Flood Risk Assessment and Driving Factors in the Songhua River Basin Based on an Improved Soil Conservation Service Curve Number Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Study Design
2.4. Original SCS-CN Model
2.5. Optimization of the Original SCS-CN Model
2.5.1. CN Value Optimization
2.5.2. Effective Precipitation Correction Calculation
2.5.3. Performance Evaluation of Methods
2.6. Inundation Statistics
2.7. Geographical Detector Analysis
3. Results
3.1. Optimization of the SCS-CN Model
3.1.1. Determination of Initial CN Values
3.1.2. CN Value Optimization Based on Slope Correction
3.1.3. Surface Runoff Optimization Based on Effective Precipitation Correction
3.2. Spatial Distribution of Flooding in the Songhua River Basin
3.3. Driving Factor Analysis of Flooding in the Songhua River Basin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Do, H.X.; Mei, Y.W.; Gronewold, A.D. To What Extent Are Changes in Flood Magnitude Related to Changes in Precipitation Extremes? Geophys. Res. Lett. 2020, 47, e2020GL088684. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Liang, F.; Liu, H. Assessment of future flash flood inundations in coastal regions under climate change scenarios—A case study of Hadahe River basin in northeastern China. Sci. Total Environ. 2019, 693, 133550. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Xu, D.W.; Dang, V.; Alwah, A.A.Q. Predicting Urban Waterlogging Risks by Regression Models and Internet Open-Data Sources. Water 2020, 12, 879. [Google Scholar] [CrossRef]
- Lu, X.H.; Chan, F.K.S.; Chen, W.Q.; Chan, H.K.; Gu, X.B. An overview of flood-induced transport disruptions on urban streets and roads in Chinese megacities: Lessons and future agendas. J. Environ. Manag. 2022, 321, 115991. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, X.; Feng, Q.; Yu, T.F.; Engel, B.A. Analyzing the impacts of topographic factors and land cover characteristics on waterlogging events in urban functional zones. Sci. Total Environ. 2023, 904, 166669. [Google Scholar] [CrossRef]
- Yu, H.F.; Zhao, Y.L.; Fu, Y.C.; Li, L. Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China. Sustainability 2018, 10, 3761. [Google Scholar] [CrossRef]
- Soomro, S.E.H.; Boota, M.W.; Shi, X.T.; Soomro, G.E.Z.; Li, Y.H.; Tayyab, M.; Hu, C.H.; Liu, C.S.; Wang, Y.Y.; Wahid, J.A.; et al. Appraisal of Urban Waterlogging and Extent Damage Situation after the Devastating Flood. Water Resour. Manag. 2024, 38, 4911–4931. [Google Scholar] [CrossRef]
- Pal, S.; Singha, P. Analyzing sensitivity of flood susceptible model in a flood plain river basin. Geocarto Int. 2022, 37, 7186–7219. [Google Scholar] [CrossRef]
- Islam, T.; Zeleke, E.B.; Afroz, M.; Melesse, A.M. A Systematic Review of Urban Flood Susceptibility Mapping: Remote Sensing, Machine Learning, and Other Modeling Approaches. Remote Sens. 2025, 17, 524. [Google Scholar] [CrossRef]
- Weng, L.; Ma, L.; Xu, F.J. The Urban Rainstorm Disaster Risk Assessment and Defensive Countermeasure—A Case Study of Nanjing of Jiangsu Province. J. Catastrophology 2015, 30, 130–134. [Google Scholar]
- Zoppou, C. Review of urban storm water models. Environ. Model. Softw. 2001, 16, 195–231. [Google Scholar] [CrossRef]
- Rabori, A.M.; Ghazavi, R. Urban Flood Estimation and Evaluation of the Performance of an Urban Drainage System in a Semi-Arid Urban Area Using SWMM. Water Environ. Res. 2018, 90, 2075–2082. [Google Scholar] [CrossRef]
