Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change
Abstract
:1. Introduction
2. Lake Thermal Stratification Structure
3. The Impact of Climate Change on Thermal Stratification
4. How Thermal Stratification Affects Lake Ecology
4.1. The Impact of Thermal Stratification on Material Cycling and Energy Flow
4.2. The Impact of Thermal Stratification on Aquatic Organisms
4.3. The Overall Response of Lake Ecology
5. Thermal Stratification Models
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Proceedings of the Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 13–19 March 2023; IPCC, 2023: Climate Change 2023: Synthesis Report. Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: An attribution perspective. Environ.Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Chen, J.; Shi, X.; Gu, L.; Wu, G.; Su, T.; Wang, H.-M.; Kim, J.-S.; Zhang, L.; Xiong, L. Impacts of climate warming on global floods and their implication to current flood defense standards. J. Hydrol. 2023, 618, 129236. [Google Scholar] [CrossRef]
- Ji, Y.; Fu, J.; Lu, Y.; Liu, B. Three-dimensional-based global drought projection under global warming tendency. Atmos. Res. 2023, 291, 106812. [Google Scholar] [CrossRef]
- Rezvani, R.; RahimiMovaghar, M.; Na, W.; Najafi, M.R. Accelerated lagged compound floods and droughts in northwest North America under 1.5 °C–4 °C global warming levels. J. Hydrol. 2023, 624, 129906. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Navas-Martín, M.Á.; Ovalle-Perandones, M.-A.; López-Bueno, J.A.; Díaz, J.; Linares, C.; Sánchez-Martínez, G. Population adaptation to heat as seen through the temperature-mortality relationship, in the context of the impact of global warming on health: A scoping review. Sci. Total Environ. 2024, 908, 168441. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.V.; Thomas, J.M.G.; Narayanan, S. Global Warming Effects. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 289–299. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.; Wu, Y.; Wang, J.; Zhao, Z.; Li, Y.; Qiao, L.; Chen, K.; Liu, G.; Ritsema, C.; et al. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. J. Environ. Manag. 2023, 345, 118912. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-Y.; Lin, Y. Does global warming affect unemployment? International evidence. Econ. Anal. Policy 2023, 80, 991–1005. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Paris agreement. In Proceedings of the Conference of the Parties on Its 21st Session, Paris, France, 30 November–13 December 2015. [Google Scholar]
- Mahima; Karakoti, I.; Pathak, P.P.; Nandan, H. A Comprehensive Study of Ground Measurement and Satellite-Derived Data of Global and Diffuse Radiation. Environ. Prog. Sustain. Energy 2019, 38, e13060. [Google Scholar] [CrossRef]
- Renner, M.; Wild, M.; Schwarz, M.; Kleidon, A. Estimating Shortwave Clear-Sky Fluxes From Hourly Global Radiation Records by Quantile Regression. Earth Space Sci. 2019, 6, 1532–1546. [Google Scholar] [CrossRef]
- Oliphant, A.; Susan, C.; Grimmond, B.; Schmid, H.-P.; Wayson, C.A. Local-scale heterogeneity of photosynthetically active radiation (PAR), absorbed PAR and net radiation as a function of topography, sky conditions and leaf area index. Remote Sens. Environ. 2006, 103, 324–337. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef]
- Elias, S.A. History of Greenhouse Gas Warming: CO2. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Oxford, UK, 2021; pp. 444–455. [Google Scholar] [CrossRef]
- Jiang, K.; Pan, Z.; Pan, F.; Teuling, A.J.; Han, G.; An, P.; Chen, X.; Wang, J.; Song, Y.; Cheng, L.; et al. Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background. iScience 2023, 26, 106837. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Qin, B.; Zhu, G.; Zhang, Y.; Jeppesen, E.; Tong, Y. Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundam. Res. 2023, 3, 265–273. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; Droppers, B.; Kong, X.; Teurlincx, S.; Tong, Y.; Kroeze, C. Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. Water Res. 2021, 202, 117427. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Boegman, L. Currents in Stratified Water Bodies: Internal Waves. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 510–524. [Google Scholar] [CrossRef]
- Wells, M.G.; Troy, C.D. Surface Mixed Layers in Lakes. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 546–561. [Google Scholar] [CrossRef]
