Summary of Experiments and Influencing Factors of Sediment Settling Velocity in Still Water
Abstract
:1. Introduction
2. Measuring Methods
2.1. Theoretical Method
2.1.1. Single Particle Sediment Settling Velocity
2.1.2. Sediment Group Settling Velocity
2.2. Laboratory Settlement Tube Measurement
2.2.1. Continuous Settlement Method
2.2.2. Mixed Sedimentation Method
- (1)
- Bottom Withdrawal Tube (BWT)
- (2)
- McLaughlin Method
2.3. Field Measurement
2.3.1. ADV Method
2.3.2. Optical Method
- (1)
- OBS
- (2)
- LISST
- (3)
- Optical Remote Sensing Method
2.3.3. Imaging Method
- (1)
- PTV + PIV Method
- (2)
- PICS method
- The introduction of instruments into the water interferes with the natural settlement state.
- Submerging the instrument in water often disrupts the original floc structure, leading to floc deposition or rupture during sedimentation.
- In situ measurements typically rely on instrument-measured sediment characteristics such as particle size, density, and concentration, subsequently employing empirical formulas to calculate sediment settling velocity. The accuracy of these calculations hinges on the formula’s applicability to the specific area.
- On-site testing necessitates advanced precision instruments, most of which are costly and often single function. Measuring the sediment settling velocity entails the utilization of various equipment, which is further complicated by the challenging on-site environment, susceptibility to instrument damage, and inconvenient maintenance, thereby driving up costs.
3. Influencing Factors
3.1. Soil Properties
3.1.1. Suspended Sediment Concentration (SSC)
3.1.2. Particle Size
3.1.3. Particle Shape
3.2. Environmental Factor
3.2.1. Temperature
3.2.2. Salinity
3.2.3. Organic Matter
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chien, N.; Wan, Z.H. Mechanics of Sediment Transport; Science Press: Beijing China, 1983. [Google Scholar]
- Li, K.Q. Experimental Study on Correction Method of Grading Results of Coarse Sand Samples Analyzed by Particle Size Analyzer. J. Sediment. Res. 1985, 85–89. [Google Scholar] [CrossRef]
- Cao, R.X.; Qian, S.Q.; Chen, W. Sedimentation Characteristics of Muddy Water with Coarse Sand and High Sand Content and the Group Sinking Velocity of Coarse Sediment. Yellow River 1995, 14, 1–4+61. [Google Scholar]
- Zhang, R.J. River Sediment Dynamics; China Water Power Press: Beijing, China, 1998. [Google Scholar]
- Wang, D.W.; Yang, G.L.; Yu, M.H. Method to Deter Mine the Maxi Mal Diameter of Fine Sedi Ment Aggregation and Influence Factors Analysis. J. Sediment. Res. 2009, 74–80. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. In Mathematical and Physical Papers. Cambridge Library Collection-Mathematics; Cambridge University Pre: Cambridge, UK, 2009; pp. 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Tang, L.; She, Y.; Sun, J. Laboratory Measurements of the Fall Velocity of Fine Sediment in an Estuarine Environment. Int. J. Sediment Res. 2020, 35, 217–226. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, J.F.; Fu, J.N. Experiment Study on the Effects of Temperature on the Flocculation and Settling of Kaolinite in the Settling Column. Chin. J. Hydrodyn. 2018, 33, 801–806. [Google Scholar]
- Wan, Y.Y.; Wu, H.L.; Shen, Q.; Gu, F.F. Experimental Study on the Settling Velocity of Suspended Sediment in the Yangtze River Estuary. Mar. Sci. 2015, 39, 78–85. [Google Scholar]