- Sidek, L.M.; Jaafar, A.S.; Majid, W.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-Resolution Hydrological-Hydraulic Modeling of Urban Floods Using InfoWorks ICM. Sustainability 2021, 13, 259. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Hou, H.; Chen, Y.; Fan, J.; Wang, P.; Hu, T. Analyzing spatial variance of urban waterlogging disaster at multiple scales based on a hydrological and hydrodynamic model. Nat. Hazards 2022, 114, 1915–1938. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.-F.; Todorovik, D.; Domergue, J.-M. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling. J. Hydrol. 2010, 387, 176–187. [Google Scholar] [CrossRef]
- Radinja, M.; Skerjanec, M.; Sraj, M.; Dzeroski, S.; Todorovski, L.; Atanasova, N. Automated modelling of urban runoff based on domain knowledge and equation discovery. J. Hydrol. 2021, 603, 127077. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Feng, Q. Field simulation of urban surfaces runoff and estimation of runoff with experimental curve numbers. Urban Water J. 2018, 15, 418–426. [Google Scholar] [CrossRef]
- Sjöman, J.D.; Gill, S.E. Residential runoff—The role of spatial density and surface cover, with a case study in the Hojea river catchment, southern Sweden. Urban For. Urban Green. 2014, 13, 304–314. [Google Scholar] [CrossRef]
- Szwagrzyk, M.; Kaim, D.; Price, B.; Wypych, A.; Grabska, E.; Kozak, J. Impact of forecasted land use changes on flood risk in the Polish Carpathians. Nat. Hazards 2018, 94, 227–240. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Long-term hydrological simulation based on the Soil Conservation Service curve number. Hydrol. Process. 2004, 18, 1291–1313. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—The two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef]
- Huang, M.; Gallichand, J.; Wang, Z.; Goulet, M. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China. Hydrol. Process. 2006, 20, 579–589. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P.; Sansalone, J.J.; Aravamuthan, V. A modified SCS-CN method: Characterization and testing. Water Resour. Manag. 2003, 17, 37–68. [Google Scholar] [CrossRef]
- Reshmidevi, T.V.; Jana, R.; Eldho, T.I. Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model. Agric. Water Manag. 2008, 95, 447–457. [Google Scholar] [CrossRef]
- Shi, W.; Wang, N. An Improved SCS-CN Method Incorporating Slope, Soil Moisture, and Storm Duration Factors for Runoff Prediction. Water 2020, 12, 1335. [Google Scholar] [CrossRef]
- Sahu Ram, K.; Mishra, S.K.; Eldho, T.I. Improved Storm Duration and Antecedent Moisture Condition Coupled SCS-CN Concept-Based Model. J. Hydrol. Eng. 2012, 17, 1173–1179. [Google Scholar] [CrossRef]
- Ma, Y.X.; Zhang, D.; Pan, C.Z.; Jiang, Y.N. Effects of terrace on the precipitation-runoff process in the Chinese loess areas and application and improvement of SCS-CN model. Trans. Chin. Soc. Agric. Eng. 2022, 38, 85–91. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Scorzini, A.R.; Leopardi, M. River basin planning: From qualitative to quantitative flood risk assessment: The case of Abruzzo Region (central Italy). Nat. Hazards 2017, 88, 71–93. [Google Scholar] [CrossRef]
