Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Materials
2.1.1. Study Site and Data Sources
2.1.2. Data Implementation
2.2. Methodology
2.2.1. Overall Strategy of Nonstationarity Identification
2.2.2. Rainfall–Runoff (RR) Models
- (1)
- Xinanjiang model
- (2)
- GR4J
2.2.3. Model Calibration and Evaluation
- (1)
- Model calibration
- (2)
- Model evaluation
2.2.4. Bayesian Model Averaging (BMA) Method
2.2.5. Modeling Schemes
- (1)
- Individual modeling schemes
- (2)
- Time-invariant model averaging schemes
- (3)
- Time-varying model averaging schemes
3. Results and Discussion
3.1. Streamflow Modeling Performances
3.2. Hydrological Model Structural Transferability Results
3.3. Identification of Hydrological Model Structural Nonstationarity
3.4. Mechanisms of Hydrological Model Structural Nonstationarity
4. Conclusions
- (i)
- Using time-varying model structures can take into account the model’s structural nonstationarity, and therefore it improves model adaptation and modeling efficiency under climate change.
- (ii)
- Transferring the hydrological model structure can decrease modeling efficiency, and the longer the time interval of transfer, the greater the decrease in efficiency.
- (iii)
- The temporal variation in the optimized Bayesian weights is consistent with that of precipitation.
- (iv)
- Furthermore, when the change in precipitation is monotonic, there is a change in the optimized weights proportionally; when the change in precipitation is nonmonotonic, the mechanism of hydrological model structural nonstationarity changes significantly and results in a segmented correlation between the model structure and precipitation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dolgorsuren, S.E.; Ishgaldan, B.; Myagmartseren, P.; Kumar, P.; Meraj, G.; Singh, S.K.; Kanga, S.; Almazroui, M. Hydrological Responses to Climate Change and Land-Use Dynamics in Central Asia’s Semi-arid Regions: An SWAT Model Analysis of the Tuul River Basin. Earth Syst. Environ. 2024. [Google Scholar] [CrossRef]
- Peiris, T.A.; Doell, P. Improving the quantification of climate change hazards by hydrological models: A simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration. Hydrol. Earth Syst. Sci. 2023, 27, 3663–3686. [Google Scholar] [CrossRef]
- Prudhomme, C.; Wilby, R.L.; Crooks, S.; Kay, A.L.; Reynard, N.S. Scenario-neutral approach to climate change impact studies: Application to flood risk. J. Hydrol. 2010, 390, 198–209. [Google Scholar] [CrossRef]
- Prudhomme, C.; Sauquet, E.; Watts, G. Low flow response surfaces for drought decision support: A case study from the UK. J. Extrem. Events 2015, 2, 1550005. [Google Scholar] [CrossRef]
- Whateley, S.; Steinschneider, S.; Brown, C. A climate change range-based method for estimating robustness for water resources supply. Water Resour. Res. 2014, 50, 8944–8961. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Murphy, C.; Connor, P.O.; Hawkin, E. The Statistical DownScaling Model—Decision Centric (SDSM-DC): Conceptual basis and applications. Clim. Res. 2014, 61, 259–276. [Google Scholar] [CrossRef]
- Klemeš, V. Operational testing of hydrological simulation models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W. The role of the postaudit in model validation. Adv. Water Resour. 1992, 15, 167–173. [Google Scholar] [CrossRef]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation and confirmation of numerical models in the earth sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Climate change—Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Westra, S.; Thyer, M.; Leonard, M.; Kavetski, D.; Lambert, M. A strategy for diagnosing and interpreting hydrological model nonstationarity. Water Resour. Res. 2014, 50, 5090–5113. [Google Scholar] [CrossRef]
- Wagener, T.; McIntyre, N.R.; Lees, M.J.; Wheater, H.S.; Gupta, H.V. Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. Hydrol. Process. 2003, 17, 455–476. [Google Scholar] [CrossRef]
