Distribution and Characteristics of Springs in Two Neighboring Areas of Different Morphogenic Relief Type—Example of SW Medvednica Mountain (Central Croatia)
Abstract
:1. Introduction
- To investigate differences in the spatial distribution of springs in the two studied areas;
- To investigate hydrological differences (in a sense of discharge classes) of the springs between the researched areas;
- To investigate the differences in the geomorphological (morphometric) characteristics of the springs;
- To determine the relationship between the springs and the fault zones in the researched area.
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Spatial Distribution of Springs
3.2. Discharge Categories of Springs
3.3. Morphometric Analysis
3.4. Spring Relationship with Faults
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Morphometric Parameter | Fluviokarst Relief Area | Fluviodenudation Relief Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Elevation (m a.s.l.) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) |
100–200 | 1 | 1.52 | 0.06 | 1.11 | 17.89 | 0 | 0.00 | 0.000 | 0.00 | 0.00 |
200–300 | 7 | 10.61 | 0.60 | 11.94 | 11.68 | 5 | 6.94 | 0.533 | 12.04 | 9.39 |
300–400 | 16 | 24.24 | 1.42 | 28.39 | 11.23 | 35 | 48.61 | 1.657 | 37.45 | 21.12 |
400–500 | 36 | 54.55 | 1.95 | 38.81 | 18.48 | 24 | 33.33 | 1.491 | 33.70 | 16.09 |
500–600 | 6 | 9.09 | 0.99 | 19.76 | 6.05 | 6 | 8.33 | 0.579 | 13.08 | 10.37 |
>600 | 0 | 0.00 | 0.00 | 1.68 | 0.00 | 2 | 2.78 | 0.165 | 3.73 | 12.12 |
Total | 66 | 100 | 5.02 | 100 | 13.15 | 72 | 100 | 4.42 | 100 | 16.27 |
Fluviokarst Relief Area | Fluviodenudation Relief Area | |||||||||
Slope (°) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) |
0–2 | 2 | 3.03 | 0.35 | 6.89 | 5.78 | 0 | 0.00 | 0.06 | 1.40 | 0.0 |
2–5 | 1 | 1.52 | 1.05 | 20.94 | 0.95 | 0 | 0.00 | 0.20 | 4.60 | 0.0 |
5–12 | 11 | 16.67 | 1.52 | 30.23 | 7.25 | 6 | 8.33 | 0.91 | 20.56 | 6.6 |
12–32 | 49 | 74.24 | 1.63 | 32.47 | 30.06 | 56 | 77.78 | 2.56 | 57.97 | 21.8 |
32–55 | 3 | 4.55 | 0.48 | 9.47 | 6.31 | 10 | 13.89 | 0.68 | 15.47 | 14.6 |
Total | 66 | 100 | 5.02 | 100 | 13.15 | 72 | 100 | 4.42 | 100 | 16.27 |
Fluviokarst Relief Area | Fluviodenudation Relief Area | |||||||||
Relative Relief (m/km) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) |
<100 | 0 | 0.00 | 0.08 | 1.58 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
100–200 | 38 | 57.58 | 2.44 | 48.70 | 15.54 | 2 | 2.78 | 0.42 | 9.52 | 4.75 |
200–300 | 28 | 42.42 | 2.36 | 47.05 | 11.85 | 69 | 95.83 | 3.82 | 86.39 | 18.05 |
>300 | 0 | 0.00 | 0.13 | 2.67 | 0.00 | 1 | 1.39 | 0.18 | 4.10 | 5.51 |
Total | 66 | 100 | 5.02 | 100 | 13.15 | 72 | 100 | 4.42 | 100 | 16.27 |
Fluviokarst Relief Area | Fluviodenudation Relief Area | |||||||||
Planform Curvature | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) |
convergent (−) | 46 | 69.70 | 2.13 | 42.39 | 21.61 | 59 | 81.94 | 1.82 | 41.15 | 32.40 |
divergent (+) | 16 | 24.24 | 2.21 | 44.00 | 7.24 | 10 | 13.89 | 2.09 | 47.13 | 4.80 |
Flat (−0.05–0.05) | 4 | 6.06 | 0.68 | 13.60 | 5.86 | 3 | 4.17 | 0.52 | 11.72 | 5.79 |
Total | 66 | 100 | 5.02 | 100 | 13.15 | 72 | 100 | 4.42 | 100 | 16.27 |
Fluviokarst Relief Area | Fluviodenudation Relief Area | |||||||||
