Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy
Abstract
:1. Introduction
1.1. Aquatic Macrophytes
1.2. Floating Aquatic Macrophytes
2. Pollutant Removal
2.1. Heavy Metal Removal
2.2. Nutrient Removal
2.3. Organic Contaminant Removal
3. Circular Economy in Phytoremediation
3.1. Bioenergy Production
3.1.1. Biochemical Conversion
3.1.2. Thermochemical Conversion
3.2. Feed Production
3.2.1. Ruminants
3.2.2. Fish
3.2.3. Poultry
3.3. Fertigation
3.4. Water Usage
4. Challenges and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machineni, L. Review on biological wastewater treatment and resources recovery: Attached and suspended growth systems. Water Sci. Technol. 2019, 80, 2013–2026. [Google Scholar] [CrossRef]
- World Economic Forum. The Global Risks Report; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- Shah, M.; Hashmi, H.N.; Ali, A.; Ghumman, A.R. Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J. Environ. Health Sci. Eng. 2014, 12, 106. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.G.; Liu, F.C. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities. Environ. Monit. Assess. 2017, 189, 34. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a changing world. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Ahmed, I.; Lateef, A.; Jan, K.; Khan, Y.M. Partial Replacement of Fish Meal with an Aquatic macrophyte, Ceratophyllum demersum in the Diet of Common Carp, Cyprinus carpio var. communis Fingerlings. Aquac. Res. 2024, 2024, 9925913. [Google Scholar] [CrossRef]
- Vymazal, J. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol. Eng. 2009, 35, 1–17. [Google Scholar] [CrossRef]
- Bind, A.; Goswami, L.; Prakash, V. Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: Sorbent preparation, characterization, regeneration and cost estimation. Geol. Ecol. Landsc. 2018, 2, 61–72. [Google Scholar] [CrossRef]
- Galkina, E.; Vasyutina, O. Reuse of treated wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 022047. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.; Wu, G.; Wu, Q.; Zhang, F.; Niu, Z.; Hu, H.-Y. Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. J. Clean. Prod. 2016, 131, 1–9. [Google Scholar] [CrossRef]
- Bodzek, M.; Łobos-Moysa, E.; Zamorowska, M. Removal of organic compounds from municipal landfill leachate in a membrane bioreactor. Desalination 2006, 198, 16–23. [Google Scholar] [CrossRef]
- Dhote, S.; Dixit, S. Water quality improvement through macrophytes—A review. Environ. Monit. Assess 2009, 152, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Reemtsma, T.; Weiss, S.; Mueller, J.; Petrovic, M.; González, S.; Barcelo, D.; Ventura, F.; Knepper, T.P. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective. Environ. Sci. Technol. 2006, 40, 5451–5458. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Rangabhashiyam, S.; Verma, P.; Singh, P.; Devi, P.; Kumar, P.; Hussain, C.M.; Gaurav, G.K.; Kumar, K.S. Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere 2021, 272, 129492. [Google Scholar] [CrossRef] [PubMed]
- Klapper, H. Control of Eutrophication in Inland Waters; Ellis Horwood Ltd.: Herts, UK, 1991. [Google Scholar]
- Sampat, P. Groundwater Shock: The Polluting of the World’s Major Freshwater Stores; World Watch: Washington, DC, USA, 2000; pp. 10–22. [Google Scholar]
- Chouhan, B.; Meena, P.; Poonar, N. Effect of heavy metal ions in water on human health. Int. J. Sci. Eng. Res. 2016, 4, 2015–2017. [Google Scholar]
- Liu, J.; Cao, L.; Dou, S. Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Sci. Total Environ. 2019, 670, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Briand, M.J.; Bustamante, P.; Bonnet, X.; Churlaud, C.; Letourneur, Y. Tracking trace elements into complex coral reef trophic networks. Sci. Total Environ. 2018, 612, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Goala, M.; Yadav, K.K.; Alam, J.; Adelodun, B.; Choi, K.S.; Cabral-Pinto, M.M.S.; Hamid, A.A.; Alhoshan, M.; Ali, F.A.A.; Shukla, A.K. Phytoremediation of dairy wastewater using Azolla pinnata: Application of image processing technique for leaflet growth simulation. J. Water Process Eng. 2021, 42, 102152. [Google Scholar] [CrossRef]
- Adelodun, B.; Ajibade, F.O.; Ibrahim, R.G.; Bakare, H.O.; Choi, K.-S. Snowballing transmission of COVID-19 (SARS-CoV-2) through wastewater: Any sustainable preventive measures to curtail the scourge in low-income countries? Sci. Total Environ. 2020, 742, 140680. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Ahammad, S.Z.; Graham, D.W.; Dolfing, J. Wastewater treatment: Biological. In Managing Water Resources and Hydrological Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 561–576. [Google Scholar]