- Manning, A.; Langston, W.; Jonas, P. A Review of Sediment Dynamics in the Severn Estuary: Influence of Flocculation. Marine Pollut. Bull. 2010, 61, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Eisma, D.; Bale, A.; Dearnaley, M.; Fennessy, M.; Van Leussen, W.; Maldiney, M.-A.; Pfeiffer, A.; Wells, J. Intercomparison of in Situ Suspended Matter (Floc) Size Measurements. J. Sea Res. 1996, 36, 3–14. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, H.M.; Zeng, M.W. Research Progress of Sediment Settling Velocity and Its Influencing Factors Analysis. Yangtze River 2001, 23–24+41. [Google Scholar] [CrossRef]
- Ueber, A.O. Stationäre Flüssigkeitsbewegungen Mit Berücksichtigung Der Inneren Reibung. J. Für Die Reine Und Angew. Math. 1876, 81, 62–80. [Google Scholar]
- Cheng, N.-S. Simplified Settling Velocity Formula for Sediment Particle. J. Hydraul. Engineering. 1997, 123, 149–152. [Google Scholar] [CrossRef]
- Riazi, A.; Türker, U. The Drag Coefficient and Settling Velocity of Natural Sediment Particles. Comput. Part. Mech. 2019, 6, 427–437. [Google Scholar] [CrossRef]
- Richardson, J. Sedimentation and Fluidization Part Iii the Sedimentation of Uniform Fine Particles and of Two-Component Mixtures of Solids. Trans Inst. Chem. Eng. 1961, 39, 348–356. [Google Scholar]
- Li, Y.G. On Group Setting Velocity of Fine Sediment. Ocean Eng. 1990, 60–68. [Google Scholar] [CrossRef]
- Qian, Y.Y.; Yang, W.H.; Zhao, W.L. Basic Characteristics of High Sediment Concentration Flow. In Proceedings of the International Symposium on River Sedimentation, Beijing, China, 24–29 March 1980; Yellow River Institute of Hydraulic Research: Zhengzhou, China; pp. 175–184. [Google Scholar]
- Chu, J.D. Settling Laws of a Swarm of Particles in Sediment-Water Mixture. J. Hohai Univ. (Nat. Sci.) 1982, 28–36. Available online: http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HHDX198201002.htm (accessed on 15 March 2024).
- Meng, R.L.; Zhang, G.G.; Ma, L.; Zhang, X.M. Study on Population Settlement of Viscous Fine Sediment in Muddy Water. J. Sediment. Res. 2022, 47, 9–14. [Google Scholar]
- Cole, R.C.; Edlefsen, N. A Sedimentation Tube for Analyzing Water-Stable Soil Aggregates. Soil Sci. 1935, 40, 473–480. [Google Scholar] [CrossRef]
- Rigler, J.; Collins, M.; Williams, S. A High Precision, Digital-Recording Sedimentation Tower for Sands: Research-Method Paper. J. Sediment. Res. 1981, 51, 642–644. [Google Scholar] [CrossRef]
- Hu, Y.; Fister, W.; Rüegg, H.R.; Kinnell, P.; Kuhn, N.J. The Use of Equivalent Quartz Size and Settling Tube Apparatus to Fractionate Soil Aggregates by Settling Velocity. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2013. [Google Scholar]
- Hairsine, P.; McTainsh, G. The Griffith Tube: A Simple Settling Tube for the Measurement of Settling Velocity of Aggregates; School of Australian Environmental Studies, Griffith University: Brisbane City, Australia, 1986. [Google Scholar]
- Loch, R. Settling Velocity–a New Approach to Assessing Soil and Sediment Properties. Comput. Electron. Agric. 2001, 31, 305–316. [Google Scholar] [CrossRef]
- Sven, O. The Size Distribution of Particles in Soils and the Experimental Methods of Obtaining Them. Soil Sci. 1925, 19, 1–36. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, K.L.; Zhu, M.; Xu, X.L. Review and Comment on Experimental Research Methods of Sediment Settling Velocity. Yellow River 2006, 28, 50–52. (In Chinese) [Google Scholar]
- Anon A Study of New Methods of Size Analysis of Suspended Sediment Samples. 1943, Rep.No.7. Available online: https://water.usgs.gov/fisp/docs/Report_12.pdf (accessed on 15 March 2024).