Profile Curvature | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) |
convex (−) | 11 | 16.67 | 2.41 | 48.03 | 4.56 | 16 | 22.22 | 1.92 | 43.50 | 8.31 |
concave (+) | 52 | 78.79 | 1.91 | 38.11 | 27.18 | 53 | 73.61 | 1.90 | 42.89 | 27.93 |
flat (−0.05–0.05) | 3 | 4.55 | 0.70 | 13.86 | 4.31 | 3 | 4.17 | 0.60 | 13.61 | 4.98 |
Total | 66 | 100 | 5.02 | 100 | 13.15 | 72 | 100 | 4.42 | 100 | 16.27 |
Fluviokarst Relief Area | Fluviodenudation Relief Area | |||||||||
TWI | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) | Number of Springs | Share (%) | Area (km2) | Share of Area (%) | Density (spring/km2) |
0–3 | 0 | 0.00 | 0.27 | 5.32 | 0.00 | 0 | 0.00 | 0.42 | 9.46 | 0.00 |
3–6 | 30 | 45.45 | 3.75 | 74.65 | 8.00 | 39 | 54.17 | 3.48 | 78.53 | 11.22 |
6–9 | 28 | 42.42 | 0.64 | 12.73 | 43.80 | 32 | 44.44 | 0.42 | 9.39 | 77.00 |
9–12 | 8 | 12.12 | 0.19 | 3.76 | 42.40 | 1 | 1.39 | 0.07 | 1.56 | 14.48 |
>12 | 0 | 0.00 | 0.18 | 3.54 | 0.00 | 0 | 0.00 | 0.05 | 1.05 | 0.00 |
Total | 66 | 100 | 5.02 | 100 | 13.15 | 72 | 100 | 4.42 | 100 | 16.27 |
References
- Stevens, L.E. Chapter 1: Springs of the World. In Springs of the World: Distribution, Ecology, and Conservation Status; Monograph 1; Stevens, L.E., Ed.; Spring Stewardship Institute: Flagstaff, AZ, USA, 2023; 198p. [Google Scholar]
- Martinić, I. An overview of classifications and modern research of springs in the world and in Croatia. Croat. Geogr. Bull. 2022, 84, 31–68. [Google Scholar] [CrossRef]
- Vujnović, T. Springs in the Žumberak–Samoborsko Gorje Nature Park. Nat. Croat. 2011, 20, 19–34. [Google Scholar]
- Miletić, S. GIS of Spring Water in the Area of Papuk Mountain. Master Thesis, University of Zagreb–Faculty of Geodesy, Zagreb, Croatia, 27 June 2014. (In Croatian). [Google Scholar]
- Martinić, I.; Čanjevac, I. Hydrological and hydrochemical research of springs on mt. Medvednica-Ponikve area. In Proceedings of the 8th Croatian Water Conference–Croatian Waters in Food and Energy Production: Proceedings, Poreč, Croatia, 23–25 November 2023; Biondić, D., Holjević, D., Vizner, M., Eds.; Croatian Waters: Zagreb, Croatia, 2023; pp. 363–371. (In Croatian). [Google Scholar]
- Bryan, K. Classification of Springs. J. Geol. 1919, 27, 522–561. [Google Scholar] [CrossRef]
- Borneuf, D. Springs of Alberta; ARC/AGS Earth Sciences Report 1982-3; Alberta Research Council: Edmonton, AB, Canada, 1983; 105p. [Google Scholar]
- Mocior, E.; Rzonca, B.; Siwek, J.; Plenzler, J.; Płaczkowska, E.; Dąbek, N.; Jaśkowiec, B.; Potoniec, P.; Roman, S.; Ździebko, D. Determinants of the distribution of springs in the upper part of a flysch ridge in the Bieszcady Mountains in southeatern Poland. Episodes 2015, 38, 21–30. [Google Scholar] [CrossRef]
- Mostowik, K.; Górnik, M.; Jaśkowiec, B.; Maciejczyk, K.; Murawska, M.; Płaczkowska, E.; Rzonca, B.; Siwek, J. High discharge springs in the Outer Flysch Carpathians on the example of the High Bieszczady Mountains (Poland). Carpathian J. Earth Environ. Sci. 2016, 11, 395–404. [Google Scholar]
- Buczyński, S.; Rzonca, B. Influence of geologic structure on the presence, discharge and physical and chemical properties of springs in the Muszynka catchment (Carpathian flysch). Episodes 2018, 48, 89–96. [Google Scholar] [CrossRef]