- Özkundakci, D.; Hamilton, D.P.; Gibbs, M.M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 2011, 661, 5–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Zhou, Y.; Wang, M.; Liu, X. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 2015, 75, 249–258. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Liu, M.; Yu, Z.; Song, D.; Jeppesen, E.; Zhou, Q. Patterns of thermocline structure and the deep chlorophyll maximum feature in multiple stratified lakes related to environmental drivers. Sci. Total Environ. 2022, 851, 158431. [Google Scholar] [CrossRef]
- Boehrer, B.; Schultze, M. Density Stratification and Stability. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: Oxford, UK, 2009; pp. 583–593. [Google Scholar] [CrossRef]
- Peeters, F.; Straile, D.; Lorke, A.; Livingstone, D.M. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob. Chang. Biol. 2007, 13, 1898–1909. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Shepherd, T.G. Attribution of climate extreme events. Nat. Clim. Chang. 2015, 5, 725–730. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhou, Q.; Zhou, Y.; Zhang, Y.; Qin, B.; Deng, J. Decreasing underwater ultraviolet radiation exposure strongly driven by increasing ultraviolet attenuation in lakes in eastern and southwest China. Sci. Total Environ. 2020, 720, 137694. [Google Scholar] [CrossRef]
- Miao, Y.; Meng, H.; Luo, W.; Li, B.; Luo, H.; Deng, Q.; Yao, Y.; Shi, Y.; Wu, Q.L. Large alpine deep lake as a source of greenhouse gases: A case study on Lake Fuxian in Southwestern China. Sci. Total Environ. 2022, 838, 156059. [Google Scholar] [CrossRef]
- He, W.; Lian, J.; Yao, Y.; Wu, M.; Ma, C. Modeling the effect of temperature-control curtain on the thermal structure in a deep stratified reservoir. J. Environ. Manag. 2017, 202, 106–116. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; He, Y.; Zhang, S.; Huang, W.; Woolway, R.I.; Shi, K.; Yang, X. Numerical simulation of thermal stratification in Lake Qiandaohu using an improved WRF-Lake model. J. Hydrol. 2023, 618, 129184. [Google Scholar] [CrossRef]
- Chan, V.; Matthews, R.A. Using the generalized F distribution to model limnetic temperature profile and estimate thermocline depth. Ecol. Model. 2005, 188, 374–385. [Google Scholar] [CrossRef]
- Imberger, J. The diurnal mixed layer. Limnol. Oceanogr. 1985, 30, 737–770. [Google Scholar] [CrossRef]
- Gorham, E.; Boyce, F.M. Influence of Lake Surface Area and Depth Upon Thermal Stratification and the Depth of the Summer Thermocline. J. Great Lakes Res. 1989, 15, 233–245. [Google Scholar] [CrossRef]
- Read, J.S.; Hamilton, D.P.; Jones, I.D.; Muraoka, K.; Winslow, L.A.; Kroiss, R.; Wu, C.H.; Gaiser, E. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 2011, 26, 1325–1336. [Google Scholar] [CrossRef]
- Patterson, J.C.; Hamblin, P.F.; Imberger, J. Classification and dynamic simulation of the vertical density structure of lakes1. Limnol. Oceanogr. 1984, 29, 845–861. [Google Scholar] [CrossRef]
- Cossu, R.; Ridgway, M.S.; Li, J.Z.; Chowdhury, M.R.; Wells, M.G. Wash-zone dynamics of the thermocline in Lake Simcoe, Ontario. J. Great Lakes Res. 2017, 43, 689–699. [Google Scholar] [CrossRef]
- Brainerd, K.E.; Gregg, M.C. Surface mixed and mixing layer depths. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 1521–1543. [Google Scholar] [CrossRef]
- Tedford, E.W.; MacIntyre, S.; Miller, S.D.; Czikowsky, M.J. Similarity scaling of turbulence in a temperate lake during fall cooling. J. Geophys.Res. Ocean. 2014, 119, 4689–4713. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Wang, M.; Yu, Z. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr. 2014, 59, 1193–1202. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.-K. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, K.; Shang, C.; Duan, H.; Tang, L.; Zhang, Y.; Cao, Y.; Luo, Y. Attribution analysis of lake surface water temperature changing—Taking China’s six main lakes as example. Ecol. Indic. 2022, 145, 109651. [Google Scholar] [CrossRef]
- Schmid, M.; Hunziker, S.; Wüest, A. Lake surface temperatures in a changing climate: A global sensitivity analysis. Clim. Chang. 2014, 124, 301–315. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10–773. [Google Scholar] [CrossRef]
- Wang, L.; Shen, H.; Wu, Z.; Yu, Z.; Li, Y.; Su, H.; Zheng, W.; Chen, J.; Xie, P. Warming affects crustacean grazing pressure on phytoplankton by altering the vertical distribution in a stratified lake. Sci. Total Environ. 2020, 734, 139195. [Google Scholar] [CrossRef]
- Robertson, D.M.; Ragotzkie, R.A. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat. Sci. 1990, 52, 360–380. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L06604. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci. Rep. 2017, 7, 4130. [Google Scholar] [CrossRef]