- Lovell, C.; Rose, C. Measurement of Soil Aggregate Settling Velocities. 1. A Modified Bottom Withdrawal Tube Method. Soil Res. 1988, 26, 55–71. [Google Scholar] [CrossRef]
- Mulqueen, J.; Rodgers, M.; Marren, N.; Healy, M.G. Erodibility of Hill Peat. Ir. J. Agric. Food Res. 2006, 45, 103–114. [Google Scholar]
- Wu, S.N.; Fu, S.H. Effects of Soil Aggregates on Settling Velocity of Sediment. Sci. Soil Water Conserv. 2019, 17, 78–84. [Google Scholar]
- Liu, C.; Li, Z.; Fu, S.; Ding, L.; Wu, G. Influence of Soil Aggregate Characteristics on the Sediment Transport Capacity of Overland Flow. Geoderma 2020, 369, 114338. [Google Scholar] [CrossRef]
- McLaughlin, R.T., Jr. The Settling Properties of Suspensions. J. Hydraul. Div. 1959, 85, 9–41. [Google Scholar] [CrossRef]
- McLaughlin, R.T. Settling Properties of Suspensions. Trans. Am. Soc. Civ. Eng. 1961, 126, 1734–1766. [Google Scholar] [CrossRef]
- Fugate, D.C.; Friedrichs, C.T. Determining Concentration and Fall Velocity of Estuarine Particle Populations Using Adv, Obs and Lisst. Cont. Shelf Res. 2002, 22, 1867–1886. [Google Scholar] [CrossRef]
- Kwon, J.I. Simulation of Turbidity Maximums in the York River, Virginia; The College of William and Mary: Williamsburg, VA, USA, 2005. [Google Scholar]
- Ha, H.; Hsu, W.Y.; Maa, J.-Y.; Shao, Y.; Holland, C. Using Adv Backscatter Strength for Measuring Suspended Cohesive Sediment Concentration. Cont. Shelf Res. 2009, 29, 1310–1316. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y.; Tang, C.; Acharya, K.; Du, W.; Wang, J.; Luo, L.; Li, H.; Dai, S.; Yu, Z. Using Adv for Suspended Sediment Concentration and Settling Velocity Measurements in Large Shallow Lakes. Environ. Sci. Pollut. Res. 2017, 24, 2675–2684. [Google Scholar] [CrossRef]
- Moura, M.G.; Quaresma, V.S.; Bastos, A.C.; Veronez, P. Field Observations of Spm Using Adv, Adp, and Obs in a Shallow Estuarine System with Low Spm Concentration—Vitória Bay, Se Brazil. Ocean Dyn. 2011, 61, 273–283. [Google Scholar] [CrossRef]
- Chanson, H.; Takeuchi, M.; Trevethan, M. Using Turbidity and Acoustic Backscatter Intensity as Surrogate Measures of Suspended Sediment Concentration in a Small Subtropical Estuary. J. Environ. Manag. 2008, 88, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, S.; Hu, J.; Fu, X.; Zhang, P. Field Measurements of Settling Velocities of Fine Sediments in Three Gorges Reservoir Using Adv. Int. J. Sediment Res. 2016, 31, 237–243. [Google Scholar] [CrossRef]
- Maa, J.-Y.; Kwon, J.-I. Using Adv for Cohesive Sediment Settling Velocity Measurements. Estuar. Coast. Shelf Sci. 2007, 73, 351–354. [Google Scholar] [CrossRef]
- Ha, H.K.; Maa, J.P.-Y. Effects of Suspended Sediment Concentration and Turbulence on Settling Velocity of Cohesive Sediment. Geosci. J. 2010, 14, 163–171. [Google Scholar] [CrossRef]
- Cartwright, G.M.; Friedrichs, C.T.; Smith, S.J. A Test of the Adv-Based Reynolds Flux Method for in Situ Estimation of Sediment Settling Velocity in a Muddy Estuary. Geo-Mar. Lett. 2013, 33, 477–484. [Google Scholar] [CrossRef]
- Bian, C.; Mao, X.; Jiang, W.; Gu, Y. Adv-Based Estimates of Sediment Settling Velocity on the Shelf of the Yellow and East China Seas: Evidence of Marked Seasonal and Intra-Tidal Variations. Geo-Mar. Lett. 2015, 35, 53–60. [Google Scholar] [CrossRef]