- Alufasi, R.; Gere, J.; Chakauya, E.; Lebea, P.; Parawira, W.; Chingwaru, W. Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environ. Technol. Rev. 2017, 6, 135–144. [Google Scholar] [CrossRef]
- Akpor, O.; Muchie, M. Bioremediation of polluted wastewater influent: Phosphorus and nitrogen removal. Sci. Res. Essays 2010, 5, 3222–3230. [Google Scholar]
- Thulasisingh, A.; Kumar, S.; Perumal, S.; Kannaiyan, S. Microbial Biofilms in the Treatment of Textile Effluents. In Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 83–97. [Google Scholar]
- Sharma, P.; Pandey, S. Status of phytoremediation in world scenario. Int. J. Environ. Bioremediation Biodegrad. 2014, 2, 178–191. [Google Scholar]
- Parmar, S.; Singh, V. Phytoremediation approaches for heavy metal pollution: A review. J. Plant Sci. Res. 2015, 2, 135. [Google Scholar]
- Saxena, M.K.; Singh, N.; Kumar, S.; Mp, D.; Datta, S. Potent pharmaceutical products from aquatic plants—Review. Asian J. Pharm. Clin. Res. 2021, 14, 48–63. [Google Scholar] [CrossRef]
- Alam, S.N.; Singh, B.; Guldhe, A. Aquatic weed as a biorefinery resource for biofuels and value-added products: Challenges and recent advancements. Clean. Eng. Technol. 2021, 4, 100235. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Sun, X.; Zhang, H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. J. Environ. Manag. 2021, 277, 111443. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Yu, C.; Zhou, G. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy 2020, 13, 70–82. [Google Scholar] [CrossRef]
- Toivonen, H.; Huttunen, P. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat. Bot. 1995, 51, 197–221. [Google Scholar] [CrossRef]
- Srivastava, J.; Gupta, A.; Chandra, H. Managing water quality with aquatic macrophytes. Rev. Environ. Sci. Bio/Technol. 2008, 7, 255–266. [Google Scholar] [CrossRef]
- Escobar, C.; Escobar, A. Duckweed: A tiny aquatic plant with enormous potential for bioregenerative life support systems. In Proceedings of the 47th International Conference on Environmental System, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- Mkandawire, M.; Dudel, E.G. Are Lemna spp. effective phytoremediation agents. Bioremediation Biodivers. Bioavailab. 2007, 1, 56–71. [Google Scholar]
- Dakora, F.D.; Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Food Secur. Nutr. -Stress. Environ. Exploit. Plants’ Genet. Capab. 2002, 245, 201–213. [Google Scholar]
- Miretzky, P.; Saralegui, A.; Cirelli, A.F. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 2004, 57, 997–1005. [Google Scholar] [CrossRef]
- Couselo, J.L.; Corredoira, E.; Vieitez, A.M.; Ballester, A. Plant tissue culture of fast-growing trees for phytoremediation research. In Plant Cell Culture Protocols; Springer: Berlin/Heidelberg, Germany, 2012; pp. 247–263. [Google Scholar]
- Bruce, S.; Noller, B.; Grigg, A.; Mullen, B.; Mulligan, D.; Ritchie, P.; Currey, N.; Ng, J. A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicol. Lett. 2003, 137, 23–34. [Google Scholar] [CrossRef]
- de Vasconcelos, V.M.; de Morais, E.R.C.; Faustino, S.J.B.; Hernandez, M.C.R.; Gaudêncio, H.R.d.S.C.; de Melo, R.R.; Bessa Junior, A.P. Floating aquatic macrophytes for the treatment of aquaculture effluents. Environ. Sci. Pollut. Res. 2021, 28, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.Q.; Sesin, V.; Kisiala, A.; Emery, R.N. Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ. Toxicol. Chem. 2021, 40, 7–22. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Herrera-Melián, J.A.; Sánchez-Suárez, F.; Díaz-Mendoza, V.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation. Water 2022, 14, 2340. [Google Scholar] [CrossRef]
- Bessadok, S.; Kraiem, K.; Arous, F.; Al Souki, K.S.; Tabassi, D.; El Toumi, S.; Jaouani, A. Efficient wastewater treatment and removal of bisphenol A and diclofenac in mesocosm flow constructed wetlands using granulated cork as emerged substrate. Toxics 2023, 11, 81. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.; Manchanda, V. Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ. Sci. Pollut. Res. 2015, 22, 946–962. [Google Scholar] [CrossRef]
- Materac, M.; Wyrwicka, A.; Sobiecka, E. Phytoremediation techniques of wastewater treatment. Environ. Biotechnol. 2015, 11, 10–13. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef]
- Chaney, R.L.; Li, Y.-M.; Brown, S.L.; Homer, F.A.; Malik, M.; Angle, J.S.; Baker, A.J.; Reeves, R.D.; Chin, M. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: Approaches and progress. In Phytoremediation of Contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 129–158. [Google Scholar]
- Rulkens, W.; Tichy, R.; Grotenhuis, J. Remediation of polluted soil and sediment: Perspectives and failures. Water Sci. Technol. 1998, 37, 27–35. [Google Scholar] [CrossRef]
- Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Hernández-Allica, J.; Becerril, J.; Amezaga, I.; Albizu, I.; Onaindia, M.; Garbisu, C. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev. Environ. Sci. Biotechnol. 2004, 3, 55–70. [Google Scholar] [CrossRef]
- Sikhosana, M.; Botha, A.; Mpenyane-Monyatsi, L.; Coetzee, M.A. Evaluating the effect of seasonal temperature changes on the efficiency of a rhizofiltration system in nitrogen removal from urban runoff. J. Environ. Manag. 2020, 274, 111192. [Google Scholar] [CrossRef] [PubMed]
- Flathman, P.E.; Lanza, G.R. Phytoremediation: Current Views on an Emerging Green Technology. J. Soil Contam. 2010, 7, 415–432. [Google Scholar] [CrossRef]
- Zhao, M.; Duncan, J.R. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochem. 1998, 33, 249–255. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, J.; Sharp, R. Phytoremediation in engineered wetlands: Mechanisms and applications. Procedia Environ. Sci. 2010, 2, 1315–1325. [Google Scholar] [CrossRef]
- Phusantisampan, T.; Meeinkuirt, W.; Saengwilai, P.; Pichtel, J.; Chaiyarat, R. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: Greenhouse and field experiments. Environ. Sci. Pollut. Res. 2016, 23, 20027–20038. [Google Scholar] [CrossRef]
- Limmer, M.; Burken, J. Phytovolatilization of organic contaminants. Environ. Sci. Technol. 2016, 50, 6632–6643. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, J.; Pu, R. The enhanced removal and phytodegradation of sodium dodecyl sulfate (SDS) in wastewater using controllable water hyacinth. Int. J. Phytoremediation 2019, 21, 1080–1089. [Google Scholar] [CrossRef]
- Wang, J.; Aghajani Delavar, M. Techno-economic analysis of phytoremediation: A strategic rethinking. Sci. Total Environ. 2023, 902, 165949. [Google Scholar] [CrossRef]
- Rehman, F.; Pervez, A.; Mahmood, Q.; Nawab, B. Wastewater remediation by optimum dissolve oxygen enhanced by macrophytes in constructed wetlands. Ecol. Eng. 2017, 102, 112–126. [Google Scholar] [CrossRef]
- Van Engeland, T.; Bouma, T.J.; Morris, E.P.; Brun, F.G.; Peralta, G.; Lara, M.; Hendriks, I.E.; Soetaert, K.; Middelburg, J.J. Potential uptake of dissolved organic matter by seagrasses and macroalgae. Mar. Ecol. Prog. Ser. 2011, 427, 71–81. [Google Scholar] [CrossRef]
- Pettit, N.; Ward, D.; Adame, M.; Valdez, D.; Bunn, S. Influence of aquatic plant architecture on epiphyte biomass on a tropical river floodplain. Aquat. Bot. 2016, 129, 35–43. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Priya, A.; Avishek, K.; Pathak, G. Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale. Environ. Monit. Assess. 2012, 184, 4301–4307. [Google Scholar] [CrossRef] [PubMed]
- Ribadiya, B.M.; Mehta, M.J. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach. Int. J. Eng. Res. Appl. 2014, 12, 15–18. [Google Scholar]
- Lekeufack, M.; Fonkou, T.; Pamo, T.E.; Amougou, A. Removal of faecal bacteria and nutrients from domestic wastewater in a horizontal surface flow wetland vegetated with Echinochloa pyramidalis. Afr. J. Environ. Sci. Technol. 2012, 6, 337–345. [Google Scholar]
- Sooknah, R.D.; Wilkie, A.C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Eng. 2004, 22, 27–42. [Google Scholar] [CrossRef]
- Dhir, B.; Sharmila, P.; Saradhi, P.P. Potential of Aquatic Macrophytes for Removing Contaminants from the Environment. Crit. Rev. Environ. Sci. Technol. 2009, 39, 754–781. [Google Scholar] [CrossRef]
- Hamersley, M.R.; Howes, B.L.; White, D.S.; Johnke, S.; Young, D.; Peterson, S.B.; Teal, J.M. Nitrogen balance and cycling in an ecologically engineered septage treatment system. Ecol. Eng. 2001, 18, 61–75. [Google Scholar] [CrossRef]
- Mitchell, D. Aquatic Vegetation and Its Use and Control; CABI: Hong Kong, China, 1974. [Google Scholar]
- Ater, M.; Ali, N.; Kasmi, H. Tolérance et accumulation du cuivre et du chrome chez deux espèces de lentilles d’eau: Lemna minor L. et Lemna gibba L. Rev. Des Sci. De L’eau/J. Water Sci. 2006, 19, 57–67. [Google Scholar] [CrossRef]
- Dirilgen, N.; Inel, Y. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor. Bull. Environ. Contam. Toxicol. 1994, 53, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Bunluesin, S.; Kruatrachue, M.; Pokethitiyook, P.; Lanza, G.; Upatham, E.; Soonthornsarathool, V. Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bull. Environ. Contam. Toxicol. 2004, 73, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Sanyahumbi, D.; Duncan, J.R.; Zhao, M.; Van Hille, R. Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides. Biotechnol. Lett. 1998, 20, 745–747. [Google Scholar] [CrossRef]
- Maine, M.a.A.; Suñé, N.L.; Lagger, S.C. Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Res. 2004, 38, 1494–1501. [Google Scholar] [CrossRef]
