Uranium and Nickel Partitioning in a Contaminated Riparian Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sediment Characterization
2.3. Sequential Extraction of Sediments
2.4. Uranium X-ray Absorption Spectroscopy
3. Results and Discussion
3.1. Sediment Properties
3.2. Partitioning of Ni and U in Sediments
3.2.1. Clay-Fraction Enrichment of Ni and U
3.2.2. Solid-Phase Distribution of Ni and U
3.2.3. Desorption Distribution Coefficients (Kd−desorb)
3.3. Coupling Effects of pH and Organic Matter on Ni and U Immobilization
3.4. U Speciation in the Sediment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaplan, D.I.; Zhang, S.; Roberts, K.A.; Schwehr, K.; Xu, C.; Creeley, D.; Ho, Y.-F.; Li, H.-P.; Yeager, C.M.; Santschi, P.H. Radioiodine concentrated in a wetland. J. Environ. Radioact. 2014, 131, 57–61. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Sudarshan, P.B.; Mahesh, M.K.; Vinay, S. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J. Environ. Manag. 2018, 206, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mat. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Schoner, A.; Noubactep, C.; Buchel, G.; Sauter, M. Geochemistry of natural wetlands in former uranium milling sites (eastern Germany) and implications for uranium retention. Geochemistry 2009, 69, 91–107. [Google Scholar] [CrossRef]
- O’Geen, A.T.; Budd, R.; Gan, J.; Maynard, J.J.; Parikh, S.J.; Dahlgren, R.A. Mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Adv. Agron. 2010, 108, 1–76. [Google Scholar] [CrossRef]
- Frohne, T.; Rinklebe, J.; Diaz-Bone, R.A. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil Sediment Contam. 2014, 23, 779–799. [Google Scholar] [CrossRef]
- Llorens, E.; Matamoros, V.; Domingo, V.; Bayona, J.M.; García, J. Water quality improvement in a full-scale tertiary constructed wetland: Effects on conventional and specific organic contaminants. Sci. Total Environ. 2009, 407, 2517–2524. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, I.; Shah, M.T.; Rehman, S.; Khaliq, A. Use of constructed wetland for the removal of heavy metals from industrial wastewater. J. Environ. Manag. 2009, 90, 3451–3457. [Google Scholar] [CrossRef]
- Groza, N.; Manescu, A.; Panturu, E.; Filcenco-Olteanu, A.; Panturu, R.I.; Jinescu, C. Uranium wastewater treatment using wetland system. Rev. Chim. 2010, 61, 680–684. [Google Scholar]
- Boyer, A.; Ning, P.; Killey, D.; Klukas, M.; Rowan, D.; Simpson, A.J.; Passeport, E. Strontium adsorption and desorption in wetlands: Role of organic matter functional groups and environmental implications. Water Res. 2018, 133, 27–36. [Google Scholar] [CrossRef]
- Kaplan, D.I.; Smith, R.J.; Parker, C.J.; Roberts, K.A.; Hazenberg, P.; Morales, J.; O’Loughlin, E.J.; Boyanov, M.I.; Weisenhorn, P.; Kemner, K.M.; et al. Natuural attenuation of uranium in a fluvial weltand: Importance of hydrology and speciation. Appl. Geol. 2023, 155, 105718. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands; John Wiley & Sons, Inc.: Hoboken, New Jersey, NJ, USA, 2015; p. 736. [Google Scholar]
- Bertsch, P.M.; Hunter, D.B.; Sutton, S.R.; Bajt, S.; Rivers, M.L. In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy. Environ. Sci. Technol. 1994, 28, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B. Uranium in the Savannah River Site Environment (No. WSRC-RP-92-315); Westinghouse Savannah River Co.: Aiken, SC, USA, 1992. [Google Scholar]
- Pickett, J.B. Heavy Metal Contamination in Tims Branch Sediments (No. OPS-RMT-900200); Westinghouse Savannah River Co.: Aiken, SC, USA, 1990. [Google Scholar]