- Churchill, J.H.; Charles Kerfoot, W. The Impact of Surface Heat Flux and Wind on Thermal Stratification in Portage Lake, Michigan. J. Great Lakes Res. 2007, 33, 143–155. [Google Scholar] [CrossRef]
- Abd Ellah, R.G. Physical properties of inland lakes and their interaction with global warming: A case study of Lake Nasser, Egypt. Egypt. J. Aquat. Res. 2020, 46, 103–115. [Google Scholar] [CrossRef]
- Lam, D.C.L.; Schertzer, W.M.; Fraser, A.S. Oxygen Depletion in Lake Erie: Modeling the Physical, Chemical, and Biological Interactions, 1972 and 1979. J. Great Lakes Res. 1987, 13, 770–781. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and the Evolution of Their Ice Cover; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Tang, Z.; Tian, J.; Zhang, Y.; Zhang, X.; Zhang, J.; Ma, N.; Li, X.; Song, P. Anthropogenic aerosols dominated the decreased solar radiation in eastern China over the last five decades. J. Clean. Prod. 2022, 380, 135150. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Wang, L.; Qin, W. A comprehensive research on the global all-sky surface solar radiation and its driving factors during 1980–2019. Atmos. Res. 2022, 265, 105870. [Google Scholar] [CrossRef]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Zhou, Y.; Savijärvi, H. The effect of aerosols on long wave radiation and global warming. Atmos. Res. 2014, 135–136, 102–111. [Google Scholar] [CrossRef]
- Obregón, M.A.; Costa, M.J.; Silva, A.M.; Serrano, A. Impact of aerosol and water vapour on SW radiation at the surface: Sensitivity study and applications. Atmos. Res. 2018, 213, 252–263. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Sherwood, S.; Wood, R.; Donner, L. Climate Effects of Aerosol-Cloud Interactions. Science 2014, 343, 379–380. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, M.; Wang, L.; Lu, Y.; Li, J. Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China. Atmos. Res. 2021, 248, 105162. [Google Scholar] [CrossRef]
- Jeong, D.I.; Sushama, L. Projected Changes to Mean and Extreme Surface Wind Speeds for North America Based on Regional Climate Model Simulations. Atmosphere 2019, 10, 497. [Google Scholar] [CrossRef]
- Manning, C.; Kendon, E.J.; Fowler, H.J.; Roberts, N.M. Projected increase in windstorm severity and contribution from sting jets over the UK and Ireland. Weather. Clim. Extrem. 2023, 40, 100562. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 2023, 9, eabo1638. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M. Exploring temperature and precipitation impacts on harmful algal blooms across continental U.S. lakes. Limnol. Oceanogr. 2020, 65, 992–1009. [Google Scholar] [CrossRef]
- Capooci, M.; Barba, J.; Seyfferth, A.L.; Vargas, R. Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh. Sci. Total Environ. 2019, 686, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xiao, K.; Zhang, L.; Pan, F.; Li, H.; Hou, E.; Zheng, Y.; Zheng, C. Extreme rainstorms change organic matter compositions and regulate greenhouse gas production in mangrove sediments. Agric. Ecosyst. Environ. 2023, 357, 108694. [Google Scholar] [CrossRef]
- Diego-Feliu, M.; Rodellas, V.; Alorda-Kleinglass, A.; Saaltink, M.; Folch, A.; Garcia-Orellana, J. Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean. Hydrol. Earth Syst. Sci. 2022, 26, 4619–4635. [Google Scholar] [CrossRef]
- Mitrovic, S.M.; Hardwick, L.; Dorani, F. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. J. Plankton Res. 2010, 33, 229–241. [Google Scholar] [CrossRef]
- Weinke, A.D.; Biddanda, B.A. Influence of episodic wind events on thermal stratification and bottom water hypoxia in a Great Lakes estuary. J. Great Lakes Res. 2019, 45, 1103–1112. [Google Scholar] [CrossRef]
- Pilecky, M.; Meador, T.B.; Kämmer, S.K.; Winter, K.; Ptacnikova, R.; Wassenaar, L.I.; Kainz, M.J. Response of stable isotopes (δ2H, δ13C, δ15N, δ18O) of lake water, dissolved organic matter, seston, and zooplankton to an extreme precipitation event. Sci. Total Environ. 2023, 891, 164622. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, S.; Melack, J.M. Mixing Dynamics in Lakes Across Climatic Zones. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: Oxford, UK, 2009; pp. 603–612. [Google Scholar] [CrossRef]
- de la Fuente, A. Heat and dissolved oxygen exchanges between the sediment and water column in a shallow salty lagoon. J. Geophys. Res. Biogeosci. 2014, 119, 596–613. [Google Scholar] [CrossRef]