- Gupta, M.; Sinha, S.; Chandra, P. Uptake and toxicity op metals in Scirpus lacustris L. and Bacopa monnieri L. J. Environ. Sci. Health Part A 1994, 29, 2185–2202. [Google Scholar]
- Olguín, E.; Hernández, E.; Ramos, I. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnol. 2002, 22, 121–131. [Google Scholar] [CrossRef]
- Ye, Z.; Whiting, S.; Qian, J.; Lytle, C.; Lin, Z.Q.; Terry, N. Trace Element Removal from Coal Ash Leachate by a 10-Year-Old Constructed Wetland. J. Environ. Qual. 2001, 30, 1710–1719. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Chiranjeevi, P.; Peri, D.; Sarma, P.N. Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented-distillery wastewater: Evaluation of long term performance. Bioresour. Technol. 2010, 101, 3363–3370. [Google Scholar] [CrossRef]
- Mishima, D.; Kuniki, M.; Sei, K.; Soda, S.; Ike, M.; Fujita, M. Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 2008, 99, 2495–2500. [Google Scholar] [CrossRef]
- Ebel, M.; Evangelou, M.W.; Schaeffer, A. Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere 2007, 66, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.Y.; Yang, X.E.; Chang, H.Q.; Pu, P.M.; Ding, X.F.; Rengel, Z. Phytoremediation of nitrogen-polluted water using water hyacinth. J. Plant Nutr. 2007, 30, 1753–1765. [Google Scholar] [CrossRef]
- Landolt, E. The family of Lemnaceae-a monographic study. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veroff. Geobot. Inst. Rubel ETH 1987, 2, 566–638. [Google Scholar]
- Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.J. Relative in vitro growth rates of duckweeds (L. emnaceae)–the most rapidly growing higher plants. Plant Biol. 2015, 17, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Lenaghan, S.C. Duckweed: A potential phytosensor for heavy metals. Plant Cell Rep. 2022, 41, 2231–2243. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Kumar, M.; Sachdeva, S.; Puri, S.K. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour. Technol. 2018, 251, 390–402. [Google Scholar] [CrossRef]
- Rai, P.K. Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Crit. Rev. Environ. Sci. Technol. 2009, 39, 697–753. [Google Scholar] [CrossRef]
- Rai, P.K.; Tripathi, B.D. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ. Monit. Assess. 2009, 148, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Saxena, S.; Sharma, D.K. Tolerance and phytoaccumulation of chromium by three Azolla species. World J. Microbiol. Biotechnol. 2006, 22, 97–100. [Google Scholar] [CrossRef]
- Arora, A.; Saxena, S. Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents. Biomass Bioenergy 2005, 29, 60–64. [Google Scholar] [CrossRef]
- Rakhshaee, R.; Khosravi, M.; Ganji, M.T. Kinetic modeling and thermodynamic study to remove Pb (II), Cd (II), Ni (II) and Zn (II) from aqueous solution using dead and living Azolla filiculoides. J. Hazard. Mater. 2006, 134, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kollah, B.; Patra, A.K.; Mohanty, S.R. Aquatic microphylla Azolla: A perspective paradigm for sustainable agriculture, environment and global climate change. Environ. Sci. Pollut. Res. 2016, 23, 4358–4369. [Google Scholar] [CrossRef]
- Lu, Q. Evaluation of Aquatic Plants for Phytoremediation of Eutrophic Stormwaters; University of Florida: Gainesville, FL, USA, 2009. [Google Scholar]
- Akinbile, C.O.; Ogunrinde, T.A.; Che Bt Man, H.; Aziz, H.A. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata. Int. J. Phytoremediation 2016, 18, 54–61. [Google Scholar] [CrossRef]
- Mishra, V.K.; Tripathi, B. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J. Hazard. Mater. 2009, 164, 1059–1063. [Google Scholar] [CrossRef]
- Demim, S.; Drouiche, N.; Aouabed, A.; Benayad, T.; Dendene-Badache, O.; Semsari, S. Cadmium and nickel: Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol. Eng. 2013, 61, 426–435. [Google Scholar] [CrossRef]
- Eccles, H. Removal of heavy metals from effluent streams—Why select a biological process? Int. Biodeterior. Biodegrad. 1995, 35, 5–16. [Google Scholar] [CrossRef]
- Mishra, V.K.; Tripathi, B.; Kim, K.-H. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J. Hazard. Mater. 2009, 172, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Uniyal, P.L.; Prasanna, R.; Ahluwalia, A.S. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 2012, 41, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Roy, S.B.; Mahindrakar, A. Treatment of Water Using Water Hyacinth, Water Lettuce and Vetiver Grass—A Review. Resour. Environ. 2012, 2, 202–215. [Google Scholar] [CrossRef]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Sun, C.; Yu, L.; Zhu, M.; Xu, H.; Zhao, J.; Ma, Y.; Zhou, G. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol. PLoS ONE 2014, 9, e115023. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Moelyowati, I. Duckweed based wastewater treatment (DWWT): Design guidelines for hot climates. Water Sci. Technol. 2001, 43, 291–299. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Mahdavi, Y.; Bazrafshan, E.; Balarak, D. Phytodegradation potential of bisphenolA from aqueous solution by Azolla Filiculoides. J. Environ. Health Sci. Eng. 2014, 12, 66. [Google Scholar] [CrossRef]