- Sowder, A.G.; Bertsch, P.M.; Morris, P.J. Partitioning and availability of uranium and nickel in contaminated riparian sediments. J. Environ. Qual. 2003, 32, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Seaman, J.C.; Chang, H.S.; Jaffe, P.R.; van Groos, P.K.; Jiang, D.T.; Chen, N.; Lin, J.; Arthur, Z.; Pan, Y.; et al. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. J. Environ. Radio. 2014, 131, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.S.; Buettner, S.W.; Seaman, J.C.; Jaffeé, P.R.; Koster van Groos, P.G.; Li, D.; Peacock, A.D.; Scheckel, K.G.; Kaplan, D.I. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions. Environ. Sci. Technol. 2014, 48, 9270–9278. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.I.; Kukkadapu, R.; Seaman, J.C.; Arey, B.W.; Dohnalkova, A.C.; Buettner, S.; Li, D.; Varga, T.; Scheckel, K.G.; Jaffé, P.R. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil. Sci. Total Environ. 2016, 569, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.I.; Boyanov, M.I.; Losey, N.A.; Lin, P.; Xu, C.; O’Loughlin, E.J.; santschi, P.H.; Xing, W.; Kuhne, W.W.; Kemner, K.M. Uranium biogeochemistry in the rhizosphere of a riparian wetland. Environ. Sci. Technol 2024, in press. [Google Scholar]
- Punshon, T.; Gaines, K.F.; Jenkins, R.A., Jr. A. Bioavailability and trophic transfer of sediment-bound Ni and U in a southeastern wetland system. Arch. Environ. Contam. Toxicol. 2003, 44, 30–35. [Google Scholar] [CrossRef]
- Punshon, T.; Gaines, K.F.; Bertsch, P.M.; Burger, J. Bioavailability of uranium and nickel to vegetation in a contaminated riparian ecosystem. Environ. Toxicol. Chem. Int. J. 2003, 22, 1146–1154. [Google Scholar] [CrossRef]
- Kaplan, D.I.; Parker, C.; Powell, B.A. Uranium Immobility in Tims Branch Wetland. No. SRNL-STI-2021-00081; Savannah River Site (SRS): Aiken, SC, USA.; Savannah River National Lab. (SRNL), Clemson University:: Clemson, SC, USA, 2021. [Google Scholar]
- Whittig, L.D.; Allardice, W.R. X-ray diffraction techniques. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; Volume 5, pp. 331–362. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- EPA (Ed.) Method 3050B. Acid Digestion of Sediments, Sludges, and Soils. Revision 2. In Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods; Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Ulery, A.L.; Drees, R. Methods of Soil Analysis: Part 5-Mineralogical Methods; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kaplan, D.I.; Serkiz, S. Quantification of thorium and uranium sorption to contaminated sediments. J. Radioanal. Nuclear Chem. 2001, 248, 529–535. [Google Scholar] [CrossRef]
- Segre, C.U.; Leyarovska, N.E.; Chapman, L.D.; Lavender, W.M.; Plag, P.W.; King, A.S.; Kropf, A.J.; Bunker, B.A.; Kemner, K.M.; Dutta, P.; et al. The MRCAT insertion device beamline at the Advanced Photon Source. In Proceedings of the Synchrotron Radiation Instrumentation: Eleventh U.S. National Conference, Stanford, CA, USA, 13–15 October 1999; Pianetta, P., Ed.; American Institute of Physics: New York, NY, USA, 2000; pp. 419–422. [Google Scholar]
- Boyanov, M.I.; Latta, D.E.; Scherer, M.M.; O’Loughlin, E.J.; Kemner, K.M. Surface area effects on the reduction of U(VI) in the presence of synthetic montmorillonite. Chem. Geol. 2017, 464, 110–117. [Google Scholar] [CrossRef]
- Boyanov, M.I.; O’Loughlin, E.J.; Roden, E.E.; Fein, J.B.; Kemner, K.M. Adsorption of Fe (II) and U (VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS. Geochim. Cosmochim. Acta 2007, 71, 1898–1912. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Xia, Q.; Kemner, K.M.; Shen, Y.; O’Loughlin, E.J.; Pan, Z.; Wang, Q.; Huang, Y.; Dong, H.; et al. Combined effects of Fe (III)-bearing clay minerals and organic ligands on U (VI) bioreduction and U (IV) speciation. Environ. Sci. Technol. 2021, 55, 5929–5938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, H.; Li, R.; Liu, D.; Bian, L.; Chen, Y.; Pan, Z.; Boyanov, M.I.; Kemner, K.M.; Wen, J. Effect of Siderophore DFOB on U (VI) Adsorption to Clay Mineral and Its Subsequent Reduction by an Iron-Reducing Bacterium. Environ. Sci. Technol. 2022, 56, 12702–12712. [Google Scholar] [CrossRef] [PubMed]