- Kazmierczak, A.; Cavan, G. Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landsc. Urban Plan. 2011, 103, 185–197. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Gong, W.F.; Yuan, L.; Fan, W.Y.; Stott, P. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 207–216. [Google Scholar] [CrossRef]
- Zhang, S.H.; Wang, T.W.; Zhao, B.H. Calculation and visualization of flood inundation based on a topographic triangle network. J. Hydrol. 2014, 509, 406–415. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology; Springer: Dordrecht, The Netherlands, 2003; pp. 84–146. [Google Scholar] [CrossRef]
- Li, J.M.; Zhou, J.C.; Wang, J.L. Optimization of SCS-CN Model in a Mountainous Area on West Bank of Dianchi Lake. Bull. Soil Water Conserv. 2023, 43, 139–147+158. [Google Scholar] [CrossRef]
- Shen, H.B.; Xu, X.Z.; Cao, B.; Wang, H.Z. A distributed SCS-CN model with revised effective precipitation. Adv. Water Sci. 2023, 34, 553–561. [Google Scholar] [CrossRef]
- Wu, A.; Wang, X.; Huang, J.; Huang, J.; Wang, J.; Li, Z. Improvement of SCS-CN model based on antecedent precipitation and rainfall duration. Trans. Chin. Soc. Agric. Eng. 2021, 37, 85–94. [Google Scholar] [CrossRef]
- Shi, W.; Wang, N. Improved SMA-based SCS-CN method incorporating storm duration for runoff prediction on the Loess Plateau, China. Hydrol. Res. 2020, 51, 443–455. [Google Scholar] [CrossRef]
- Willems, P.; Mora, D.; Vansteenkiste, T.; Taye, M.T.; Van Steenbergen, N. Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes—Part 2: Intercomparison of models and calibration approaches. J. Hydrol. 2014, 510, 591–609. [Google Scholar] [CrossRef]
- Verma, S.; Singh, P.K.; Mishra, S.K.; Singh, V.P.; Singh, V.; Singh, A. Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method. J. Hydrol. 2020, 589, 125114. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Liu, R.Y.; Liu, N. Flood area and damage estimation in Zhejiang, China. J. Environ. Manag. 2002, 66, 1–8. [Google Scholar] [CrossRef]
- Jia, M.; He, D.; Huo, X.; Zhang, H.; Jia, S.; Zhang, J. Exploring the impact of climate change on flood risk at cultural heritage sites using a GIS-based SCS-CN method: A case study of Shanxi province, China. Int. J. Disaster Risk Reduct. 2023, 96, 103968. [Google Scholar] [CrossRef]
- GB 50014-2021; Standard for Design of Outdoor Wastewater Engineering. Ministry of Housing and Urban-Rural Development: Beijing, China, 2021; p. 286.
- GB 51222-2017; Technical Code for Urban Flooding Prevention and Control. Ministry of Housing and Urban-Rural Development: Beijing, China, 2017; p. 99.
- Wang, J.F.; Xu, C.D. Geographic detector: Principle and prospect. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Cai, X.H. Research on the Construction of Water Safety Pattern Evalution System and Planning Stratege in Central District of Harbin City. Master’s Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Forootan, E. GIS-based slope-adjusted curve number methods for runoff estimation. Environ. Monit. Assess. 2023, 195, 489. [Google Scholar] [CrossRef]
- Fu, S.; Wang, H.; Wang, X.; Yuan, A.; Lu, B. The runoff curve number of SCS-CN method in Beijing. Geogr. Res. 2013, 32, 797–807. [Google Scholar] [CrossRef]
- Soulis, K.X.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Deshmukh, D.S.; Chaube, U.C.; Hailu, A.E.; Gudeta, D.A.; Kassa, M.T. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. J. Hydrol. 2013, 492, 89–101. [Google Scholar] [CrossRef]