- Corsini, A.; Cervi, F.; Ronchetti, F. Weight evidence and artificial neural networks for potential groundwater spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 2009, 111, 79–87. [Google Scholar] [CrossRef]
- Iván, V.; Stevenazzi, S.; Pollicino, L.C.; Masetti, M.; Mádl-Szőnyi, J. An Enhanced Approach to the Spatial and Statistical Analysis of Factors Influencing Spring Distribution on a Transboundary Karst Aquifer. Water 2020, 12, 2133. [Google Scholar] [CrossRef]
- Gebru, H.; Gebreyohannes, T.; Hagos, E. Identification of Groundwater Potential Zones Using Analytical Hierarchy Process (AHP) and GIS-Remote Sensing Integration, the Case of Golina River Basin, Northern Ethiopia. Int. J. Adv. Remote Sens. GIS 2020, 9, 3289–3311. [Google Scholar] [CrossRef]
- Niraula, R.R.; Sharma, S.; Pokharel, B.K.; Paudel, U. Spatial prediction of spring locations in data poor region of Central Himalayas. Hydrol. Res. 2021, 52, 492–505. [Google Scholar] [CrossRef]
- Cantonati, M.; Fensham, R.J.; Stevens, L.E.; Gerecke, R.; Glazier, D.S.; Goldscheider, N.; Knight, R.L.; Richardson, J.S.; Springer, A.E.; Töckner, K. An urgent plea for global spring protection. Conserv. Biol. 2020, 35, 378–382. [Google Scholar] [CrossRef]
- Gupta, A.; Kulkarni, H. Inventory and Revival of Springs in the Himalayas for Water Security; NITI Aayog: New Delhi, India, 2018; 52p.
- Poudel, D.; Duex, T.W. Vanishing springs in Nepalese Mountains: Assessment of water sources, farmers’ perceptions, and climate change adaptation. Mt. Res. Dev. 2017, 37, 35–46. [Google Scholar] [CrossRef]
- Bognar, A.; Faivre, S.; Buzjak, N.; Pahernik, M.; Bočić, N. Recent Landform Evolution in the Dinaric and Pannonian Regions of Croatia. In Recent Landform Evolution; Springer Geography; Lóczy, D., Stankoviansky, M., Kotarba, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 313–344. [Google Scholar] [CrossRef]
- CMHS (Croatian Meteorological and Hydrological Service), 2023: Hydrological Data. Available online: https://hidro.dhz.hr/ (accessed on 11 January 2024).
- Šikić, K.; Basch, O.; Šimunić, A. Osnovna Geološka Karta (Basic Geological Map–in Croatian) SFRJ 1:100.000, List Zagreb L33–80; Institut za Geološka Istraživanja, Savezni Geološki Institut: Beograd, Serbia, 1978. [Google Scholar]
- Šikić, K.; Basch, O.; Šimunić, A. Osnovna Geološka Karta SFRJ 1:100.000, Tumač za list Zagreb L33–80. (Basic Geological Map: Interpretation–in Croatian); Institut za Geološka Istraživanja, Savezni Geološki Institut: Beograd, Serbia, 1979; p. 81. [Google Scholar]
- Šikić, K. Geološki Vodič Medvednice (Geological Guide of the Medvednica Mountain-in Croatian); Institut za Geološka Istraživanja: Zagreb, Croatia, 1995; pp. 7–30. [Google Scholar]
- Šegota, T.; Filipčić, A. Köppenova podjela klima i hrvatsko nazivlje (Köppen’s climate types and Croatian names–In Croatian). Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef]
- Kottek, K.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- CMHS (Croatian Meteorological and Hydrological Service), 2023b: Meteorological Data. Available online: https://meteo.hr/klima_e.php?section=klima_pracenje¶m=klel&Grad=puntijarka&Mjesec=01&Godina=2023 (accessed on 11 January 2024).