- Purificação, C.; Potes, M.; Rodrigues, G.; Salgado, R.; Costa, M.J. Lake and land breezes at a mediterranean artificial lake: Observations in Alqueva reservoir, Portugal. Atmosphere 2021, 12, 535. [Google Scholar] [CrossRef]
- Comer, N.T.; McKendry, I.G. Observations and numerical modelling of Lake Ontario breezes. Atmos. Ocean. 1993, 31, 481–499. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Qin, H.; Huang, J.; Liu, C.; Hu, C.; Wang, W.; Liu, S.; Lee, X. Spatiotemporal characteristics of lake breezes over Lake Taihu, China. J. Appl. Meteorol. Climatol. 2017, 56, 2053–2065. [Google Scholar] [CrossRef]
- Fernández Castro, B.; Wüest, A.; Lorke, A. Small-Scale Turbulence and Mixing: Energy Fluxes in Stratified Lakes. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 574–586. [Google Scholar] [CrossRef]
- Wüest, A.; Lorke, A. Small-Scale Hydrodynamics in Lakes. Annu. Rev. Fluid Mech. 2003, 35, 373–412. [Google Scholar] [CrossRef]
- Minaudo, C.; Odermatt, D.; Bouffard, D.; Rahaghi, A.I.; Lavanchy, S.; Wüest, A. The Imprint of Primary Production on High-Frequency Profiles of Lake Optical Properties. Environ. Sci. Technol. 2021, 55, 14234–14244. [Google Scholar] [CrossRef]
- Lam, D.C.L.; Schertzer, W.M. Lake Erie Thermocline Model Results: Comparison with 1967–1982 Data and Relation to Anoxic Occurrences. J. Great Lakes Res. 1987, 13, 757–769. [Google Scholar] [CrossRef]
- Brkić, Ž. Increasing water temperature of the largest freshwater lake on the Mediterranean islands as an indicator of global warming. Heliyon 2023, 9, e19248. [Google Scholar] [CrossRef]
- Simpson, J.H.; Bowers, D. Models of stratification and frontal movement in shelf seas. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 727–738. [Google Scholar] [CrossRef]
- Wood, T.; Wherry, S.; Piccolroaz, S.; Girdner, S. Future climate-induced changes in mixing and deep oxygen content of a caldera lake with hydrothermal heat and salt inputs. J. Great Lakes Res. 2023, 49, 563–580. [Google Scholar] [CrossRef]
- Zscheischler, J.; Seneviratne, S.I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 2017, 3, e1700263. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W. Über Die Temperatur-Und Stabili-Tätsverhältnisse Von Seen. Geogr. Ann. 1928, 10, 145–177. [Google Scholar] [CrossRef]
- Idso, S.B. On the concept of lake stability. Limnol. Oceanogr. 1973, 18, 681–683. [Google Scholar] [CrossRef]
- Tomson, R. Response of a numerical model of a stratified lake to wind stress. In Proceedings of the Second International Symposium on Stratified Flows, Tronm, Norway, 24–27 June 1980. [Google Scholar]
- Imberger, J.; Patterson, J.C. Physical Limnology. In Advances in Applied Mechanics; Hutchinson, J.W., Wu, T.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 27, pp. 303–475. [Google Scholar]
- Monin, A.; Obukhov, A. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Tr. Geofiz. Instituta Akad. Nauk. SSSR 1954, 24, 163–187. [Google Scholar]
- Hanson, P.C.; Carpenter, S.R.; Kimura, N.; Wu, C.; Cornelius, S.P.; Kratz, T.K. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnol.Oceanogr. Methods 2008, 6, 454–465. [Google Scholar] [CrossRef]
- Elagami, H.; Frei, S.; Boos, J.-P.; Trommer, G.; Gilfedder, B.S. Quantifying microplastic residence times in lakes using mesocosm experiments and transport modelling. Water Res. 2023, 229, 119463. [Google Scholar] [CrossRef]
- Imboden, D.M.; Wüest, A. Mixing Mechanisms in Lakes. In Physics and Chemistry of Lakes; Lerman, A., Imboden, D.M., Gat, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 83–138. [Google Scholar] [CrossRef]
- Rahman, A.K.M.; Al Bakri, D.; Ford, P.; Church, T. Limnological characteristics, eutrophication and cyanobacterial blooms in an inland reservoir, Australia. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2005, 10, 211–220. [Google Scholar] [CrossRef]
- Hamidi, S.A.; Bravo, H.R.; Val Klump, J.; Waples, J.T. The role of circulation and heat fluxes in the formation of stratification leading to hypoxia in Green Bay, Lake Michigan. J. Great Lakes Res. 2015, 41, 1024–1036. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Shi, K.; Zhu, G.; Wu, Z.; Liu, M.; Zhang, Y. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data. Sci. Total Environ. 2019, 651, 614–624. [Google Scholar] [CrossRef]
- Flood, B.; Wells, M.; Midwood, J.D.; Brooks, J.; Kuai, Y.; Li, J. Intense variability of dissolved oxygen and temperature in the internal swash zone of Hamilton Harbour, Lake Ontario. Inland Waters 2021, 11, 162–179. [Google Scholar] [CrossRef]