- Akinbile, C.O.; Ikuomola, B.T.; Olanrewaju, O.O.; Babalola, T.E. Assessing the efficacy of Azolla pinnata in four different wastewater treatment for agricultural re-use: A case history. Sustain. Water Resour. Manag. 2019, 5, 1009–1015. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Lim, L.B.; Lim, L.-H.; Malik, O.A. Phytoextraction potential of water fern (Azolla pinnata) in the removal of a hazardous dye, methyl violet 2B: Artificial neural network modelling. Int. J. Phytoremediation 2018, 20, 424–431. [Google Scholar] [CrossRef]
- Karman, S.B.; Diah, S.Z.M.; Gebeshuber, I.C. Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: A biomimetic resource management approach. Adv. Mater. Sci. Eng. 2015, 2015, 185071. [Google Scholar] [CrossRef]
- Singh, P.K.; Kushwaha, A.; Hans, N.; Gautam, A.; Rani, R. Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1. Braz. J. Microbiol. 2019, 50, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Goswami, L.; Manikandan, N.A.; Pakshirajan, K.; Pugazhenthi, G. Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 2017, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Uysal, Y.; Taner, F. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. Int. J. Phytoremediation 2009, 11, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytoremediation 2008, 10, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Mashkani, S.G.; Ghazvini, P.T.M. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption. Bioresour. Technol. 2009, 100, 1915–1921. [Google Scholar] [CrossRef]
- Hall, J.á. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef]
- Mishra, V.K.; Tripathi, B. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 2008, 99, 7091–7097. [Google Scholar] [CrossRef]
- Jones, J.L.; Jenkins, R.O.; Haris, P.I. Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river. Sci. Rep. 2018, 8, 11071. [Google Scholar] [CrossRef]
- Mahmood, T.; Malik, S.A.; Hussain, S.T. Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash. BioResources 2010, 5, 1244–1256. [Google Scholar] [CrossRef]
- Lu, X.; Kruatrachue, M.; Pokethitiyook, P.; Homyok, K. Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci. Asia 2004, 30, 103. [Google Scholar] [CrossRef]
- E, P.; Premalatha, R.P.; Davamani, V.; Periasamy, K.; Sebastian, P.; Suganya, K. Biosorption of chromium ions through modified Eichhornia crassipes biomass form the aqueous medium. J. Environ. Biol. 2021, 42, 62–73. [Google Scholar] [CrossRef]
- Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediation 2017, 19, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ajibade, F.; Adeniran, K.; Egbuna, C. Phytoremediation efficiencies of water hyacinth in removing heavy metals in domestic sewage (A Case Study of University of Ilorin, Nigeria). Int. J. Eng. Sci. 2013, 2, 16–27. [Google Scholar]
- Malar, S.; Sahi, S.V.; Favas, P.J.; Venkatachalam, P. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ. Sci. Pollut. Res. 2015, 22, 4597–4608. [Google Scholar] [CrossRef]
- Huynh, A.T.; Chen, Y.-C.; Tran, B.N.T. A small-scale study on removal of heavy metals from contaminated water using water hyacinth. Processes 2021, 9, 1802. [Google Scholar] [CrossRef]
- Ubuza, L.J.A.; Padero, P.C.S.; Nacalaban, C.M.N.; Tolentino, J.T.; Alcoran, D.C.; Tolentino, J.C.; Ido, A.L.; Mabayo, V.I.F.; Arazo, R.O. Assessment of the potential of duckweed (Lemna minor L.) in treating lead-contaminated water through phytoremediation in stationary and recirculated set-ups. Environ. Eng. Res. 2020, 25, 977–982. [Google Scholar] [CrossRef]
- Chaudhary, E.; Sharma, P. Chromium and cadmium removal from wastewater using duckweed—Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int. J. Phytoremediation 2019, 21, 279–286. [Google Scholar] [CrossRef]
- Mechora, Š.; Stibilj, V.; Germ, M. Response of duckweed to various concentrations of selenite. Environ. Sci. Pollut. Res. 2015, 22, 2416–2422. [Google Scholar] [CrossRef]
- Alvarado, S.; Guédez, M.; Lué-Merú, M.P.; Nelson, G.; Alvaro, A.; Jesús, A.C.; Gyula, Z. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour. Technol. 2008, 99, 8436–8440. [Google Scholar] [CrossRef]
- Amare, E.; Kebede, F.; Mulat, W. Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecol. Eng. 2018, 120, 464–473. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Ani, F.H.; Ibrahim, A.F. Removal of some heavy metals from industrial wastewater by Lemmna minor. KSCE J. Civ. Eng. 2018, 22, 1077–1082. [Google Scholar] [CrossRef]