- Buzjak, N. Geotouristic potential of caves–example of Veternica Cave (Medvednica Nature Park, Croatia). In Proceedings of the 12th EuroSpeleo Forum, Ebensee, Austria, 23–26 August 2018; Mattes, J., Christian, E., Plan, L., Eds.; Verein für Höhlenkunde Ebensee: Neukirchen, Austria, 2018; pp. 38–41. [Google Scholar]
- Božičević, S. Hidrologija pećine Veternice kraj Zagreba na planini Medvednici (Hydrogeology of the Veternica Cave near Zagreb on the Medvednica Mt.–in Croatian). In Proceedings of the 8 Jugoslavenski Geološki Kongres (8th Yugoslavian Geological Congress–in Croatian), Ljubljana, Yugoslavia, 1–5 October 1974; Volume 4, pp. 5–12. [Google Scholar]
- Lacković, D.; Glumac, B.; Asmerom, Y.; Stroj, A. Evolution of the Veternica cave (Medvednica Mountain, Croatia) drainage system: Insights from the distribution and dating of cave deposits. Geol. Croat. 2011, 64, 213–221. [Google Scholar] [CrossRef]
- Bočić, N.; Pahernik, M.; Maradin, M. Temeljna geomorfološka obilježja Karlovačke županije (Basic geomorphological features of the Karlovac county–in Croatian). Prirodoslovlje 2016, 16, 153–172. [Google Scholar]
- National Geographic World Map-National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp. Available online: https://www.arcgis.com/home/item.html?id=b9b1b422198944fbbd5250b3241691b6 (accessed on 3 January 2024).
- Silverman, B.W. Density Estimation for Statistics and Data Analysis, 1st ed.; Chapman and Hall: New York, NY, USA, 1986; 186p. [Google Scholar]
- ArcGIS Pro: How Kernel Density Works. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kernel-density-works.htm (accessed on 12 March 2024).
- ArcGIS Pro–Average Nearest Neighbor (Spatial Statistics). Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/average-nearest-neighbor.htm#:~:text=The%20Nearest%20Neighbor%20Index%20is,in%20a%20hypothetical%20random%20distribution. (accessed on 10 January 2024).
- Meinzer, O.E. Outline of Ground-Water Hydrology; US Government Printing Office: Washington, DC, USA, 1923; 71p.
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Demek, J. Manual and Detailed Geomorphological Mapping; IGU–Comission on Geomorphological survey and mapping; Chechoslovak Academy of Science: Prague, Czech Republic, 1972. [Google Scholar]
- Jenks, G.F. The Data Model Concept in Statistical Mappinng. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Rzonca, B.; Kołodziej, A.; Laszczak, E.; Mocior, E.; Plenzler, J.; Płaczkowska, E.; Rozmus, M.; Siwek, J.; Ścisłowicz, B.; Wójcik, S.; et al. Zdródła w zlewni górnej Wołosatki w Bieszczadach Wysokich (Springs in the upper Wolosatka river catchment in the High Bieszczady Mountains in Polish). Przegląd Geol. 2008, 56, 772–779. [Google Scholar]
- Lasek, J.; Dąbek, N.; Jaśkowiec, B.; Mocior, E.; Peek, B.; Plenzler, J.; Płaczkowska, E.; Rzonca, B.; Siwek, J.; Wójcik, S. Źródła w Bieszczadach Wysokich (Springs in the High Bieszczady Mountains–in Polish). Rocz. Bieszczadzkie 2012, 20, 254–267. [Google Scholar]
- Płaczkowska, E.; Górnik, M.; Mocior, E.; Peek, B.; Potoniec, P.; Rzonca, B.; Siwek, J. Spatial distribution of channel heads in the Polish Flysch Carpathians. Catena 2015, 127, 240–249. [Google Scholar] [CrossRef]
- Pandit, S.; Shakya, N.; Shrestha, S. Distribution and classification of springs in Bansbari area of Melamchi Municipality, Sindhupalchowk, Nepal. J. Nepal Geol. Soc. 2019, 59, 49–58. [Google Scholar] [CrossRef]
- Flora, S.P. Hydrogeological Characterization and Discharge Variability of Springs in the Middle Verde River Watershed, Central Arizona. Master’s Thesis, Northern Arizona University, Flagstaff, AZ, USA, May 2004. [Google Scholar]