- Weiss, R.F. The solubility of nitrogen, oxygen and argon in water and seawater. In Deep Sea Research and Oceanographic Abstracts; Elsevier: Amsterdam, The Netherlands, 1970; pp. 721–735. [Google Scholar]
- Gao, J.; Feng, W.; Yang, F.; Liu, J.; Fan, W.; Wang, Y.; Zhang, Q.; Yang, W. Effects of water quality and bacterial community composition on dissolved organic matter structure in Daihai lake and the mechanisms. Environ. Res. 2022, 214, 114109. [Google Scholar] [CrossRef]
- He, W.; Luo, J.; Xing, L.; Yu, X.; Zhang, J.; Chen, S. Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study. J. Environ. Manag. 2019, 248, 109250. [Google Scholar] [CrossRef]
- Darko, D.; Trolle, D.; Asmah, R.; Bolding, K.; Adjei, K.A.; Odai, S.N. Modeling the impacts of climate change on the thermal and oxygen dynamics of Lake Volta. J. Great Lakes Res. 2019, 45, 73–86. [Google Scholar] [CrossRef]
- Turner, L.; Erskine, W.D. Variability in the development, persistence and breakdown of thermal, oxygen and salt stratification on regulated rivers of southeastern Australia. River Res. Appl. 2005, 21, 151–168. [Google Scholar] [CrossRef]
- Wang, F. Impact of a large sub-tropical reservoir on the cycling of nutrients in a river. Water Res. 2020, 186, 116363. [Google Scholar] [CrossRef]
- Shi, J.; Wang, L.; Yang, Y.; Huang, T. A case study of thermal and chemical stratification in a drinking water reservoir. Sci. Total Environ. 2022, 848, 157787. [Google Scholar] [CrossRef]
- Verta, M.; Salo, S.; Korhonen, M.; Porvari, P.; Paloheimo, A.; Munthe, J. Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes. Sci. Total Environ. 2010, 408, 3639–3647. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.-D.; Rabiet, M.; Grybos, M.; Deluchat, V. Does anoxia promote the mobilization of P-bearing colloids from dam reservoir sediment? Water Res. 2023, 245, 120568. [Google Scholar] [CrossRef] [PubMed]
- Hollibaugh, J.T.; Carini, S.; Gürleyük, H.; Jellison, R.; Joye, S.B.; LeCleir, G.; Meile, C.; Vasquez, L.; Wallschläger, D. Arsenic speciation in Mono Lake, California: Response to seasonal stratification and anoxia. Geochim. Cosmochim. Acta 2005, 69, 1925–1937. [Google Scholar] [CrossRef]
- Yang, B.; Gao, X.; Zhao, J.; Liu, Y.; Xie, L.; Lv, X.; Xing, Q. Summer deoxygenation in a bay scallop (Argopecten irradians) farming area: The decisive role of water temperature, stratification and beyond. Mar. Pollut. Bull. 2021, 173, 113092. [Google Scholar] [CrossRef] [PubMed]
- Dueri, S.; Castro-Jiménez, J.; Zaldívar, J.-M. Modelling the influence of thermal stratification and complete mixing on the distribution and fluxes of polychlorinated biphenyls in the water column of Ispra Bay (Lake Maggiore). Chemosphere 2009, 75, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Chen, Y.; Bao, Z.; Wu, Z.; Cheng, X.; Deng, X.; Shen, H.; Liu, J.; Xie, P.; Chen, J. Thermal stratification controls taste and odour compounds by regulating the phytoplankton community in a large subtropical water source reservoir (Xin’anjiang Reservoir). J. Hazard. Mater. 2024, 466, 133539. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Hu, W.; Gao, G.; Luo, L.; Zhang, J. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chin. Sci. Bull. 2004, 49, 54–64. [Google Scholar] [CrossRef]
- Bouffard, D.; Boegman, L.; Ackerman, J.D.; Valipour, R.; Rao, Y.R. Near-inertial wave driven dissolved oxygen transfer through the thermocline of a large lake. J. Great Lakes Res. 2014, 40, 300–307. [Google Scholar] [CrossRef]
- Pu, J.; Li, J.; Zhang, T.; Martin, J.B.; Yuan, D. Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, south China. Water Res. 2020, 178, 115831. [Google Scholar] [CrossRef]
- Dupuis, D.; Sprague, E.; Docherty, K.M.; Koretsky, C.M. The influence of road salt on seasonal mixing, redox stratification and methane concentrations in urban kettle lakes. Sci. Total Environ. 2019, 661, 514–521. [Google Scholar] [CrossRef]
- Khatun, S.; Iwata, T.; Kojima, H.; Fukui, M.; Aoki, T.; Mochizuki, S.; Naito, A.; Kobayashi, A.; Uzawa, R. Aerobic methane production by planktonic microbes in lakes. Sci. Total Environ. 2019, 696, 133916. [Google Scholar] [CrossRef]