- Wang, N.; Chu, X. A Modified SCS Curve Number Method for Temporally Varying Rainfall Excess Simulation. Water 2023, 15, 2374. [Google Scholar] [CrossRef]
- Singh, P.K.; Mishra, S.K.; Berndtsson, R.; Jain, M.K.; Pandey, R.P. Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation. Water Resour. Manag. 2015, 29, 4111–4127. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.S.; Xu, S.B. Method of establishing an underwater digital elevation terrain based on kriging interpolation. Measurement 2015, 63, 287–298. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Muttil, N.; Yilmaz, A.G. Ordinary kriging and genetic programming for spatial estimation of rainfall in the Middle Yarra River catchment, Australia. Hydrol. Res. 2016, 47, 1182–1197. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Hu, C.; Ren, J.; Liu, P.; Zhao, C.; Zhu, M. Analysis of Surface Runoff Characteristics in Zhengzhou City under Extreme Rainfall Conditions. Sustainability 2024, 16, 6980. [Google Scholar] [CrossRef]
- Acharya, S.; Hori, T.; Karki, S. Assessing the spatio-temporal impact of landuse landcover change on water yield dynamics of rapidly urbanizing Kathmandu valley watershed of Nepal. J. Hydrol. Reg. Stud. 2023, 50, 101562. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Behera, B. Does forest cover help prevent flood damage? Empirical evidence from India. Glob. Environ. Change-Hum. Policy Dimens. 2018, 53, 78–89. [Google Scholar] [CrossRef]
- Jin, Y.N. Study on Safety Assessment of Rain and Flood Disaster in Harbin Based on GIS. Master’ Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Zhang, H.L.; Song, L.H.; Liu, H.N.; Xu, Y.Q. Risk Zoning of Flood and Waterlog in Heilongjiang Province. Chin. J. Agrometeorol. 2012, 33, 623–629. [Google Scholar]
- Abuzied, S.; Yuan, M.; Ibrahim, S.; Kaiser, M.; Saleem, T. Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J. Arid. Environ. 2016, 133, 54–72. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Gong, S.; Liu, M.; Zhao, Y. Risk assessment of rainstorm disasters under different return periods: A case study of Bohai Rim, China. Ocean. Coast. Manag. 2020, 187, 105107. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, Q.; Ding, S.; Qin, M.; Ning, L.; Ji, X. Improving Soil and Water Conservation of Riparian Vegetation Based on Landscape Leakiness and Optimal Vegetation Pattern. Sustainability 2018, 10, 1571. [Google Scholar] [CrossRef]
- Elsadek, W.M.; Almaliki, A.H. Integrated hydrological study for flash flood assessment using morphometric analysis and MCDA based on hydrological indices-Al-Sail Al-Kabir, KSA. Nat. Hazards 2024, 120, 6853–6880. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Dong, Y.; Yang, Z.; Yao, T. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China. Sci. Total Environ. 2023, 866, 161321. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.W.; Yin, C.Y.; Dai, L.; Zhou, F.; Zhao, Y.H. Analysis of spatial and temporal distribution characteristics and driving factors of inundation in karst mountains, Southwest China at multi-scales: Taking Guiyang City as an example. Water Resour. Hydropower Eng. 2023, 54, 33–46. [Google Scholar] [CrossRef]