- Brkić, Ž.; Čakarun, A. Osnovna Hidrogeološka Karta Republike Hrvatske 1:100.000, Tumač za List Zagreb (Basic Hydrogeological Map of Croatia 1:100.000: Interpretation–in Croatian); Institut za Geološka Istraživanja: Zagreb, Croatia, 1998; 48p. [Google Scholar]
- Ford, D.C.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Bornhauser, K. Die Tierwelt der Quellen in der Umgebung Basels; University of Michigan Library: Ann Arbor, MI, USA, 1912; pp. 1–90. [Google Scholar]
- Steinmann, P. Praktikum der Süßwasserbiologie. Tail 1: Die Organismen des fließenden Wassers; Borntraeger: Berlin, Germany, 1915; 184p. [Google Scholar]
- Thienemann, A. Hydrobiologische Untersuchungen an Quellen. Arch. Für Hydrobiol. 1924, 14, 151–190. [Google Scholar]
- Baker, V.R.; Kochel, R.C.; Laity, J.E.; Howard, A.D. Spring sapping and valley network development. In Groundwater Geomorphology, The Role of Subsurface Water in Earth-Surface Processes and Landforms; Higgins, C.G., Coates, D.R., Eds.; Geological Society of America: Boulder, CO, USA, 1990; Volume 252, pp. 235–265. [Google Scholar] [CrossRef]
- Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Dunne, T. Formation and controls of channel networks. Prog. Phys. Geogr. Earth Environ. 1980, 4, 211–239. [Google Scholar] [CrossRef]
- Mazurek, M. Geomorphological processes in channel heads initiated by groundwater outflows (The Parsęta catchment, north-western Poland). Quaest. Geogr. 2011, 30, 33–45. [Google Scholar] [CrossRef]
- Buczynski, S.; Rzonca, B. Effects of crystalline massif tectonics on groundwater origin and catchment size of a large spring area in Zieleniec, Sudety Mountains, southwestern Poland. Hydrogeol. J. 2011, 19, 1085–1101. [Google Scholar] [CrossRef]
- Bense, V.F.; Gleeson, T.; Loveless, S.E.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
Study Area | Observed Mean Distance between Neighboring Springs | Expected Mean Distance between Neighboring Springs | Nearest Neighbor Ratio | z-Score | p-Value |
---|---|---|---|---|---|
fluviokarst | 65.06 m | 147.89 m | 0.4399 | −8.704 | <0.001 |
fluviodenudation | 83.67 m | 131.59 m | 0.6358 | −5.912 | <0.001 |
Cell Values | Concurrence Level | Fluviokarst Area (%) | Fluviodenudation Area (%) |
---|---|---|---|
from −6 to −7 | complete discrepancy | 1.83 | 4.35 |
from −4 to −5 | poor | 36.53 | 19.18 |
from −3 to −2 | good | 30.65 | 23.87 |
from −1 to 1 | very good | 23.13 | 45.07 |
from 2 to 3 | good | 7.10 | 7.52 |
from 4 to 5 | poor | 0.77 | 0 |
from 6 to 7 | complete discrepancy | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinić, I.; Čanjevac, I. Distribution and Characteristics of Springs in Two Neighboring Areas of Different Morphogenic Relief Type—Example of SW Medvednica Mountain (Central Croatia). Water 2024, 16, 994. https://doi.org/10.3390/w16070994
Martinić I, Čanjevac I. Distribution and Characteristics of Springs in Two Neighboring Areas of Different Morphogenic Relief Type—Example of SW Medvednica Mountain (Central Croatia). Water. 2024; 16(7):994. https://doi.org/10.3390/w16070994
Chicago/Turabian StyleMartinić, Ivan, and Ivan Čanjevac. 2024. "Distribution and Characteristics of Springs in Two Neighboring Areas of Different Morphogenic Relief Type—Example of SW Medvednica Mountain (Central Croatia)" Water 16, no. 7: 994. https://doi.org/10.3390/w16070994
APA StyleMartinić, I., & Čanjevac, I. (2024). Distribution and Characteristics of Springs in Two Neighboring Areas of Different Morphogenic Relief Type—Example of SW Medvednica Mountain (Central Croatia). Water, 16(7), 994. https://doi.org/10.3390/w16070994