- He, C.; Feng, H.; Zhao, Z.; Wang, F.; Wang, F.; Chen, X.; Wang, X.; Zhang, P.; Li, S.; Yi, Y.; et al. Mechanism of nitrous oxide (N2O) production during thermal stratification of a karst, deep-water reservoir in southwestern China. J. Clean. Prod. 2021, 303, 127076. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, K.; Huang, T.; Li, N.; Si, F.; Feng, J.; Huang, X.; Miao, Y. Effect of thermal stratification on denitrifying bacterial community in a deep drinking water reservoir. J. Hydrol. 2021, 596, 126090. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Shi, X.; Yu, Y. The synergistic effect of rising temperature and declining light boosts the dominance of bloom-forming cyanobacteria in spring. Harmful Algae 2022, 116, 102252. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Yang, Z.; Cai, L.; Bai, C.; Huang, Y.; Ma, J.; Yang, M. Effects of stratification and mixing on spatiotemporal dynamics and functional potential of microbial community in a subtropical large-deep reservoir driven by nutrients and ecological niche. Ecol. Indic. 2023, 156, 111128. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, J.; Chen, Z.; Zhou, S.; Zhang, T.; Chen, Z.; Liu, Y.; Cui, J. Response of dissolved organic matter to thermal stratification and environmental indication: The case of Gangnan Reservoir. Sci. Total Environ. 2023, 868, 161615. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Huang, S.; Zhang, T.; Li, M.; Li, L.; Akram, W.; Gao, R.; Ge, Z.; Sun, Y. DOM stratification and characteristics versus thermal stratification—A case study in the Panjiakou Reservoir, China. J.Hydrol. Reg. Stud. 2022, 42, 101160. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, S.; Ni, Z.; Guo, Y.; Liu, X.; Wang, G.; Li, H. No-linear dynamics of lake ecosystem in responding to changes of nutrient regimes and climate factors: Case study on Dianchi and Erhai lakes, China. Sci. Total Environ. 2021, 781, 146761. [Google Scholar] [CrossRef]
- Robarts, R.D.; Zohary, T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N. Z. J. Mar. Freshw. Res. 1987, 21, 391–399. [Google Scholar] [CrossRef]
- Ma, J.; Qin, B.; Paerl, H.W.; Brookes, J.D.; Hall, N.S.; Shi, K.; Zhou, Y.; Guo, J.; Li, Z.; Xu, H.; et al. The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 2016, 61, 711–722. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Bao, Z.; Ma, X.; Shen, H.; Xie, P.; Chen, J. Thermocline stratification favors phytoplankton spatial overlap and species diversity in a subtropical deep reservoir. Sci. Total Environ. 2024, 913, 169712. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Bao, Z.; Ma, X.; Shen, H.; Chen, J.; Xie, P. Predictable shifts in diversity and ecosystem function in phytoplankton and zooplankton communities along thermocline stratification intensity continua. Sci. Total Environ. 2024, 912, 168981. [Google Scholar] [CrossRef]
- Lydersen, E.; Aanes, K.J.; Andersen, S.; Andersen, T.; Brettum, P.; Baekken, T.; Lien, L.; Lindstrøm, E.A.; Løvik, J.E.; Mjelde, M.; et al. Ecosystem effects of thermal manipulation of a whole lake, Lake Breisjøen, southern Norway (THERMOS project). Hydrol. Earth Syst. Sci. 2008, 12, 509–522. [Google Scholar] [CrossRef]
- Yankova, Y.; Neuenschwander, S.; Köster, O.; Posch, T. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers. Sci. Rep. 2017, 7, 13770. [Google Scholar] [CrossRef]
- Leach, T.H.; Beisner, B.E.; Carey, C.C.; Pernica, P.; Rose, K.C.; Huot, Y.; Brentrup, J.A.; Domaizon, I.; Grossart, H.-P.; Ibelings, B.W.; et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 2018, 63, 628–646. [Google Scholar] [CrossRef]
- Bonilla, S.; Aguilera, A.; Aubriot, L.; Huszar, V.; Almanza, V.; Haakonsson, S.; Izaguirre, I.; O’Farrell, I.; Salazar, A.; Becker, V.; et al. Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas. Harmful Algae 2023, 121, 102367. [Google Scholar] [CrossRef]
- Becker, V.; Caputo, L.; Ordóñez, J.; Marcé, R.; Armengol, J.; Crossetti, L.O.; Huszar, V.L.M. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 2010, 44, 3345–3354. [Google Scholar] [CrossRef]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef]
- Kumagai, M.; Nakano, S.; Jiao, C.; Hayakawa, K.; Tsujimura, S.; Nakajima, T.; Frenette, J.J.; Quesada, A. Effect of cyanobacterial blooms on thermal stratification. Limnology 2000, 1, 191–195. [Google Scholar] [CrossRef]
- Bartosiewicz, M.; Maranger, R.; Przytulska, A.; Laurion, I. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. Water Res. 2021, 196, 116985. [Google Scholar] [CrossRef]
- Coutant, C.C. Striped Bass, Temperature, and Dissolved Oxygen: A Speculative Hypothesis for Environmental Risk. Trans. Am. Fish. Soc. 1985, 114, 31–61. [Google Scholar] [CrossRef]
- Flood, B.; Wells, M.; Dunlop, E.; Young, J. Vertical oscillations of the thermocline caused by internal waves modify coldwater pelagic fish distribution: Results from a large stratified lake. J. Great Lakes Res. 2021, 47, 1386–1399. [Google Scholar] [CrossRef]