- Sinha, R.; Bapalu, G.V.; Singh, L.K.; Rath, B. Flood Risk Analysis in the Kosi River Basin, North Bihar using Multi-Parametric Approach of Analytical Hierarchy Process (AHP). Photonirvachak J. Indian Soc. Remote Sens. 2008, 36, 335–349. [Google Scholar] [CrossRef]
No. | Data Types | Data Format | Data Source |
---|---|---|---|
1 | Monthly precipitation data in this region of China (2000–2020) | Grid (1 km) | National earth system science data center (https://www.geodata.cn/) accessed on 12 June 2024 |
2 | DEM data | Grid (30 m) | Geospatial data cloud (https://www.gscloud.cn/) accessed on 13 June 2024 |
3 | River networks data | Vector | Generated from DEM data |
4 | Slope data | Grid (30 m) | Generated from DEM data |
5 | Land use data (2020) | Grid (100 m) | Resource and environmental science data platform (https://www.resdc.cn/) accessed on 15 June 2024 |
6 | Soil type data | Grid (30 m) | Resource and environmental science data platform (https://www.resdc.cn/) accessed on 15 June 2024 |
7 | NDVI data | Grid (100 m) | Resource and environmental science data platform (https://www.resdc.cn/) accessed on 15 June 2024 |
8 | Road data | Vector | open street map website (https://download.geofabrik.de/) accessed on 17 June 2024 |
9 | Population density | Vector | Worldpop website (https://www.worldpop.org/) accessed on 15 June 2024 |
10 | POI data | Vector | open street map website (https://download.geofabrik.de/) accessed on 17 June 2024 |
Methods of Judging | Interaction Relationship |
---|---|
q(X1∩X2) < Min(q(X1), q(X2)) | Nonlinear weakening |
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) | Single factor nonlinear weakening |
q(X1∩X2) > Max(q(X1), q(X2)) | Two-factor enhancement |
q(X1∩X2) = q(X1) + q(X2) | Independence |
q(X1∩X2) > q(X1) + q(X2) | Nonlinear enhancement |
Land Use Type | Percentage (%) | CN Value |
---|---|---|
Water | 4.28 | 97 |
Man-made | 4.5 | 94 |
Forest | 34.1 | 35 |
Cropland | 54.67 | 52 |
Grassland | 0.14 | 38 |
Shrub | 0.02 | 37 |
Wetland | 2.29 | 54 |
Total | 100 | 50.04 |
Slope Grade | 0–2 | 2–5 | 5–8 | 8–15 | 15–25 | 25–35 | >35 | |
---|---|---|---|---|---|---|---|---|
Land Use | ||||||||
Cropland | area (hm2) | 9029.72 | 4863.51 | 1825.45 | 860.64 | 88.6 | 6.44 | 0.78 |
aver_slope (°) | 0.54 | 3.27 | 6.21 | 10.17 | 17.83 | 28.3 | 40.07 | |
Grassland | area (hm2) | 30.54 | 8.07 | 2.1 | 1.17 | 0.17 | 0 | 0 |
aver_slope (°) | 0.54 | 3.11 | 6 | 10.52 | 17.69 | 0 | 0 | |
Shrub | area (hm2) | 0.94 | 0.97 | 0.94 | 1.35 | 0.56 | 0.04 | 0 |
aver_slope (°) | 0.78 | 3.61 | 6.24 | 10.79 | 18.09 | 26.03 | 0 | |
Man-made | area (hm2) | 770.14 | 470.66 | 102.83 | 27.84 | 2.9 | 0.41 | 0.01 |
aver_slope (°) | 0.76 | 3.15 | 6.09 | 9.97 | 18.32 | 28.24 | 37.03 | |
Forest | area (hm2) | 1164.04 | 2212.02 | 2035.84 | 3350.8 | 1518.75 | 109.27 | 4.28 |
aver_slope (°) | 0.89 | 3.5 | 6.43 | 11.17 | 18.32 | 27.71 | 38.14 | |
Wetland | area (hm2) | 495.83 | 140.01 | 37.76 | 18.21 | 3.1 | 0.35 | 0.03 |
aver_slope (°) | 0.42 | 3.17 | 6.19 | 10.28 | 18.16 | 27.53 | 39.97 | |
Water | area (hm2) | 1037.98 | 177.74 | 51.62 | 27.92 | 4.86 | 0.6 | 0.18 |
aver_slope (°) | 0.27 | 3.16 | 6.21 | 10.41 | 18.07 | 28.25 | 39.66 |
Land Use | Cropland | Grassland | Shrub | Man-Made Surface | Forest | Wetland | Water | |
---|---|---|---|---|---|---|---|---|
Slope Rank | ||||||||
0–2 | 51.90 | 37.93 | 36.94 | 93.84 | 34.95 | 53.90 | 97.80 | |