- Verma, R.; Suthar, S. Lead and cadmium removal from water using duckweed—Lemna gibba L.: Impact of pH and initial metal load. Alex. Eng. J. 2015, 54, 1297–1304. [Google Scholar] [CrossRef]
- Teixeira, S.; Vieira, M.; Marques, J.E.; Pereira, R. Bioremediation of an iron-rich mine effluent by Lemna minor. Int. J. Phytoremediation 2014, 16, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, E.; Biancalani, A.; Berardi, C.; Antal, A.; Fibbi, D.; Coppi, A.; Lastrucci, L.; Bussotti, N.; Colzi, I.; Renai, L.; et al. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Sci. Total Environ. 2020, 746, 141219. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Rakhshaee, R.; Ganji, M.T. Pre-treatment processes of Azolla filiculoides to remove Pb (II), Cd (II), Ni (II) and Zn (II) from aqueous solution in the batch and fixed-bed reactors. J. Hazard. Mater. 2005, 127, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. Potential of water fern (Azolla pinnata R. Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: Removal of physicochemical and heavy metal pollutants. Int. J. Phytoremediation 2020, 22, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.J.; Sumalatha, B.; Venkateswarulu, T.; Das, K.M.; Kodali, V.P. Kinetic, equilibrium and thermodynamic studies of biosorption of Chromium (VI) from aqueous solutions using Azolla Filiculoidus. J. Pure Appl. Microbiol. 2014, 8, 3107–3116. [Google Scholar]
- Shafi, N.; Pandit, A.K.; Kamili, A.N.; Mushtaq, B. Heavy metal accumulation by azollapinnata of dal lake ecosystem, India. Development 2015, 1, 8–12. [Google Scholar]
- Jadia, C.D.; Fulekar, M. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 2009, 8. Available online: https://www.ajol.info/index.php/ajb/article/view/59987 (accessed on 21 February 2024).
- Hasan, S.H.; Ranjan, D.; Talat, M. Water hyacinth biomass (WHB) for the biosorption of hexavalent chromium: Optimization of process parameters. BioResources 2010, 5, 563–575. [Google Scholar] [CrossRef]
- Elangovan, R.; Philip, L.; Chandraraj, K. Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies. J. Hazard. Mater. 2008, 152, 100–112. [Google Scholar] [CrossRef]
- Bais, S. Analysis of heavy metals removal by Eichhornia crassipes (Mart.) Solms. World J. Pharm. Pharm. Sci. 2015, 4, 665–672. [Google Scholar]
- Bind, A.; Kushwaha, A.; Devi, G.; Goswami, S.; Sen, B.; Prakash, V. Biosorption valorization of floating and submerged macrophytes for heavy-metal removal in a multi-component system. Appl. Water Sci. 2019, 9. [Google Scholar] [CrossRef]
- Yilmaz, D.D.; Akbulut, H. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes). Int. J. Phytoremediation 2011, 13, 970–984. [Google Scholar] [CrossRef]
- Levi, P.S.; Riis, T.; Alnøe, A.B.; Peipoch, M.; Maetzke, K.; Bruus, C.; Baattrup-Pedersen, A. Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 2015, 18, 914–931. [Google Scholar] [CrossRef]
- Ruiz-Rueda, O.; Hallin, S.; Baneras, L. Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol. Ecol. 2009, 67, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Forni, C.; Chen, J.; Tancioni, L.; Caiola, M.G. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Res. 2001, 35, 1592–1598. [Google Scholar] [CrossRef] [PubMed]
- Golzary, A.; Tavakoli, O.; Rezaei, Y.; Karbassi, A. Wastewater treatment by Azolla Filiculoides: A study on color, odor, COD, nitrate, and phosphate removal. Pollution 2018, 4, 69–76. [Google Scholar]
- Muvea, F.; Ogendi, G.; Omondi, S. Nutrient removal efficiency by floating macrophytes; Lemna minor and Azolla pinnata in a constructed wetland. Glob. J. Environ. Sci. Manag. 2019, 5, 415–430. [Google Scholar]
- Anandha Varun, R.; Kalpana, S. Performance analysis of nutrient removal in pond water using Water Hyacinth and Azolla with papaya stem. Int. Res. J. Eng. Technol. 2015, 2, 444–448. [Google Scholar]
- Hazmi, N.I.A.; Hanafiah, M.M. Phytoremediation of livestock wastewater using Azolla Fili culoides and Lemna minor. Environ. Ecosyst. Sci. (EES) 2018, 2, 13–16. [Google Scholar] [CrossRef]
- Iqbal, J.; Saleem, M.; Javed, A. Effect of electrical conductivity (Ec) on growth performance of duckweed at dumpsite leachate. Int. J. Sci. Environ. Technol. 2017, 6, 1989–1999. [Google Scholar]
- Hu, H.; Zhou, Q.; Li, X.; Lou, W.; Du, C.; Teng, Q.; Zhang, D.; Liu, H.; Zhong, Y.; Yang, C. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresour. Technol. 2019, 291, 121853. [Google Scholar] [CrossRef]