- Rouhnia, M.; Strom, K. Sedimentation from Flocculated Suspensions in the Presence of Settling-Driven Gravitational Interface Instabilities. J. Geophys. Res. Ocean 2015, 120, 6384–6404. [Google Scholar] [CrossRef]
- Mantovanelli, A.; Ridd, P.V. Devices to Measure Settling Velocities of Cohesive Sediment Aggregates: A Review of the in Situ Technology. J. Sea Res. 2006, 56, 199–226. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Pottsmith, H.C. Instruments for Particle Size and Settling Velocity Observations in Sediment Transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]
- Pedocchi, F.; García, M.H. Evaluation of the Lisst-St Instrument for Suspended Particle Size Distribution and Settling Velocity Measurements. Cont. Shelf Res. 2006, 26, 943–958. [Google Scholar] [CrossRef]
- Ahn, J.H. Size Distribution and Settling Velocities of Suspended Particles in a Tidal Embayment. Water Res. 2012, 46, 3219–3228. [Google Scholar] [CrossRef]
- Fettweis, M.; Baeye, M. Seasonal Variation in Concentration, Size, and Settling Velocity of Muddy Marine Flocs in the Benthic Boundary Layer. J. Geophys. Res. Ocean 2015, 120, 5648–5667. [Google Scholar] [CrossRef]
- Chapalain, M.; Verney, R.; Fettweis, M.; Jacquet, M.; Le Berre, D.; Le Hir, P. Investigating Suspended Particulate Matter in Coastal Waters Using the Fractal Theory. Ocean Dyn. 2019, 69, 59–81. [Google Scholar] [CrossRef]
- Shao, Y.; Yan, Y.; Maa, J.P.-Y. In Situ Measurements of Settling Velocity near Baimao Shoal in Changjiang Estuary. J. Hydraul. Eng. 2011, 137, 372–380. [Google Scholar] [CrossRef]
- Voulgaris, G.; Meyers, S.T. Temporal Variability of Hydrodynamics, Sediment Concentration and Sediment Settling Velocity in a Tidal Creek. Cont. Shelf Res. 2004, 24, 1659–1683. [Google Scholar] [CrossRef]
- Nasiha, H.J.; Shanmugam, P. Estimation of Settling Velocity of Sediment Particles in Estuarine and Coastal Waters. Estuar. Coast. Shelf Sci. 2018, 203, 59–71. [Google Scholar] [CrossRef]
- Vadakke-Chanat, S.; Shanmugam, P. Modeling the Contributions of Phytoplankton and Non-Algal Particles to Spectral Scattering Properties in near-Shore and Lagoon Waters. Cont. Shelf Res. 2017, 135, 35–46. [Google Scholar] [CrossRef]
- Nasiha, H.J.; Shanmugam, P.; Sundaravadivelu, R. Estimation of Sediment Settling Velocity in Estuarine and Coastal Waters Using Optical Remote Sensing Data. Adv. Space Res. 2019, 63, 3473–3488. [Google Scholar] [CrossRef]
- Smith, S.J.; Friedrichs, C.T. Image Processing Methods for in Situ Estimation of Cohesive Sediment Floc Size, Settling Velocity, and Density. Limnol. Oceanogr. Methods 2015, 13, 250–264. [Google Scholar] [CrossRef]
- Simoncelli, S.; Kirillin, G.; Tolomeev, A.P.; Grossart, H.P. A Low-Cost Underwater Particle Tracking Velocimetry System for Measuring in Situ Particle Flux and Sedimentation Rate in Low-Turbulence Environments. Limnol. Oceanogr. Methods 2019, 17, 665–681. [Google Scholar] [CrossRef]
- Fennessy, M.; Dyer, K.; Huntley, D. Inssev: An Instrument to Measure the Size and Settling Velocity of Flocs in Situ. Mar. Geol. 1994, 117, 107–117. [Google Scholar] [CrossRef]