2–5 | 52.02 | 38.01 | 37.02 | 94.02 | 35.02 | 54.01 | 98.02 | |
5–8 | 52.14 | 38.09 | 37.10 | 94.24 | 35.10 | 54.14 | 98.26 | |
8–15 | 52.30 | 38.23 | 37.24 | 94.53 | 35.23 | 54.32 | 98.59 | |
15–25 | 52.64 | 38.46 | 37.46 | 95.19 | 35.44 | 54.68 | 99.22 | |
25–35 | 53.15 | 37.91 | 37.73 | 96.07 | 35.75 | 55.15 | 100.16 | |
>35 | 53.86 | 37.91 | 0 | 96.99 | 36.16 | 55.92 | 101.44 | |
CN weight value | 51.99 | 37.96 | 37.14 | 93.95 | 35.16 | 53.95 | 97.87 |
Land Use | Cropland | Water | Grassland | Wetland | Shrub | Forest | Man-Made Surfaces | |
---|---|---|---|---|---|---|---|---|
Risk | ||||||||
waterlogged areas | 3301.06 | 37.31 | 22.06 | 119.19 | 2.69 | 6142.00 | 107.13 | |
low-risk areas | 6461.38 | 49.00 | 6.38 | 215.88 | 1.31 | 3524.94 | 169.81 | |
medium-risk areas | 4187.81 | 32.25 | 5.13 | 115.31 | 0.56 | 444.31 | 94.31 | |
high-risk areas | 2473.63 | 418.69 | 5.81 | 218.31 | 0.13 | 232.31 | 660.56 | |
extreme-risk areas | 222.00 | 751.44 | 1.00 | 25.94 | 0.00 | 25.94 | 339.69 |
Risk | Waterlogged Areas | Low-Risk Areas | Medium-Risk Areas | High-Risk Areas | Extreme-Risk Areas | |
---|---|---|---|---|---|---|
Region | ||||||
Songbei | 577.60 | 21.04 | 31.40 | 125.97 | 0 | |
76.37% | 2.78% | 4.15% | 16.66% | 0 | ||
Daoli | 216.30 | 117.72 | 59.77 | 66.56 | 3.15 | |
46.67% | 25.40% | 12.90% | 14.36% | 0.68% | ||
Daowai | 6.37 | 312.89 | 156.20 | 134.52 | 6.50 | |
1.03% | 50.76% | 25.34% | 21.82% | 1.05% | ||
Shuangcheng | 1308.29 | 1507.14 | 4.65 | 292.76 | 0.13 | |
42.03% | 48.41% | 0.15% | 9.40% | 0.00% | ||
Hulan | 948.96 | 626.46 | 238.99 | 364.72 | 2.13 | |
43.50% | 28.72% | 10.96% | 16.72% | 0.10% | ||
Mulan | 1487.53 | 670.54 | 671.29 | 132.01 | 210.29 | |
46.90% | 21.14% | 21.17% | 4.16% | 6.63% | ||
Fangzheng | 749.73 | 1001.41 | 298.80 | 705.17 | 220.89 | |
25.19% | 33.65% | 10.04% | 23.70% | 7.42% | ||
Bin | 1045.58 | 1058.30 | 1243.53 | 139.82 | 259.98 | |
27.90% | 28.24% | 33.18% | 3.73% | 6.94% | ||
Tonghe | 2346.62 | 1441.46 | 1160.10 | 389.89 | 321.29 | |
41.46% | 25.47% | 20.50% | 6.89% | 5.68% | ||
Bayan | 457.80 | 2130.78 | 350.76 | 145.58 | 55.15 | |
14.58% | 67.85% | 11.17% | 4.64% | 1.76% | ||
Yilan | 541.22 | 904.56 | 1345.32 | 1531.10 | 284.80 | |
11.75% | 19.63% | 29.20% | 33.23% | 6.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Li, P.; Qiao, Y.; Xu, W.; Wang, Z. Flood Risk Assessment and Driving Factors in the Songhua River Basin Based on an Improved Soil Conservation Service Curve Number Model. Water 2025, 17, 1472. https://doi.org/10.3390/w17101472
Liu K, Li P, Qiao Y, Xu W, Wang Z. Flood Risk Assessment and Driving Factors in the Songhua River Basin Based on an Improved Soil Conservation Service Curve Number Model. Water. 2025; 17(10):1472. https://doi.org/10.3390/w17101472
Chicago/Turabian StyleLiu, Kun, Pinghao Li, Yajun Qiao, Wanggu Xu, and Zhi Wang. 2025. "Flood Risk Assessment and Driving Factors in the Songhua River Basin Based on an Improved Soil Conservation Service Curve Number Model" Water 17, no. 10: 1472. https://doi.org/10.3390/w17101472
APA StyleLiu, K., Li, P., Qiao, Y., Xu, W., & Wang, Z. (2025). Flood Risk Assessment and Driving Factors in the Songhua River Basin Based on an Improved Soil Conservation Service Curve Number Model. Water, 17(10), 1472. https://doi.org/10.3390/w17101472