Effects of Bio-Organic Fertilizers Substitution on Gaseous Nitrogen Losses in Rice Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Field Experiment Design
2.3. Ammonia Sampling and Analysis
2.4. N2O Collection and Analysis
2.5. Soil and Water Sample Collection and Analysis
2.6. Statistical Analyses
3. Results
3.1. Ammonia Volatilization Fluxes
3.2. N2O Fluxes
3.3. Cumulative Ammonia Volatilization and N2O Emissions, Rice Yield, and GNLI
3.4. Field Water (Top Soil Water) and Soil NH4+-N Content
3.5. Relationship between Ammonia Volatilization, N2O Flux, and NH4+-N in Soil and Water
4. Discussion
4.1. Effect of Irrigation and Fertilizer on Ammonia Volatilization
4.2. Effect of Irrigation and Fertilizer on N2O Emissions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.K.; Hu, R.F.; Cao, J.M.; Rozelle, S. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. J. Soil Water Conserv. 2008, 63, 165–167. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Zhao, G.; Cheng, W.; Guo, S.; Zhang, H.; Shi, W. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields? Agric. Ecosyst. Environ. 2015, 209, 26–33. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Wang, Y.; Li, Y.; Zhu, X.; Jiang, W.; Li, Y.; Wu, J. Soil nitrogen cycling and environmental impacts in the subtropical hilly region of china: Evidence from measurements and modeling. Front. Agric. Sci. Eng. 2022, 9, 407–424. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China. J. Environ. Manag. 2018, 207, 134–140. [Google Scholar] [CrossRef]
- Du, X.; Li, X.; Zhang, W.; Wang, H. Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results. Environ. Sci. Pollut. Res. 2014, 21, 6506–6515. [Google Scholar] [CrossRef]
- Fu, J.; Wu, Y.; Wang, Q.; Hu, K.; Wang, S.; Zhou, M.; Hayashi, K.; Wang, H.; Zhan, X.; Jian, Y.; et al. Importance of subsurface fluxes of water, nitrogen and phosphorus from rice paddy fields relative to surface runoff. Agric. Water Manag. 2019, 213, 627–635. [Google Scholar] [CrossRef]
- Yang, W.; Que, H.; Wang, S.; Zhu, A.; Zhang, Y.; He, Y.; Xin, X.; Zhang, X.; Ding, S. High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China. Environ. Pollut. 2020, 257, 113489. [Google Scholar] [CrossRef]
- Sun, H.; Feng, Y.; Ji, Y.; Shi, W.; Yang, L.; Xing, B. N2O and CH4 emissions from N-fertilized rice paddy soil can be mitigated by wood vinegar application at an appropriate rate. Atmos. Environ. 2018, 185, 153–158. [Google Scholar] [CrossRef]
- Yang, G.; Ji, H.; Sheng, J.; Zhang, Y.; Feng, Y.; Guo, Z.; Chen, L. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Sci. Total Environ. 2020, 743, 140799. [Google Scholar] [CrossRef]
- Ding, W.; He, P.; Zhang, J.; Liu, Y.; Xu, X.; Ullah, S.; Cui, Z.; Zhou, W. Optimizing rates and sources of nutrient input to mitigate nitrogen, phosphorus, and carbon losses from rice paddies. J. Clean. Prod. 2020, 256, 120603. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2021, 306, 107183. [Google Scholar] [CrossRef]
- Recio, J.; Vallejo, A.; Le-Noe, J.; Garnier, J.; Garcia-Marco, S.; Manuel Alvarez, J.; Sanz-Cobena, A. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Sci. Total Environ. 2018, 636, 427–436. [Google Scholar] [CrossRef]
- Ni, B.; Zhang, W.; Xu, X.; Wang, L.; Bol, R.; Wang, K.; Hu, Z.; Zhang, H.; Meng, F. Exponential relationship between N2O emission and fertilizer nitrogen input and mechanisms for improving fertilizer nitrogen efficiency under intensive plastic-shed vegetable production in China: A systematic analysis. Agric. Ecosyst. Environ. 2021, 312, 107353. [Google Scholar] [CrossRef]
- Liu, T.; Li, C.; Tan, W.; Wang, J.; Feng, J.; Hu, Q.; Cao, C. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China. Agric. Ecosyst. Environ. 2022, 330, 107869. [Google Scholar] [CrossRef]
- Wenjun, J.; Wenchao, C.; Fei, L.; Yongkang, W.; Fengwen, W.; Zhaorong, D.; He, S. Water management impact on denitrifier community and denitrification activity in a paddy soil at different growth stages of rice. Agric. Water Manag. 2020, 241, 348–359. [Google Scholar] [CrossRef]
- Rukshana, F.; Butterly, C.R.; Baldock, J.A.; Tang, C. Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biol. Fertil. Soils 2011, 47, 51–62. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Ma, L.; Chadwick, D.; Chen, X. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis. Environ. Pollut. 2021, 269, 116143. [Google Scholar] [CrossRef]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. [Google Scholar] [CrossRef]
- Ansari, R.A.; Mahmood, I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 2017, 226, 1–9. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.L.; Xing, S.Z.; Ma, Z.Y.; Hu, S.J.; Tu, C. Bio-organic Fertilizer Promotes Plant Growth and Yield and Improves Soil Microbial Community in Continuous Monoculture System of Chrysanthemum morifolium cv. Chuju. Int. J. Agric. Biol. 2017, 19, 563–568. [Google Scholar] [CrossRef]
- Jiang, M.; Li, X.; Xin, L.; Tan, M. Paddy rice multiple cropping index changes in Southern China: Impacts on national grain production capacity and policy implications. J. Geogr. Sci. 2019, 29, 1773–1787. [Google Scholar] [CrossRef]
- Xu, J.; Peng, S.; Yang, S.; Wang, W. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agric. Water Manag. 2012, 104, 184–192. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zeng, K.; Zhao, M.; Yin, B. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Res. 2018, 218, 141–149. [Google Scholar] [CrossRef]
- Hou, H.J.; Yang, S.H.; Wang, F.T.; Li, D.; Xu, J.Z. Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice-winter wheat rotation systems in Southeast China. Ecol. Eng. 2016, 86, 239–246. [Google Scholar] [CrossRef]
- Peng, S.Z.; Hou, H.J.; Xu, J.Z.; Yang, S.H.; Mao, Z. Lasting effects of controlled irrigation during rice-growing season on nitrous oxide emissions from winter wheat croplands in Southeast China. Paddy Water Environ. 2013, 11, 583–591. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Xu, J.; Liu, B.; Wang, H.; Liu, W.; Li, Y.; Dai, Y.; Lu, T. Ammonia volatilization and nitrogen leaching following top-dressing of urea from water-saving irrigated rice field: Impact of two-split surge irrigation. Paddy Water Environ. 2019, 17, 45–51. [Google Scholar] [CrossRef]
- Zou, J.W.; Huang, Y.; Jiang, J.Y.; Zheng, X.H.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Song, C.; Zhang, J.; Wang, Y.; Wang, Y.; Zhao, Z. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. J. Environ. Manag. 2008, 88, 428–436. [Google Scholar] [CrossRef]
- Chen, X.; Yang, S.-H.; Jiang, Z.-W.; Ding, J.; Sun, X. Biochar as a tool to reduce environmental impacts of nitrogen loss in water-saving irrigation paddy field. J. Clean. Prod. 2021, 290, 125811. [Google Scholar] [CrossRef]
- Liao, B.; Liao, P.; Hu, R.; Cai, T.; Zhang, Y.; Yu, Q.; Zhang, B.; Shu, Y.; Wang, J.; Luo, Y.; et al. Mitigating ammonia volatilization in rice cultivation: The impact of partial organic fertilizer substitution. Chemosphere 2023, 344, 140326. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Huang, J.; Chai, K.; Cao, C.; Li, C. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China. Front. Plant Sci. 2018, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wu, Z.; Zhang, X.; Feng, L.; Xiong, Z. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system. Field Crops Res. 2019, 241, 107568. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Luo, J.; Wang, H.; Zhai, L.; Geng, Y.; Zhang, Y.; Li, J.; Lei, Q.; Bashir, M.A.; et al. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Sci. Total Environ. 2018, 633, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.L.; Wu, T.Y.; Tremblay, N.; Deen, W.; McLaughlin, N.B.; Morrison, M.J.; Stewart, G. On-Farm Assessment of the Amount and Timing of Nitrogen Fertilizer on Ammonia Volatilization. Agron. J. 2010, 102, 134–144. [Google Scholar] [CrossRef]
- Nobile, C.M.; Bravin, M.N.; Becquer, T.; Paillat, J.M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere 2020, 239, 124709. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Bai, Z.; Bao, L.; Xue, L.; Zhang, S.; Wei, Y.; Zhang, Z.; Zhuang, G.; Zhuang, X. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int. 2020, 144, 105989. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, J.; Yu, Y.; Ma, Q.; Kong, Y.; Pan, W.; Wu, L.; Jin, Q. Alternate wetting-drying enhances soil nitrogen availability by altering organic nitrogen partitioning in rice-microbe system. Geoderma 2022, 424, 115993. [Google Scholar] [CrossRef]
- Xu, J.-Z.; Peng, S.-Z.; Hou, H.-J.; Yang, S.-H.; Luo, Y.-F.; Wang, W.-G. Gaseous losses of nitrogen by ammonia volatilization and nitrous oxide emissions from rice paddies with different irrigation management. Irrig. Sci. 2013, 31, 983–994. [Google Scholar] [CrossRef]
- Liao, B.; Wu, X.; Yu, Y.; Luo, S.; Hu, R.; Lu, G. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation. Sci. Total Environ. 2020, 698, 134212. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luesma, S.; Cavero, J.; Plaza-Bonilla, D.; Cantero-Martinez, C.; Arrue, J.L.; Alvaro-Fuentes, J. Tillage and irrigation system effects on soil carbon dioxide (CO2) and methane (CH4) emissions in a maize monoculture under Mediterranean conditions. Soil Tillage Res. 2020, 196, 104488. [Google Scholar] [CrossRef]
- Shen, J.L.; Tang, H.; Liu, J.Y.; Wang, C.; Li, Y.; Ge, T.D.; Jones, D.L.; Wu, J.S. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Huang, T.; Gao, B.; Hu, X.-K.; Lu, X.; Well, R.; Christie, P.; Bakken, L.R.; Ju, X.-T. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil. Sci. Rep. 2014, 4, 3950. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Cai, T.; Wu, X.; Luo, Y.; Liao, P.; Zhang, B.; Zhang, Y.; Wei, G.; Hu, R.; Luo, Y.; et al. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field. J. Environ. Manag. 2023, 344, 118372. [Google Scholar] [CrossRef]
- Shan, J.; Yan, X. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Guan, Y.; Liang, Y.; Hu, B.; Lv, J.; Chu, G. Effects of urease and nitrification inhibitors on the soil mineral nitrogen dynamics and nitrous oxide (N2O) emissions on calcareous soil. Environ. Sci. Pollut. Res. Int. 2018, 25, 9155–9164. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, J.; Liu, X.; Qi, Z.; Wang, H.; Li, Y.; Liao, L. Nitrification inhibitor DMPP offsets the increase in N2O emission induced by soil salinity. Biol. Fertil. Soils 2020, 56, 1211–1217. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.e.; Wan, Y.; Wang, B.; Waqas, M.A.; Cai, W.; Guo, C.; Zhou, S.; Su, R.; Qin, X.; et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 2018, 315, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Ma, X.; Shen, J.; Chen, D.; Zheng, L.; Ge, T.; Li, Y.; Wu, J. Reduction in net greenhouse gas emissions through a combination of pig manure and reduced inorganic fertilizer application in a double-rice cropping system: Three-year results. Agric. Ecosyst. Environ. 2022, 326, 107799. [Google Scholar] [CrossRef]
Irrigation Methods | Control Indexes | G | T | J&B | H&F | M | R |
---|---|---|---|---|---|---|---|
Flooded irrigation | Upper limit | 50 mm | 30 mm | 50 mm | 50 mm | 30 mm | Naturally drying |
Lower limit | 20 mm | 10 mm | 10 mm | 20 mm | 10 mm | ||
Controlled irrigation | Upper limit | 25 mm | θs | θs | θs | θs | Naturally drying |
Lower limit | 5 mm | 60~70% θs | 70~75% θs | 80% θs | 70% θs |
Ammonia Volatilization Accumulation (kg N ha−1) | N2O Cumulative Emission (kg N ha−1) | Gaseous Nitrogen Losses (kg N ha−1) | Yield (kg ha−1) | GNLI (kg N t−1) | |
---|---|---|---|---|---|
Year (Y) | |||||
2022 | 25.58 b | 1.01 b | 26.59 b | 9217.46 a | 2.88 b |
2023 | 35.57 a | 1.69 a | 37.26 a | 9414.19 a | 3.96 a |
Irrigation (I) | |||||
FI | 39.66 a | 1.00 b | 40.66 a | 9338.60 a | 4.35 a |
CI | 21.49 b | 1.71 a | 23.19 b | 9293.05 a | 2.49 b |
Fertilizer (M) | |||||
N300 | 42.20 a | 1.85 a | 44.05 a | 9317.61 a | 4.72 a |
BO15 | 32.63 b | 1.14 b | 33.76 b | 9342.64 a | 3.60 b |
BO30 | 16.90 c | 1.06 b | 17.96 c | 9287.22 a | 1.94 c |
F-value (F) | |||||
Y | 184.7 ** | 471.9 ** | 206.0 ** | ns | 54.0 ** |
I | 708.0 ** | 508.7 ** | 646.4 ** | ns | 177.3 ** |
M | 391.3 ** | 255.1 ** | 406.6 ** | ns | 119.4 ** |
Y × I | 171.4 ** | ns | 169.9 ** | ns | 76.3 ** |
Y × M | 87.1 ** | 9.1 ** | 87.6 ** | ns | 34.3 ** |
I × M | 67.5 ** | 64.1 ** | 63.9 ** | ns | 23.7 ** |
Y × I × M | 24.1 ** | 11.2 ** | 23.7 ** | ns | 7.2 ** |
Irrigation | Fertilizer | Field Water NH4+-N | Soil NH4+-N | |
---|---|---|---|---|
Ammonia volatilization | FI | N300 | 0.777 ** | 0.630 ** |
BO15 | 0.720 ** | 0.579 ** | ||
BO30 | 0.721 ** | 0.638 ** | ||
CI | N300 | 0.705 ** | 0.666 ** | |
BO15 | 0.933 ** | 0.679 ** | ||
BO30 | 0.869 ** | 0.856 ** | ||
N2O | FI | N300 | −0.009 | 0.168 |
BO15 | 0.230 | 0.334 * | ||
BO30 | 0.060 | 0.288 | ||
CI | N300 | −0.004 | 0.174 | |
BO15 | −0.110 | 0.064 | ||
BO30 | −0.171 | −0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Hou, H.; Yao, X.; Qian, X.; Tao, Q.; Zhou, M. Effects of Bio-Organic Fertilizers Substitution on Gaseous Nitrogen Losses in Rice Fields. Water 2024, 16, 1229. https://doi.org/10.3390/w16091229
Han Z, Hou H, Yao X, Qian X, Tao Q, Zhou M. Effects of Bio-Organic Fertilizers Substitution on Gaseous Nitrogen Losses in Rice Fields. Water. 2024; 16(9):1229. https://doi.org/10.3390/w16091229
Chicago/Turabian StyleHan, Zhengdi, Huijing Hou, Xianzi Yao, Xiang Qian, Qin Tao, and Mingyao Zhou. 2024. "Effects of Bio-Organic Fertilizers Substitution on Gaseous Nitrogen Losses in Rice Fields" Water 16, no. 9: 1229. https://doi.org/10.3390/w16091229
APA StyleHan, Z., Hou, H., Yao, X., Qian, X., Tao, Q., & Zhou, M. (2024). Effects of Bio-Organic Fertilizers Substitution on Gaseous Nitrogen Losses in Rice Fields. Water, 16(9), 1229. https://doi.org/10.3390/w16091229