w17121780