- Kadir, A.A.; Abdullah, S.R.S.; Othman, B.A.; Hasan, H.A.; Othman, A.R.; Imron, M.F.; Ismail, N.; Kurniawan, S.B. Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock. Chemosphere 2020, 259, 127468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Shi, H.; Liu, Y.; Zhao, H.; Su, H.; Wang, M.; Zhao, Y. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresour. Technol. 2014, 167, 383–389. [Google Scholar] [CrossRef]
- Valipour, A.; Raman, V.K.; Ahn, Y.-H. Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water 2015, 7, 329–347. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Wan, X.; Weng, B.; Huang, Q. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresour. Technol. 2010, 101, 9025–9030. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Din, M.F.M.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int. J. Phytoremediation 2016, 18, 679–685. [Google Scholar] [CrossRef]
- Kumar, S.; Deswal, S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int. J. Phytoremediation 2020, 22, 1097–1109. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecol. Eng. 2016, 95, 753–762. [Google Scholar] [CrossRef]
- Prasad, R.; Sharma, D.; Yadav, K.D.; Ibrahim, H. Preliminary study on greywater treatment using water hyacinth. Appl. Water Sci. 2021, 11, 88. [Google Scholar] [CrossRef]
- Verma, R.; Suthar, S. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 2014, 64, 337–343. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, P.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.; Osman, H.E.; Al-Bakre, D.A.; Kumar, V. Phytoremediation of nitrogen and phosphorus pollutants from glass industry effluent by using water hyacinth (Eichhornia crassipes (Mart.) Solms): Application of RSM and ANN techniques for experimental optimization. Environ. Sci. Pollut. Res. 2023, 30, 20590–20600. [Google Scholar] [CrossRef] [PubMed]
- El-Kheir, W.A.; Ismail, G.; El-Nour, F.; Tawfik, T.; Hammad, D. Assessment of the efficiency of duckweed (Lemna gibba) in wastewater treatment. Int. J. Agric. Biol. 2007, 9, 681–687. [Google Scholar]
- Bhagavanulu, D.D.; Murthy, D.S.; Anjali, C. A Study on the impact of water hyacinth in improving the wastewater properties. Int. J. Civ. Eng. Technol. 2017, 8, 1199–1209. [Google Scholar]
- Sahi, W.; Megateli, S. Evaluation of Lemna minor phytoremediation performance for the treatment of dairy wastewater. Water Pract. Technol. 2023, 18, 1138–1147. [Google Scholar] [CrossRef]
- Mamat, N.Z.; Abdullah, S.R.S.; Hasan, H.A.; Ismail, N.I.; Sharuddin, S.S.N. Polishing of treated palm oil mill effluent using Azolla pinnata. J. Biochem. Microbiol. Biotechnol. 2022, 10, 40–45. [Google Scholar] [CrossRef]
- Yang, D.J.; Zheng, Z.F.; Zhu, H.Y.; Liu, H.W.; Gao, X.P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777–2781. [Google Scholar] [CrossRef]
- Ene, A.-M. Persistent organic pollutants (pops): Environment persistence and bioaccumulation potential. Sci. Bull. ”Mircea Cel Batran" Nav. Acad. 2014, 17, 115. [Google Scholar]
- Jung, C.; Son, A.; Her, N.; Zoh, K.-D.; Cho, J.; Yoon, Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem. 2015, 27, 1–11. [Google Scholar] [CrossRef]
- Liu, G.; Ma, J.; Li, X.; Qin, Q. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. J. Hazard. Mater. 2009, 164, 1275–1280. [Google Scholar] [CrossRef]
- Silva, C.; Gómez, J.; Beristain-Cardoso, R. Simultaneous removal of 2-chlorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions: Kinetic study. Bioresour. Technol. 2011, 102, 6464–6468. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plant—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.; Queiroz, S.; Roston, D. Removal of the endocrine disruptors ethinyl estradiol, bisphenol a, and levonorgestrel by a laboratory scale subsurface constructed wetlands. Sci. Total Environ. 2019, 693, 133514. [Google Scholar] [CrossRef]
- Xia, H.; Ma, X. Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour. Technol. 2006, 97, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Balarak, D. Application of Azolla Filiculoides biomass for 2-Chlorophenol and 4-Chrorophenol Removal from aqueous solutions. Iran. J. Health Sci. 2013, 1, 43–55. [Google Scholar]
- Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. Int. J. Environ. Sci. Technol. 2014, 12, 2327–2338. [Google Scholar] [CrossRef]
- Yılmaz, Ö.; Taş, B. Feasibility and assessment of the phytoremediation potential of green microalga and duckweed for zeta-cypermethrin removal. Desalination Water Treat. 2021, 209, 131–143. [Google Scholar] [CrossRef]
- Reinhold, D.; Vishwanathan, S.; Park, J.J.; Oh, D.; Saunders, F.M. Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 2010, 80, 687–692. [Google Scholar] [CrossRef]
- Allam, A.; Tawfik, A.; Negm, A.; Yoshimura, C.; Fleifle, A. Treatment of drainage water containing pharmaceuticals using duckweed (Lemna gibba). Energy Procedia 2015, 74, 973–980. [Google Scholar] [CrossRef]