- Choi, H.T.; Beven, K. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. J. Hydrol. 2007, 332, 316–336. [Google Scholar] [CrossRef]
- Herman, J.D.; Reed, P.M.; Wagener, T. Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resour. Res. 2013, 49, 1400–1414. [Google Scholar] [CrossRef]
- Clark, M.P.; Slater, A.G.; Rupp, D.E.; Woods, R.A.; Vrugt, J.A.; Gupta, H.V.; Wagener, T.; Hay, L.E. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res. 2008, 44, W2B. [Google Scholar] [CrossRef]
- van Esse, W.R.; Perrin, C.; Booij, M.J.; Augustijn, D.C.M.; Fenicia, F.; Kavetski, D.; Lobligeois, F. The influence of conceptual model structure on model performance: A comparative study for 237 French catchments. Hydrol. Earth Syst. Sci. 2013, 17, 4227–4239. [Google Scholar] [CrossRef]
- Coxon, G.; Freer, J.; Wagener, T.; Odoni, N.A.; Clark, M. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrol. Process. 2014, 28, 6135–6150. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, P.; Gui, Z.; Zhang, X.; Liu, W.; Cheng, L.; Xia, J. Diagnosing structural deficiencies of a hydrological model by time-varying parameters. J. Hydrol. 2022, 605, 127305. [Google Scholar] [CrossRef]
- Chamberlain, T.C. The method of multiple working hypotheses. Science 1890, 15, 92–96. [Google Scholar] [CrossRef]
- Clark, M.P.; Kavetski, D.; Fenicia, F. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res. 2011, 47, W9301. [Google Scholar] [CrossRef]
- Fenicia, F.; Kavetski, D.; Savenije, H.H.G. Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resour. Res. 2011, 47, W11510. [Google Scholar] [CrossRef]
- Cui, Z.; Guo, S.; Chen, H.; Liu, D.; Zhou, Y.; Xu, C.Y. Quantify and reduce flood forecast uncertainty by the CHUP-BMA method. Hydrol. Earth Syst. Sci. 2023. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, Y.; Zhang, T.; Wu, W.Z. A novel grey fractional model based on model averaging for forecasting time series. J. Intell. Fuzzy Syst. 2024, 46, 6479–6490. [Google Scholar] [CrossRef]
- Diks, C.G.H.; Vrugt, J. Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch. Environ. Res. Risk A 2010, 24, 809–820. [Google Scholar] [CrossRef]
- Alexandre, L. Transmissivity Averaging in Fracture Flow on Self-affine Linear Profiles: Arithmetic, Harmonic, and Beyond. Transport. Porous. Med. 2023, 150, 1–21. [Google Scholar] [CrossRef]
- Shamseldin, A.Y.; O’Connor, K.M.; Liang, G.C. Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 1997, 197, 203–229. [Google Scholar] [CrossRef]
- Abrahart, R.J.; See, L. Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments. Hydrol. Earth Syst. Sci. 2002, 6, 655–670. [Google Scholar] [CrossRef]
- Arsenault, R.; Gatien, P.; Renaud, B.; Brissette, F.; Martel, J.L. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. J. Hydrol. 2015, 529, 754–767. [Google Scholar] [CrossRef]
- Broderick, C.; Matthews, T.; Wilby, R.L.; Bastola, S.; Murphy, C. Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods. Water Resour. Res. 2016, 52, 8343–8373. [Google Scholar] [CrossRef]
- Marshall, L.; Nott, D.; Sharma, A. Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework. Hydrol. Process. 2007, 21, 847–861. [Google Scholar] [CrossRef]
- Duan, Q.; Ajami, N.K.; Gao, X.; Sorooshian, S. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water. Res. 2007, 30, 1371–1386. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 113, 1155–1174. [Google Scholar] [CrossRef]
- Parrish, M.A.; Moradkhani, H.; DeChant, C.M. Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation. Water Resour. Res. 2012, 48, W3519. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, D. A multimodel data assimilation framework via the ensemble Kalman filter. Water Resour. Res. 2014, 50, 4197–4219. [Google Scholar] [CrossRef]
- Duan, Q.; Schaake, J.; Andréassian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L. Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320, 3–17. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Viney, N.; Frost, A.; Oke, A.; Brooks, M.; Chen, Y.; Campbell, N. Collation of Australian Modeller’s Streamflow Dataset for 780 Unregulated Australian Catchments; CSIRO: Hobart, Australia, 2013. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- CSIRO. Water Availability in the Murray, A Report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project; Csiro Australia: Clayton, Australia, 2008. [Google Scholar]
- Saft, M.; Western, A.W.; Zhang, L.; Peel, M.C.; Potter, N.J. The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective. Water Resour. Res. 2015, 51, 2444–2463. [Google Scholar] [CrossRef]
- Fowler, K.J.A.; Peel, M.C.; Western, A.W.; Zhang, L.; Peterson, T.J. Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models. Water Resour. Res. 2016, 52, 1820–1846. [Google Scholar] [CrossRef]
- Zhao, R.J.; Liu, X.R.; Singh, V.P. The Xinanjiang model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 371–381. [Google Scholar]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Gui, Z.; Zhang, F.; Chang, D.; Xie, A.; Yue, K.; Wang, H. A General Method to Improve Runoff Prediction in Ungauged Basins Based on Remotely Sensed Actual Evapotranspiration Data. Water 2023, 15, 3307. [Google Scholar] [CrossRef]
- Edijatno; Nascimento, N.O.; Yang, X.; Makhlouf, Z.; Michel, C. GR3J: A daily watershed model with three free parameters. Hydrol. Sci. J. 1999, 44, 263–277. [Google Scholar] [CrossRef]
- Coron, L.; Andréassian, V.; Perrin, C.; Lerat, J.; Vaze, J.; Bourqui, M.; Hendrickx, F. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resour. Res. 2012, 48, W5552. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Rosenbrock, H.H. An Automatic Method for Finding the Greatest or Least Value of a Function. Comput. J. 1960, 3, 175–184. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian modeling averaging: A tutorial. Stat. Sci. 1999, 14, 382–417. [Google Scholar] [CrossRef]
- Raftery, A.E.; Zheng, Y. Discussion: Performance of Bayesian model averaging. J. Am. Stat. Assoc. 2003, 98, 931–938. [Google Scholar] [CrossRef]
- Merz, R.; Parajka, J.; Blöschl, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res. 2011, 47, W2531. [Google Scholar] [CrossRef]
- Xiong, M.; Liu, P.; Cheng, L.; Deng, C.; Gui, Z.; Zhang, X.; Liu, Y. Identifying time-varying hydrological model parameters to improve simulation efficiency by the ensemble kalman filter: A joint assimilation of streamflow and actual evapotranspiration. J. Hydrol. 2019, 568, 758–768. [Google Scholar] [CrossRef]
- Deng, C.; Liu, P.; Wang, W.; Shao, Q. Modelling time-variant parameters of a two-parameter monthly water balance model. J. Hydrol. 2019, 573, 918–936. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, P.; Xu, C.Y.; Cheng, L.; Tian, J.; Cheng, S.J.; Xie, K. The influence of a prolonged meteorological drought on catchment water storage capacity: A hydrological-model perspective. Hydrol. Earth Syst. Sci. 2020, 24, 4369–4387. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, P.; Cheng, L.; Zhang, X.; Zhang, Y. Detecting and attributing drought-induced changes in catchment hydrological behaviors in a southeastern Australia catchment using a data assimilation method. Hydrol. Process. 2021, 35, e14289. [Google Scholar] [CrossRef]
- Tian, J.; Pan, Z.; Guo, S.; Yin, J.; Zhou, Y.; Wang, J. Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation. Hydrol. Earth Syst. Sci. 2022, 26, 4853–4874. [Google Scholar] [CrossRef]
Data Source | Basin ID | Area (km2) | Runoff Coefficient | Mean Annual Rainfall (mm) | Mean Annual ETP (mm) | Mean Annual Runoff (mm) | Available Data Length | Period Partition |
---|---|---|---|---|---|---|---|---|
The MOPEX dataset in the U.S | basin 1 | 1002 | 0.40 | 1034 | 1065 | 407 | 1983–2003 | The record of 1983–2003 is divided into three periods evenly: sub-period 1: 1983–1989 (7 years) sub-period 2: 1990–1996 (7 years) sub-period 3: 1997–2003 (7 years) |
basin 2 | 4828 | 0.06 | 619 | 1452 | 38 | |||
The national dataset of Australia | basin 3 | 990 | 0.46 | 613 | 1410 | 275 | 1970–2017 (1997–2009 is the period of millennium drought) | sub-period 1: 1990–1996 (7 years) sub-period 2: 2000–2006 (7 years, the millennium drought) sub-period 3: 2010–2016 (7 years) |
Model | Parameter | Physical Meaning | Range |
---|---|---|---|
Xinanjiang | B | Exponential of the distribution to tension water capacity | 0.1–3 |
SM | Areal mean free water storage capacity (mm) | 1–80 | |
EX | Exponential of the distribution of free water storage capacity | 0.7–2 | |
KI | Outflow coefficient of free water storage to the interflow | 0.001–0.9 | |
KG | Outflow coefficient of free water storage to the groundwater | 0.001–0.9 | |
IMP | Ratio of impervious area to the total area of the basin | 0.0005–0.1 | |
C | Evapotranspiration coefficient of deep layer | 0.1–0.25 | |
CI | Recession constant of the lower interflow storage | 0.9–0.999 | |
CG | Recession constant of the lower groundwater storage | 0.85–0.999 | |
N | Number of cascade linear reservoir of Nash model | 0.1–10 | |
NK | Scale parameter of cascade linear reservoir | 1–20 | |
GR4J | x1 | maximum capacity of the production store (mm) | 50–1000 |
x2 | groundwater exchange coefficient (mm) | −10 to 10 | |
x3 | one-day-ahead maximum capacity of the routing store (mm) | 10–200 | |
x4 | time base of unit hydrograph UH1 (days) | 0.7–10 |
Scheme | RR Model | Model Parameters | Bayesian Weights |
---|---|---|---|
1 | individual XAJ model | fixed | / |
2 | individual GR4J model | fixed | / |
3 | time-invariant ensemble-averaged model | fixed | fixed |
4 | time-invariant ensemble-averaged model | time-segmented | fixed |
5 | time-varying ensemble-averaged model | time-segmented | time-segmented |
6 | time-varying ensemble-averaged model | time-sliding | time-sliding |
Basin ID | Evaluation Metrics | Modeling Schemes | |||||
---|---|---|---|---|---|---|---|
Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | Scheme 6 | ||
basin 1 | NSE | 0.83 | 0.78 | 0.84 | 0.86 | 0.87 | 0.89 |
0.61 | 0.6 | 0.64 | 0.69 | 0.71 | 0.75 | ||
RMSE | 25 | 21 | 17 | 13 | 7.7 | 5.4 | |
WBI | 0.09 | 0.1 | −0.07 | 0.05 | 0.05 | −0.003 | |
basin 2 | NSE | 0.42 | 0.53 | 0.54 | 0.55 | 0.56 | 0.58 |
0.51 | 0.58 | 0.59 | 0.6 | 0.61 | 0.63 | ||
RMSE | 10 | 9.5 | 6.2 | 4.8 | 4.1 | 2.5 | |
WBI | 0.08 | −0.06 | 0.05 | −0.03 | 0.02 | −0.001 | |
basin 3 | NSE | 0.54 | 0.63 | 0.63 | 0.57 | 0.65 | 0.42 |
0.60 | 0.54 | 0.62 | 0.63 | 0.64 | 0.67 | ||
RMSE | 14 | 13 | 9.6 | 7.9 | 5.9 | 3.7 | |
WBI | 0.12 | −0.15 | 0.11 | −0.08 | 0.10 | −0.03 |
Basin ID | Periods | Modeling Schemes | ||||
---|---|---|---|---|---|---|
Xinanjiang | GR4J | BMA (Weights 1) | BMA (Weights 2) | BMA (Weights 3) | ||
basin 1 | sub-period 1 | 0.63 | 0.59 | 0.74 | / | / |
sub-period 2 | 0.65 | 0.62 | 0.69 | 0.71 | / | |
sub-period 3 | 0.64 | 0.61 | 0.64 | 0.68 | 0.72 | |
basin 2 | sub-period 1 | 0.62 | 0.54 | 0.63 | / | / |
sub-period 2 | 0.48 | 0.57 | 0.58 | 0.65 | / | |
sub-period 3 | 0.52 | 0.61 | 0.57 | 0.55 | 0.63 | |
basin 3 | sub-period 1 | 0.54 | 0.63 | 0.67 | / | / |
sub-period 2 | 0.61 | 0.63 | 0.65 | 0.71 | / | |
sub-period 3 | 0.62 | 0.60 | 0.62 | 0.63 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, Z.; Zhang, F.; Yue, K.; Lu, X.; Chen, L.; Wang, H. Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method. Water 2024, 16, 1126. https://doi.org/10.3390/w16081126
Gui Z, Zhang F, Yue K, Lu X, Chen L, Wang H. Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method. Water. 2024; 16(8):1126. https://doi.org/10.3390/w16081126
Chicago/Turabian StyleGui, Ziling, Feng Zhang, Kedong Yue, Xiaorong Lu, Lin Chen, and Hao Wang. 2024. "Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method" Water 16, no. 8: 1126. https://doi.org/10.3390/w16081126
APA StyleGui, Z., Zhang, F., Yue, K., Lu, X., Chen, L., & Wang, H. (2024). Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method. Water, 16(8), 1126. https://doi.org/10.3390/w16081126