- Van Leussen, W.; Cornelisse, J.M. The Determination of the Sizes and Settling Velocities of Estuarine Flocs by an Underwater Video System. Neth. J. Sea Res. 1993, 31, 231–241. [Google Scholar] [CrossRef]
- Smith, S.J.; Friedrichs, C.T. Size and Settling Velocities of Cohesive Flocs and Suspended Sediment Aggregates in a Trailing Suction Hopper Dredge Plume. Cont. Shelf Res. 2011, 31, S50–S63. [Google Scholar] [CrossRef]
- Shen, X.; Maa, J.P.Y. A Camera and Image Processing System for Floc Size Distributions of Suspended Particles. Mar. Geol. 2016, 376, 132–146. [Google Scholar] [CrossRef]
- Xia, Z.H.; Wang, G. The Setting of Non-Cohesive Particles in a Flocculated Suspension. J. Sediment. Res. 1982, 14–23. [Google Scholar]
- Huang, J.H. Experimental Study of Settling Properties of Cohesive Sediment in Stil1 Water. J. Sediment. Res. 1981, 30–41. [Google Scholar]
- McAnally, W.H.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Teeter, A.; Mud, A.T.C.o.M.o.F. Management of Fluid Mud in Estuaries, Bays, and Lakes. I: Present State of Understanding on Character and Behavior. J. Hydraul. Eng. 2007, 133, 9–22. [Google Scholar] [CrossRef]
- Wan, Y.Y.; Wu, H.L.; Shen, Q.; Gu, F.F. Reviews on Settling Velocity of Fine Sediment in Tidal Environment 3: Controlling Factors. Port Waterw. Eng. 2014, 21–25. [Google Scholar]
- Huang, H. Porosity-Size Relationship of Drilling Mud Flocs: Fractal Structure. Clays Clay Miner. 1993, 41, 373–379. [Google Scholar] [CrossRef]
- Tan, X.-L.; Zhang, G.-P.; Hang, Y.; Furukawa, Y. Characterization of Particle Size and Settling Velocity of Cohesive Sediments Affected by a Neutral Exopolymer. Int. J. Sediment Res. 2012, 27, 473–485. [Google Scholar] [CrossRef]
- Zhang, D.R.; Liang, Z.Y. Experimetn Study of Effect of Nonuniform Fine Sediment on Flocculation. Hydro-Sci. Eng. 1994, 1, 11–17. [Google Scholar]
- Tang, J.H. Characteristics of Fine Cohesive Sediment’s Flocculation in the Changjiang Estuary and Its Adjacent Sea Area; East China Normal University: Shanghai, China, 2007; p. 57. [Google Scholar]
- Peng, H.F.; Kong, G.Q.; Liu, H.L.; Abuel-Naga, H.; Hao, Y.H. Thermo-Mechanical Behaviour of Floating Energy Pile Groups in Sand. J. Zhejiang Univ. SCIENCE A 2018, 19, 638–649. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Halagy, D.A.E. Studying the Factors Affecting the Settling Velocity of Solid Particles in Non-Newtonian Fluids. Al-Nahrain J. Eng. Sci. 2013, 16, 41–50. [Google Scholar]
- Komar, P.D.; Reimers, C. Grain Shape Effects on Settling Rates. J. Geol. 1978, 86, 193–209. [Google Scholar] [CrossRef]
- Gabitto, J.; Tsouris, C. Drag Coefficient and Settling Velocity for Particles of Cylindrical Shape. Powder Technol. 2008, 183, 314–322. [Google Scholar] [CrossRef]
- Francalanci, S.; Paris, E.; Solari, L. On the Prediction of Settling Velocity for Plastic Particles of Different Shapes. Environ. Pollut. 2021, 290, 118068. [Google Scholar] [CrossRef] [PubMed]
- Owen, M. The Effect of Temperature on the Settling Velocities of an Estuary Mud. 1972. Available online: https://eprints.hrwallingford.com/1528/1/IT106.pdf (accessed on 15 March 2024).
- Lau, Y. Temperature Effect on Settling Velocity and Deposition of Cohesive Sediments. J. Hydraul. Res. 1994, 32, 41–51. [Google Scholar] [CrossRef]
- Fitzpatrick, C.; Fradin, E.; Gregory, J. Temperature Effects on Flocculation, Using Different Coagulants. Water Sci. Technol. 2004, 50, 171–175. [Google Scholar] [CrossRef]
- Burdukova, E.; Ishida, N.; Shaddick, T.; Franks, G.V. The Size of Particle Aggregates Produced by Flocculation with Pnipam, as a Function of Temperature. J. Colloid Interface Sci. 2011, 354, 82–88. [Google Scholar] [CrossRef]
- Wang, D.-L.; Zhang, Q.-L.; Chen, Q.-S.; Qi, C.-C.; Feng, Y.; Xiao, C.-C. Temperature Variation Characteristics in Flocculation Settlement of Tailings and Its Mechanism. Int. J. Miner. Metall. Mater. 2020, 27, 1438–1448. [Google Scholar] [CrossRef]
- Eisma, D.; Bernard, P.; Cadée, G.; Ittekkot, V.; Kalf, J.; Laane, R.; Martin, J.; Mook, W.; Van Put, A.; Schuhmacher, T. Suspended-Matter Particle Size in Some West-European Estuaries; Part II: A Review on Floc Formation and Break-Up. Neth. J. Sea Res. 1991, 28, 215–220. [Google Scholar] [CrossRef]
- Eisma, D.; Bernard, P.; Cadee, G.; Ittekkot, V.; Kalf, J.; Laane, R.; Martin, J.M.; Mook, W.; Van Put, A.; Schuhmacher, T. Suspended-Matter Particle Size in Some West-European Estuaries; Part I: Particle-Size Distribution. Neth. J. Sea Res. 1991, 28, 193–214. [Google Scholar] [CrossRef]
- Winkler, M.-K.; Bassin, J.; Kleerebezem, R.; Van der Lans, R.; Van Loosdrecht, M. Temperature and Salt Effects on Settling Velocity in Granular Sludge Technology. Water Res. 2012, 46, 5445–5451. [Google Scholar] [CrossRef]
- Portela, L.I.; Ramos, S.; Teixeira, A.T. Effect of Salinity on the Settling Velocity of Fine Sediments of a Harbour Basin. J. Coast. Res. 2013, 165, 1188–1193. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Barrett, K.J.; Gingras, M.K. Clay Settling in Fresh and Salt Water. Environ. Fluid Mech. 2015, 15, 147–160. [Google Scholar] [CrossRef]
- Krahl, E.; Vowinckel, B.; Ye, L.; Hsu, T.-J.; Manning, A.J. Impact of the Salt Concentration and Biophysical Cohesion on the Settling Behavior of Bentonites. Front. Earth Sci. 2022, 10, 886006. [Google Scholar] [CrossRef]
- Zhu, Z.; Xiong, X.; Liang, C.; Zhao, M. On the Flocculation and Settling Characteristics of Low-and High-Concentration Sediment Suspensions: Effects of Particle Concentration and Salinity Conditions. Environ. Sci. Pollut. Res. 2018, 25, 14226–14243. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, Y.G.; Li, Y. Experimental Study on Flocculation of Cohesive Fine Grain Sediment at Yangtze River Estuary. J. Hohai Univ. (Nat. Sci.) 2002, 30, 61–63. [Google Scholar]
- Guo, L.; He, Q. Freshwater Flocculation of Suspended Sediments in the Yangtze River, China. Ocean Dyn. 2011, 61, 371–386. [Google Scholar] [CrossRef]