- Daud, M.; Ali, S.; Abbas, Z.; Zaheer, I.E.; Riaz, M.A.; Malik, A.; Hussain, A.; Rizwan, M.; Zia-ur-Rehman, M.; Zhu, S.J. Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J. Chem. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Iatrou, E.I.; Gatidou, G.; Damalas, D.; Thomaidis, N.S.; Stasinakis, A.S. Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems. J. Hazard. Mater. 2017, 330, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, D.A.; Scholz, M. Textile dye removal using experimental wetland ponds planted with common duckweed under semi-natural conditions. Environ. Prot. Eng. 2017, 43, 39–60. [Google Scholar] [CrossRef]
- Aswani, M.; Kumar, M.P. A novel water hyacinth based biosorbent for 2, 4-dichlorophenoxyacetic acid (2, 4-D) removal from aqueous solution. Desalin. Water Treat. 2019, 165, 163–176. [Google Scholar] [CrossRef]
- Anudechakul, C.; Vangnai, A.S.; Ariyakanon, N. Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. Int. J. Phytoremediation 2015, 17, 678–685. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Rajendran, D.; Samivel, D.; Khan, M.N. New approach of dye removal in textile effluent: A cost-effective management for cleanup of toxic dyes in textile effluent by water hyacinth. In Toxicity and Biodegradation Testing. Methods in Pharmacology and Toxicology; Humana Press: New York, NY, USA, 2018; pp. 241–267. [Google Scholar]
- Yan, Y.; Chen, Y.; Xu, X.; Zhang, L.; Wang, G. Effects and removal of the antibiotic sulfadiazine by Eichhornia crassipes: Potential use for phytoremediation. Bull. Environ. Contam. Toxicol. 2019, 103, 342–347. [Google Scholar] [CrossRef]
- Gong, Y.; Zhou, X.; Ma, X.; Chen, J. Sustainable removal of formaldehyde using controllable water hyacinth. J. Clean. Prod. 2018, 181, 1–7. [Google Scholar] [CrossRef]
- Ena, A.; Carlozzi, P.; Pushparaj, B.; Paperi, R.; Carnevale, S.; Sacchi, A. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Y Aceites 2007, 58, 34–39. [Google Scholar] [CrossRef]
- Balarak, D.; Bazrafshan, E.; Mostafapour, F. Equilibrium, kinetic studies on the adsorption of acid green 3 (Ag3) dye onto Azolla filiculoides as adosorbent. Am. Chem. Sci. J. 2016, 11, 1–10. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Mengelizadeh, N.; Taghavi, M.; Mohebi, S.; Balarak, D. Activated carbon derived from Azolla filiculoides fern: A high-adsorption-capacity adsorbent for residual ampicillin in pharmaceutical wastewater. Biomass Convers. Biorefinery 2021, 1–13, ahead of print. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Balarak, D.; Mahdavi, Y. Pyrocatechol removal from aqueous solutions by using Azolla filiculoides. HealthScope 2013, 2, 25–30. [Google Scholar]
- Kant, R. Textile dyeing industry an environmental hazard. J. Nat. Sci. 2012, 4, 22–26. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour.-Effic. Technol. 2017, 3, 71–77. [Google Scholar] [CrossRef]
- Nath, A.; Chakraborty, S.; Bhattacharjee, C. Bioadsorbtion of industrial dyes from aqueous solution onto water hyacinth (Eichornia crassipes): Equilibrium, kinetic, and sorption mechanism study. Desalination Water Treat. 2014, 52, 1484–1494. [Google Scholar] [CrossRef]
- Padmesh, T.; Vijayaraghavan, K.; Sekaran, G.; Velan, M. Biosorption of Acid Blue 15 using fresh water macroalga Azolla filiculoides: Batch and column studies. Dye. Pigment. 2006, 71, 77–82. [Google Scholar] [CrossRef]
- Durairaj, S. Role of lemna minor lin. In treating the textile industry wastewater, international journal of environmental. Earth Sci. Eng. 2014, 8, 55–59. [Google Scholar]
- Imron, M.F.; Kurniawan, S.B.; Soegianto, A.; Wahyudianto, F.E. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon 2019, 5, e02206. [Google Scholar] [CrossRef] [PubMed]
- Lovins, L.H. Rethinking production. In State of the World 2008; Routledge: Oxfordshire, UK, 2012; pp. 60–72. [Google Scholar]
- Guerra-Rodríguez, S.; Oulego, P.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Towards the implementation of circular economy in the wastewater sector: Challenges and opportunities. Water 2020, 12, 1431. [Google Scholar] [CrossRef]
- Webster, K. A Wealth of Flows; Ellen MacArthur Foundation: Isle of Wight, UK, 2015. [Google Scholar]
- McDonough, W.; Braungart, M. Design for the triple top line: New tools for sustainable commerce. Corp. Environ. Strategy 2002, 9, 251–258. [Google Scholar] [CrossRef]
- Commoner, B. The environmental cost of economic growth. Popul. Resour. Environ. 1972, 3, 343–363. [Google Scholar]
- Yu, S.; Miao, C.; Song, H.; Huang, Y.; Chen, W.; He, X. Efficiency of nitrogen and phosphorus removal by six macrophytes from eutrophic water. Int. J. Phytoremediation 2019, 21, 643–651. [Google Scholar] [CrossRef]
- Headley, T.R.; