Enhanced Separation Performance of Graphene Oxide Membrane through Modification with Graphitic Carbon Nitride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Membranes
2.3. Characterization of the Membranes
2.4. Selective Separation Tests
2.4.1. Static Diffusion Experiment
2.4.2. Distillation Tests
3. Results
3.1. The Characteristics of the Membranes
3.2. Static Diffusion Experiment
3.3. Distillation Tests
4. Discussion
- Large barely stripped g-C3N4 bulks are first deposited at the bottom of the membrane in the vacuum filtration process, as shown in Figure 1d. These particles contribute to an increased surface roughness of the membrane. A study has demonstrated that the high permeability of GO membranes observed may be attributed to the disordered microstructure of the membrane [38];
- Smaller particles of partially stripped g-C3N4 with a transverse size of 10 μm and height of 3 μm can be observed to be inserted between the laminates, as illustrated in Figure 1f. The ID/IG ratio of the GO/g-C3N4 membrane is larger than the GO membrane in the Raman analysis, indicating that the interlayer particles disrupt the originally relatively complete structure and result in more defects within the composite membrane.
- The shift of the peak in the XRD pattern can prove that single or fewer layers of g-C3N4 nanosheets are inserted between the layers of GO nanosheets and the layer d-spacing of the GO membrane is modified [37]. The increase in d-spacing from 7.6 Å to 7.9 Å contributes to the higher permeability [39].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, J.; Marks, N.; Irwin, T. The risks of radioactive wastewater release. Science 2023, 382, 31–33. [Google Scholar] [CrossRef]
- Han, Y.; Zhong, X. An overview of heavy water reactors. Nuclear Power Reactor Designs 2024, 351–363. [Google Scholar]
- Buesseler, K.; Aoyama, M.; Fukasawa, M. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol. 2011, 45, 9931–9935. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, I.; Cristescu, I.R.; Dörr, L.; Glugla, M.; Hellriegel, G.; Michling, R.; Murdoch, D.; Schäfer, P.; Welte, S.; Wurster, W. Commissioning of water detritiation and cryogenic distillation systems at TLK in view of ITER design. Fusion Eng. Des. 2007, 82, 2126–2132. [Google Scholar] [CrossRef]
- Alekseev, I.A.; Bondarenko, S.D.; Fedorchenko, O.A.; Vasyanina, T.V.; Konoplev, K.A.; Arkhipov, E.A.; Voronina, T.V.; Grushko, A.I.; Tchijov, A.S.; Uborsky, V.V. Heavy water detritiation by combined electrolysis catalytic exchange at the experimental industrial plant. Fusion Eng. Des. 2003, 69, 33–37. [Google Scholar] [CrossRef]
- Miller, J.M.; Graham, W.R.C.; Celovsky, S.L.; Tremblay, J.R.R.; Everatt, A.E. Design and operational experience with a pilot-scale CECE detritiation process. Fusion Sci. Technol. 2002, 41, 1077–1081. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F.; Ng, B.C.; Abdullah, M.S. Recent progresses of forward osmosis membranes formulation and design for wastewater treatment. Water 2019, 11, 2043. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.T.; Yang, J.X.; Wang, K.S.; Zhou, Z.; Shen, P. Porous graphene: Properties, preparation, and potential applications. Chin. Sci. Bull. 2012, 57, 2948–2955. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Li, C.; Shi, G. Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 2015, 6, 2806–2815. [Google Scholar] [CrossRef]
- Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.R.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef]
- Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H.J.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, K.; Zhu, H. Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications. Adv. Mater. 2016, 28, 2287–2310. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. Two-dimensional polyphenylene: Experimentally available porous graphene as a hydrogen purification membrane. Chem. Commun. 2010, 46, 3672–3674. [Google Scholar] [CrossRef]
- Celebi, K.; Buchheim, J.; Wyss, R.M.; Droudian, A.; Gasser, P.; Shorubalko, I.; Kye, J.I.; Lee, C.; Park, H.G. Ultimate permeation across atomically thin porous graphene. Science 2014, 344, 289–292. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W.; Xu, N. Graphene-based membranes. Chem. Soc. Rev. 2015, 44, 5016–5030. [Google Scholar] [CrossRef]
- Joshi, R.K.; Carbone, P.; Wang, F.C.; Kravets, V.G.; Su, Y.; Grigorieva, I.V.; Wu, H.A.; Geim, A.K.; Nair, R.R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Radha, B.; Esfandiar, A.; Wang, F.C.; Rooney, A.P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; et al. Molecular transport through capillaries made with atomic-scale precision. Nature 2016, 538, 222–225. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Katsnelson, M.I.; Son, Y.W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 2013, 13, 3930–3935. [Google Scholar] [CrossRef]
- Abraham, J.; Vasu, K.S.; Williams, C.D.; Gopinadhan, K.; Su, Y.; Cherian, C.T.; Dix, J.; Prestat, E.; Haigh, S.J.; Grigorieva, I.V.; et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550. [Google Scholar] [CrossRef]