- Gibbs, R.J. Effect of Natural Organic Coatings on the Coagulation of Particles. Environ. Sci. Technol. 1983, 17, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.S.; Shao, M.A. Effects of Organic Matter on Flocculation and Settling Properties of Fine Sedi Ment in Still Water. J. Sediment. Res. 2001, 3, 35–39. [Google Scholar]
- Ye, L.; Penaloza-Giraldo, J.; Manning, A.; Holyoke, J.; Hsu, T.-J. Biophysical Flocculation Reduces Variability of Cohesive Sediment Settling Velocity. Commun. Earth Environ. 2023, 4, 138. [Google Scholar] [CrossRef]
- Berlamont, J.; Ockenden, M.; Toorman, E.; Winterwerp, J. The Characterisation of Cohesive Sediment Properties. Coast. Eng. 1993, 21, 105–128. [Google Scholar] [CrossRef]
- Owen, M. The Effect of Turbulence on the Settling Velocities of Silt Flocs. In Proceedings of the Fourteenth Congress of IAHR. 1971, 4, 27–32. Available online: https://scholar.google.com/scholar?q=Owen%2C%20M.W.%2C%201971.%20The%20effects%20of%20turbulence%20on%20the%20settling%20velocity%20of%20silt%20flocs.%20Proc.%2014th%20Cong.%20Int.%20Assoc.%20Hydraul.%20Res.%20Paris%2C%20pp.%20D4-1%E2%80%93D4-6 (accessed on 15 March 2024).
- Manning, A. Observations of the Properties of Flocculated Cohesive Sediment in Three Western European Estuaries. J. Coast. Res. 2004, 70–81. Available online: http://www.jstor.org/stable/25736632 (accessed on 15 March 2024).
Investigator | Time | Place | SSCmg/L | Formula | Settling Velocity mm/s |
---|---|---|---|---|---|
David C. Fugate [35] | 2002 | Chesapeake Bay | 3–5 | 1–1.5 | |
J.P.Y. Maa [42] | 2007 | The York River, Virginia. | 3–70 | 0.15–0.7 | |
Ho Kyung Ha [43] | 2010 | York River estuary, Virginia | 300–700 | 10–55 | |
Grace M [44] | 2013 | York River estuary, Virginia | 30–100 | 0.48 ± 0.04 | |
Changwei Bian [45] | 2015 | Yellow Sea-A02 | 0.9–1.2 | 0.07 ± 0.05 | |
The East China Sea-E02 | 1–4 | 1.88 ± 1.76 | |||
Wenjie Li [41] | 2016 | Three Gorges Reservoir | 100–2000 | 0.1-10 | |
XiaoMeng Gao [38] | 2017 | Taihu | 40–242 | 0.12 | |
0.11 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, Z.; Zhan, X.; Zhang, T. Summary of Experiments and Influencing Factors of Sediment Settling Velocity in Still Water. Water 2024, 16, 938. https://doi.org/10.3390/w16070938
Li Y, Xu Z, Zhan X, Zhang T. Summary of Experiments and Influencing Factors of Sediment Settling Velocity in Still Water. Water. 2024; 16(7):938. https://doi.org/10.3390/w16070938
Chicago/Turabian StyleLi, Yani, Zhihao Xu, Xiaoyun Zhan, and Tibin Zhang. 2024. "Summary of Experiments and Influencing Factors of Sediment Settling Velocity in Still Water" Water 16, no. 7: 938. https://doi.org/10.3390/w16070938
APA StyleLi, Y., Xu, Z., Zhan, X., & Zhang, T. (2024). Summary of Experiments and Influencing Factors of Sediment Settling Velocity in Still Water. Water, 16(7), 938. https://doi.org/10.3390/w16070938