- Taabu-Munyaho, A.; Kayanda, R.J.; Everson, I.; Grabowski, T.B.; Marteinsdóttir, G. Distribution and exploitation of Nile perch Lates niloticus in relation to stratification in Lake Victoria, East Africa. J. Great Lakes Res. 2013, 39, 466–475. [Google Scholar] [CrossRef]
- Yaghouti, M.; Heidarzadeh, N.; Ulloa, H.N.; Nakhaei, N. The impacts of climate change on thermal stratification and dissolved oxygen in the temperate, dimictic Mississippi Lake, Ontario. Ecol. Inform. 2023, 75, 102087. [Google Scholar] [CrossRef]
- Carrea, L.; Woolway, R.; Merchant, C.; Dokulil, M.; DeGasperi, C.; Eyto, E.; Kelly, S.; La-Fuente, R.; May, L.; Paterson, A.; et al. Lake surface temperature [in “State of the Climate in 2019”]. Bull. Am. Meteorol. Soc. 2020, 101, S26–S28. [Google Scholar]
- Wang, X.; Shi, K.; Zhang, Y.; Qin, B.; Zhang, Y.; Wang, W.; Woolway, R.I.; Piao, S.; Jeppesen, E. Climate change drives rapid warming and increasing heatwaves of lakes. Sci. Bull. 2023, 68, 1574–1584. [Google Scholar] [CrossRef]
- Fukushima, T.; Matsushita, B.; Sugita, M. Quantitative assessment of decadal water temperature changes in Lake Kasumigaura, a shallow turbid lake, using a one-dimensional model. Sci. Total Environ. 2022, 845, 157247. [Google Scholar] [CrossRef]
- Stefanidis, K.; Varlas, G.; Papaioannou, G.; Papadopoulos, A.; Dimitriou, E. Trends of lake temperature, mixing depth and ice cover thickness of European lakes during the last four decades. Sci. Total Environ. 2022, 830, 154709. [Google Scholar] [CrossRef]
- Zhong, Y.; Notaro, M.; Vavrus, S.J.; Foster, M.J. Recent accelerated warming of the Laurentian Great Lakes: Physical drivers. Limnol. Oceanogr. 2016, 61, 1762–1786. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Zhang, X.; Li, S.; Wu, H. Incorporating carbon sequestration into lake management: A potential perspective on climate change. Sci. Total Environ. 2023, 895, 164939. [Google Scholar] [CrossRef]
- Lengyel, E.; Stenger-Kovács, C.; Boros, G.; Al-Imari, T.J.K.; Novák, Z.; Bernát, G. Anticipated impacts of climate change on the structure and function of phytobenthos in freshwater lakes. Environ. Res. 2023, 238, 117283. [Google Scholar] [CrossRef]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef]
- Abirhire, O.; Davies, J.-M.; Imtiazy, N.; Hunter, K.; Emmons, S.; Beadle, J.; Hudson, J. Response of phytoplankton community composition to physicochemical and meteorological factors under different hydrological conditions in Lake Diefenbaker. Sci. Total Environ. 2023, 856, 159210. [Google Scholar] [CrossRef]
- Prats, J.; Roubeix, V.; Reynaud, N.; Tormos, T.; Danis, P.-A. The thermal behaviour of French water bodies: From ponds to Lake Geneva. J. Great Lakes Res. 2020, 46, 718–731. [Google Scholar] [CrossRef]
- Schmid, M.; Read, J. Heat Budget of Lakes. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 467–473. [Google Scholar] [CrossRef]
- Henderson-Sellers, B. Calculating the surface energy balance for lake and reservoir modeling: A review. Rev. Geophys. 1986, 24, 625–649. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jones, I.D.; Hamilton, D.P.; Maberly, S.C.; Muraoka, K.; Read, J.S.; Smyth, R.L.; Winslow, L.A. Automated calculation of surface energy fluxes with high-frequency lake buoy data. Environ. Model. Softw. 2015, 70, 191–198. [Google Scholar] [CrossRef]
- Hui, Y.; Zhu, Z.; Atkinson, J.F. Mass balance analysis and calculation of wind effects on heat fluxes and water temperature in a large lake. J. Great Lakes Res. 2018, 44, 1293–1305. [Google Scholar] [CrossRef]
- Munk, W.H.; Anderson, E.R. Notes on a theory of the thermocline. J. Mar. Res. 1948, 7, 276–295. [Google Scholar]
- Mellor, G.L. Users Guide for a Three Dimensional, Primitive Equation, Numerical Ocean Model; Program in Atmospheric and Oceanic Sciences, Princeton University: Princeton, NJ, USA, 1998. [Google Scholar]
- Rowe, M.D.; Anderson, E.J.; Beletsky, D.; Stow, C.A.; Moegling, S.D.; Chaffin, J.D.; May, J.C.; Collingsworth, P.D.; Jabbari, A.; Ackerman, J.D. Coastal Upwelling Influences Hypoxia Spatial Patterns and Nearshore Dynamics in Lake Erie. J. Geophys. Res. Ocean. 2019, 124, 6154–6175. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.5; Instruction Report EL-06-1; US Army Engineering and Research Development Center: Vicksburg, MS, USA, 2006. [Google Scholar]
- Henderson-Sellers, B. One-dimensional modelling of thermal stratification in oceans and lakes. Environ. Softw. 1987, 2, 78–84. [Google Scholar] [CrossRef]