- Algara-Siller, G.; Lehtinen, O.; Wang, F.C.; Nair, R.R.; Kaiser, U.; Wu, H.A.; Geim, A.K.; Grigorieva, I.V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Mario, M.S.F.; Neek-Amal, M.; Peeters, F.M. AA-stacked bilayer square ice between graphene layers. Phys. Rev. B 2015, 92, 245428. [Google Scholar] [CrossRef]
- Zhu, W.; Zhu, Y.B.; Wang, L.; Zhu, Q.; Zhao, W.H.; Zhu, C.; Bai, J.; Yang, J.; Yuan, L.F.; Wu, H.; et al. Water confined in nanocapillaries: Two-dimensional bilayer squarelike ice and associated solid–liquid–solid transition. J. Phys. Chem. C 2018, 122, 6704–6712. [Google Scholar] [CrossRef]
- Sevigny, G.J.; Motkuri, R.K.; Gotthold, D.W.; Fifield, L.S.; Frost, A.P.; Bratton, W. Separation of Tritiated Water Using Graphene Oxide Membrane; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2015. [Google Scholar]
- Liu, H.; Wang, H.; Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 2015, 27, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface modifications and analytical applications of graphene oxide: A review. TrAC Trends Anal. Chem. 2021, 144, 116448. [Google Scholar] [CrossRef]
- Chen, L.; Li, N.; Wen, Z.; Zhang, L.; Chen, Q.; Chen, L.; Si, P.; Feng, J.; Li, Y.; Lou, J.; et al. Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. Chem. Eng. J. 2018, 347, 12–18. [Google Scholar] [CrossRef]
- Mohammadi, A.; Daymond, M.R.; Docoslis, A. New insights into the structure and chemical reduction of graphene oxide membranes for use in isotopic water separations. J. Membr. Sci. 2022, 659, 120785. [Google Scholar] [CrossRef]
- Wen, M.; Chen, M.; Ren, G.K.; Li, P.L.; Lv, C.; Yao, Y.; Liu, Y.K.; Deng, S.J.; Zheng, Z.; Xu, C.G.; et al. Enhancing the selectivity of hydrogen isotopic water in membrane distillation by using graphene oxide. J. Membr. Sci. 2020, 610, 118237. [Google Scholar] [CrossRef]
- Wen, M.; Chen, M.; Chen, K.; Li, P.L.; Lv, C.; Zhang, X.; Yao, Y.; Yang, W.; Huang, G.; Ren, G.K.; et al. Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. J. Membr. Sci. 2021, 626, 119136. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Tsou, C.H.; An, Q.F.; Lo, S.C.; De Guzman, M.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015, 477, 93–100. [Google Scholar] [CrossRef]
- An, D.; Yang, L.; Wang, T.J.; Liu, B. Separation performance of graphene oxide membrane in aqueous solution. Ind. Eng. Chem. Res. 2016, 55, 4803–4810. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Y.; Xue, J.; Wang, H. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification. AIChE J. 2019, 65, e16699. [Google Scholar] [CrossRef]
- Muscatello, J.; Jaeger, F.; Matar, O.K.; Müller, E.A. Optimizing water transport through graphene-based membranes: Insights from nonequilibrium molecular dynamics. ACS Appl. Mater. Interfaces 2016, 8, 12330–12336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Wei, Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem. Int. Ed. 2017, 56, 8974–8980. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.Y.; Wang, B.; Mattevi, C.; Li, K. Dynamic microstructure of graphene oxide membranes and the permeation flux. J. Membr. Sci. 2018, 549, 385–392. [Google Scholar] [CrossRef]
- Chen, X.; Ching, K.; Rawal, A.; Lawes, D.J.; Tajik, M.; Donald, W.A.; Zhao, C.; Lee, S.H.; Ruoff, R.S. Stage-1 cationic C60 intercalated graphene oxide films. Carbon 2021, 175, 131–140. [Google Scholar] [CrossRef]
GO (mg) | H2O Permeance (10−5 g/min·cm2) | D2O Permeance (10−5 g/min·cm2) | Difference (10−5 g/min·cm2) | Reduction |
---|---|---|---|---|
0 | 7.45 | 6.69 | 0.761 | 10.22% |
10 | 7.30 | 6.22 | 1.07 | 14.73% |
15 | 7.05 | 6.30 | 0.738 | 10.48% |
20 | 7.13 | 6.22 | 0.900 | 12.64% |
30 | 6.71 | 5.80 | 0.905 | 13.48% |
g-C3N4 Mass (mg) | Integral Area Ratio in NMR | Deuterium Concentration | Separation Factors | Permeate Mass (mg) | Permeate Flux (10−5 g·min−1·cm−2) |
---|---|---|---|---|---|
0 | 1.189 | 9.48% | 1.06 | 0.321 | 5.57 |
0.18 | 1.191 | 9.40% | 1.07 | 0.335 | 5.82 |
0.36 | 1.187 | 9.64% | 1.04 | 0.376 | 6.53 |
0.54 | 1.189 | 9.55% | 1.05 | 0.357 | 6.20 |
0.72 | 1.194 | 9.18% | 1.10 | 0.414 | 7.19 |
0.9 | 1.187 | 9.69% | 1.04 | 0.390 | 6.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Hu, Y.; Cao, L.; Li, S.; Liu, X.; Fan, R. Enhanced Separation Performance of Graphene Oxide Membrane through Modification with Graphitic Carbon Nitride. Water 2024, 16, 967. https://doi.org/10.3390/w16070967
Luo Z, Hu Y, Cao L, Li S, Liu X, Fan R. Enhanced Separation Performance of Graphene Oxide Membrane through Modification with Graphitic Carbon Nitride. Water. 2024; 16(7):967. https://doi.org/10.3390/w16070967
Chicago/Turabian StyleLuo, Zhen, Yong Hu, Linyuan Cao, Shen Li, Xin Liu, and Ruizhi Fan. 2024. "Enhanced Separation Performance of Graphene Oxide Membrane through Modification with Graphitic Carbon Nitride" Water 16, no. 7: 967. https://doi.org/10.3390/w16070967
APA StyleLuo, Z., Hu, Y., Cao, L., Li, S., Liu, X., & Fan, R. (2024). Enhanced Separation Performance of Graphene Oxide Membrane through Modification with Graphitic Carbon Nitride. Water, 16(7), 967. https://doi.org/10.3390/w16070967