- Newville, M.; Livins, P.; Yacoby, Y.; Rehr, J.J.; Stern, E.A. Near-edge x-ray absorption fine structure of Pb—A comparison of theory and experiment. Phys. Rev. B 1993, 47, 14126–14131. [Google Scholar] [CrossRef] [PubMed]
- Ravel, B.; Newville, M. Athena, Artemis, Hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.I.; Xu, C.; Huang, S.; Lin, Y.; Tolic, N.; Roscioli-Johnson, K.M.; Santschi, P.H.; Jaffe, P.R. Unique organic matter and microbial properties in the rhizosphere of a wetland soil. Environ. Sci. Technol. 2016, 50, 4169–4177. [Google Scholar] [CrossRef]
- Kaplan, D.I. Subsurface Mobile Colloids: Their Surface Characterization, Mineralogy, and Role in Contaminant Transport in a Coastal Plain Aquifer; Georgia University: Athens, GA, USA, 1993. [Google Scholar]
- Wiseman, C.L.S.; Püttmann, W. Interactions between mineral phases in the preservation of soil organic matter. Geoderma 2006, 134, 109–118. [Google Scholar] [CrossRef]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Clay minerals—Organic matter interactions in relation to carbon stabilization in soils. In The Future of Soil Carbon; Academic Press: Cambridge, MA, USA, 2018; pp. 71–86. [Google Scholar]
- Kleber, M.; Bourg, I.C.; Coward, E.K.; Hansel, C.M.; Myneni, S.C.; Nunan, N. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2021, 2, 402–421. [Google Scholar] [CrossRef]
- Stupp, S.I.; Palmer, L.C. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chem. Mater. 2014, 26, 507–518. [Google Scholar] [CrossRef]
- Whittinghill, K.A.; Hobbie, S.E. Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra. Biogeochemistry 2012, 111, 569–581. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Fu, Y.; Lin, D.; Hou, M.; Li, X.; Hu, D.; Wang, Z. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: A review. J. Soils Sediments 2023, 23, 1485–1500. [Google Scholar] [CrossRef]
- Dixon, K.L. Background Concentrations of Metals in Wetland Soils on and Near the Savannah River Site (No. WSRC-MS-97-00692-Rev. 1); Savannah River Site (SRS): Aiken, SC, USA, 1997. [Google Scholar]
- Dong, W.; Tokunaga, T.K.; Davis, J.A.; Wan, J. Uranium (VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site. Environ. Sci. Technol. 2012, 46, 1565–1571. [Google Scholar] [CrossRef]
- Virtanen, S.; Vaaramaa, K.; Lehto, J. Fractionation of U, Th, Ra and Pb from boreal forest soils by sequential extractions. Appl. Geochem. 2013, 38, 1–9. [Google Scholar] [CrossRef]
- Skipperud, L.; Salbu, B. Sequential extraction as a tool for mobility studies of radionuclides and metals in soils and sediments. Radiochim. Acta 2015, 103, 187–197. [Google Scholar] [CrossRef]
- Harasim, P.; Filipek, T. Nickel in the environment. J. Elem. 2015, 20, 525–534. [Google Scholar] [CrossRef]
- Ashayeri, N.Y.; Keshavarzi, B. Geochemical characteristics, partitioning, quantitative source apportionment, and ecological and health risk of heavy metals in sediments and water: A case study in Shadegan Wetland, Iran. Mar. Poll. Bull. 2019, 149, 110495. [Google Scholar] [CrossRef]
- Fakhradini, S.S.; Moore, F.; Keshavarzi, B.; Naidu, R.; Wijayawardena, A.; Soltani, N.; Rostami, S. Spatial distribution, partitioning, ecological risk and source apportionment of potential toxic elements in water and sediments of the Hoor Al-Azim wetland and their bioaccumulation in selected commercial fish species. Mar. Poll. Bull. 2021, 172, 112875. [Google Scholar] [CrossRef]
- Lusa, M.; Bomberg, M. Microbial Community Composition Correlates with Metal Sorption in an Ombrotrophic Boreal Bog: Implications for Radionuclide Retention. Soil Syst. 2021, 5, 19. [Google Scholar] [CrossRef]
- Skipperud, L.; Strømman, G.; Yunusov, M.; Stegnar, P.; Uralbekov, B.; Tilloboev, H.; Zjazjev, G.; Heier, L.S.; Rosseland, B.O.; Salbu, B. Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J. Environ. Radioact. 2013, 123, 50–62. [Google Scholar] [CrossRef]
- Manoj, S.; Thirumurugan, M.; Elango, L. Determination of distribution coefficient of uranium from physical and chemical properties of soil. Chemosphere 2020, 244, 125411. [Google Scholar] [CrossRef] [PubMed]
- Whicker, J.J.; Pinder III, J.E.; Ibrahim, S.A.; Stone, J.M.; Breshears, D.D.; Baker, K.N. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction. Health Phys. 2007, 93, 36–46. [Google Scholar] [CrossRef]
- Semião, A.J.; Rossiter, H.M.; Schäfer, A.I. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. J. Membr. Sci. 2010, 348, 174–180. [Google Scholar] [CrossRef]
- Liu, Z.; Ou, T.; Su, M.; Peng, H.; Song, G.; Kong, L.; Chen, D. U (VI) sequestration by Al-rich minerals: Mechanism on phase dependence and the influence of natural organic matter. Chem. Eng. J. 2021, 415, 128858. [Google Scholar] [CrossRef]
- Velasco, C.A.; Brearley, A.J.; Gonzalez-Estrella, J.; Ali, A.M.S.; Meza, M.I.; Cabaniss, S.E.; Thomson, B.M.; Forbes, T.Z.; Lezama Pachec, J.S.; Cerrato, J.M. From adsorption to precipitation of U (VI): What is the role of pH and natural organic matter? Environ. Sci. Technol. 2021, 55, 16246–16256. [Google Scholar] [CrossRef] [PubMed]
- Dublet, G.; Pacheco, J.L.; Bargar, J.R.; Fendorf, S.; Kumar, N.; Lowry, G.V.; Brown Jr, G.E. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH. Geochim. Cosmochim. Acta 2017, 215, 122–140. [Google Scholar] [CrossRef]
- Krot, A.; Vlasova, I.; Trigub, A.; Averin, A.; Yapaskurt, V.; Kalmykov, S. From EXAFS of reference compounds to U (VI) speciation in contaminated environments. J. Synchrotron Radiat. 2022, 29, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Catalano, J.G.; Brown, G.E. Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences. Am. Mineral. 2004, 89, 1004–1021. [Google Scholar] [CrossRef]
- Rui, X.; Kwon, M.J.; O’Loughlin, E.J.; Dunham-Cheatham, S.; Fein, J.B.; Bunker, B.; Kemner, K.M.; Boyanov, M.I. Bioreduction of hydrogen uranyl phosphate: Mechanisms and U (IV) products. Environ. Sci. Technol. 2013, 47, 5668–5678. [Google Scholar] [CrossRef]
- Bone, S.E.; Cliff, J.; Weaver, K.; Takacs, C.J.; Roycroft, S.; Fendorf, S.; Bargar, J.R. Complexation by organic matter controls uranium mobility in anoxic sediments. Environ. Sci. Technol. 2019, 54, 1493–1502. [Google Scholar] [CrossRef]
- Bone, S.E.; Dynes, J.J.; Cliff, J.; Bargar, J.R. Uranium (IV) adsorption by natural organic matter in anoxic sediments. Proc. Natl. Acad. Sci. USA 2017, 114, 711–716. [Google Scholar] [CrossRef]
- Boyanov, M.I.; Fletcher, K.E.; Kwon, M.J.; Rui, X.; O’Loughlin, E.J.; Loöffler, F.E.; Kemner, K.M. Solution and microbial controls on the formation of reduced U (IV) species. Environ. Sci. Technol. 2011, 45, 8336–8344. [Google Scholar] [CrossRef]
- Lee, J.H.; Fredrickson, J.K.; Kukkadapu, R.K.; Boyanov, M.I.; Kemner, K.M.; Lin, X.; Kennedy, D.W.; Bjornstad, B.N.; Konopka, A.E.; Moore, D.A.; et al. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments. Environ. Sci. Technol. 2012, 46, 3721–3730. [Google Scholar] [CrossRef]
- D 5074-90; Standard Practice for Preparation of Natural-Matrix Sediment Reference Samples for Major and Trace Inorganic Constituents Analysis by Partial Extraction Procedures. The Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 1990.
- D 3974-81; Standard Practices for Extraction of Trace Elements from Sediments. The Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 1990.
- Miller, W.P.; Martens, D.C.; Zelazny, L.W.; Kornegay, E.T. Forms of solid phase copper in copper-enriched swine manure. J. Environ. Qual. 1986, 15, 69–72. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis, Part 3, Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America Press: Madison, WI, USA, 1996; pp. 417–436. [Google Scholar]
Upstream Sample (#2306) | Contaminated (#2300–#2305) | ||||
---|---|---|---|---|---|
Average | Std. Dev. | Min. | Max. | ||
pH | 6.13 | 4.63 | 0.41 | 4.25 | 5.37 |
OM (LOI), wt-% | 8 | 22 | 10 | 4 | 30 |
TOC, g/kg | 22.5 | 72.9 | 34.7 | 28.4 | 119.9 |
TN, g/kg | 1.2 | 5.4 | 2.3 | 1.9 | 8.3 |
Clay, wt-% | 22 | 35 | 16 | 6 | 51 |
Silt, wt-% | 37 | 10 | 4 | 5 | 17 |
Sand, wt-% | 42 | 55 | 18 | 41 | 89 |
Free Fe, wt-% a | 1.42 | 2.15 | 1.20 | 0.24 | 3.45 |
Clay (wt-%) | pH | OM (wt-%) | Free Fe (wt-%) | Ni (mg/kg) | |
---|---|---|---|---|---|
pH | −0.674 | ||||
OM (wt-%) | 0.811 * | −0.906 ** | |||
Free Fe (wt-%) | 0.724 | −0.730 | 0.925 ** | ||
Ni (mg/kg) | 0.476 | −0.435 | 0.387 | 0.071 | |
U (mg/kg) | 0.664 | −0.790 * | 0.786 * | 0.529 | 0.846 ** |
Upstream (#2306) | Contaminated (#2300–#2305) | ||||
---|---|---|---|---|---|
Average | Std. Dev. | Min. | Max. | ||
Nickel | |||||
Total Ni, mg-Ni/kg | 72 | 1774 | 1448 | 52 | 3806 |
Clay Ni, mg-Ni/kg-clay | 213 | 1729 | 1088 | 543 | 3132 |
Clay-fraction enrichment a | 3.0 | 2.6 | 3.9 | 0.8 | 10.4 |
Kd−desorb, L/kg | 185 ± 17 | 30 | 8 | 16 | 36 |
Uranium | |||||
Total U, mg-U/kg | 22 | 4566 | 2474 | 71 | 7479 |
Clay U, mg-U/kg-clay | 57 | 3744 | 1626 | 517 | 4952 |
Clay-fraction enrichment a | 2.6 | 1.9 | 2.6 | 0.7 | 7.3 |
Kd−desorb, L/kg | 737 ± 203 | 3972 | 1370 | 2812 | 6275 |
Nickel | Uranium | |||||||
---|---|---|---|---|---|---|---|---|
Niacid (mg/kg) | Niorg (mg/kg) | NiAmFeOx (mg/kg) | Ni Kd−desorb (L/kg) | Uacid (mg/kg) | Uorg (mg/kg) | UAmFeOx (mg/kg) | U Kd−desorb (L/kg) | |
pH | −0.453 | −0.822 * | −0.399 | - | −0.757 * | −0.809 * | −0.628 | 0.413 |
OM (wt-%) | 0.399 | 0.834 ** | 0.368 | - | 0.748 | 0.831 * | 0.643 | 0.186 |
Free Fe (mg/kg) | 0.109 | 0.603 | 0.079 | - | 0.503 | 0.628 | 0.426 | 0.082 |
TOC (mg/kg) | 0.242 | 0.658 | 0.162 | - | 0.581 | 0.626 | 0.402 | 0.218 |
Total N (mg/kg) | 0.514 | 0.829 * | 0.450 | - | 0.780 * | 0.773 * | 0.585 | 0.220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Boyanov, M.I.; O’Loughlin, E.J.; Xing, W.; Kemner, K.M.; Seaman, J.; Simner, S.P.; Kaplan, D.I. Uranium and Nickel Partitioning in a Contaminated Riparian Wetland. Water 2024, 16, 966. https://doi.org/10.3390/w16070966
Lin P, Boyanov MI, O’Loughlin EJ, Xing W, Kemner KM, Seaman J, Simner SP, Kaplan DI. Uranium and Nickel Partitioning in a Contaminated Riparian Wetland. Water. 2024; 16(7):966. https://doi.org/10.3390/w16070966
Chicago/Turabian StyleLin, Peng, Maxim I. Boyanov, Edward J. O’Loughlin, Wei Xing, Kenneth M. Kemner, John Seaman, Steven P. Simner, and Daniel I. Kaplan. 2024. "Uranium and Nickel Partitioning in a Contaminated Riparian Wetland" Water 16, no. 7: 966. https://doi.org/10.3390/w16070966
APA StyleLin, P., Boyanov, M. I., O’Loughlin, E. J., Xing, W., Kemner, K. M., Seaman, J., Simner, S. P., & Kaplan, D. I. (2024). Uranium and Nickel Partitioning in a Contaminated Riparian Wetland. Water, 16(7), 966. https://doi.org/10.3390/w16070966