- Stepanenko, V.; Goyette, S.; Martynov, A.; Perroud, M.; Fang, X.; Mironov, D. First steps of a Lake Model Intercomparison Project: LakeMIP. Boreal Environ. Res. 2010, 15, 191–202. [Google Scholar]
- Henderson-Sellers, B. New formulation of eddy diffusion thermocline models. Appl. Math. Model. 1985, 9, 441–446. [Google Scholar] [CrossRef]
- Lin, S.; Boegman, L.; Rao, Y.R. Characterizing spatial and temporal distributions of turbulent mixing and dissipation in Lake Erie. J. Great Lakes Res. 2021, 47, 168–179. [Google Scholar] [CrossRef]
- Meehl, G.A. A Calculation of Ocean Heat Storage and Effective Ocean Surface Layer Depths for the Northern Hemisphere. J. Phys. Oceanogr. 1984, 14, 1747–1761. [Google Scholar] [CrossRef]
- Stefan, H.G.; Fang, X. Dissolved oxygen model for regional lake analysis. Ecol. Model. 1994, 71, 37–68. [Google Scholar] [CrossRef]
- Mironov, D.V.; Heise, E.; Kourzeneva, E.; Ritter, B.; Schneider, N.; Terzhevik, A. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 2010, 15, 218–230. [Google Scholar]
- Imberger, J.; Patterson, J.C. A Dynamic Reservoir Simulation Model—Dyresm: 5. In Transport Models/Inland & Coastal Waters; Fischer, H.B., Ed.; Academic Press: San Diego, CA, USA, 1981; pp. 310–361. [Google Scholar] [CrossRef]
- Layden, A.; MacCallum, S.N.; Merchant, C.J. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1). Geosci. Model Dev. 2016, 9, 2167–2189. [Google Scholar] [CrossRef]
- Huang, A.; Lazhu; Wang, J.; Dai, Y.; Yang, K.; Wei, N.; Wen, L.; Wu, Y.; Zhu, X.; Zhang, X.; et al. Evaluating and Improving the Performance of Three 1-D Lake Models in a Large Deep Lake of the Central Tibetan Plateau. J. Geophys.Res. Atmos. 2019, 124, 3143–3167. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, S.; Sun, Y.; Zou, R.; Ma, W.; Zhou, Q.; Liu, Y. Thermal mixing of Lake Erhai (Southwest China) induced by bottom heat transfer: Evidence based on observations and CE-QUAL-W2 model simulations. J. Hydrol. 2021, 603, 126973. [Google Scholar] [CrossRef]
- Li, S.; Chen, C. Air-sea interaction processes during hurricane Sandy: Coupled WRF-FVCOM model simulations. Prog. Oceanogr. 2022, 206, 102855. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Siddiqui, A.A. The instability onset of generalized isoflux mean flow using Brinkman-Darcy-Bénard model in a fluid saturated porous channel. Int. J. Therm. Sci. 2023, 188, 108249. [Google Scholar] [CrossRef]
- Neff, B.P. Uncertainty in the Great Lakes Water Balance; Reston, V., Ed.; U.S. Geological Survey: Reston, VA, USA, 2005.
- Qin, J.; Xing, Y.; Liu, J.; Nakhaei, P.; Hamamy, W.; Li, B.; Yang, L.; Ni, G. Modelling analysis of the potential impact of large reservoir on heatwave events. Ecol. Indic. 2023, 154, 110841. [Google Scholar] [CrossRef]
- Pinker, R.T.; Zhang, B.; Dutton, E.G. Do Satellites Detect Trends in Surface Solar Radiation? Science 2005, 308, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Nematchoua, M.K.; Orosa, J.A.; Afaifia, M. Prediction of daily global solar radiation and air temperature using six machine learning algorithms; a case of 27 European countries. Ecol. Inform. 2022, 69, 101643. [Google Scholar] [CrossRef]
Indicator Name | Meaning |
---|---|
Brunt–Väisälä Buoyancy Frequency squared [78] | Measuring the local stability of density stratification |
Richardson Number [78] | Assessing the relative strength of stability and shear flow |
Schmidt Stability [86,87] | The mechanical work required to transform a stratified water column into an isothermal state |
Wedderburn Number [88] | The likelihood of upwelling events under stratified conditions |
Lake Number [89] | The ratio of moments related to the center of volume of the water body |
Monin–Obukhov Length Scale [90] | The depth dominated by wind-induced turbulent mixing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shen, J.; He, L.; Feng, J.; Chi, L.; Wang, X. Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change. Water 2024, 16, 888. https://doi.org/10.3390/w16060888
Zhang Y, Shen J, He L, Feng J, Chi L, Wang X. Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change. Water. 2024; 16(6):888. https://doi.org/10.3390/w16060888
Chicago/Turabian StyleZhang, Yin, Jian Shen, Liwei He, Jimeng Feng, Lina Chi, and Xinze Wang. 2024. "Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change" Water 16, no. 6: 888. https://doi.org/10.3390/w16060888
APA StyleZhang, Y., Shen, J., He, L., Feng, J., Chi, L., & Wang, X. (2024). Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change. Water, 16(6), 888. https://doi.org/10.3390/w16060888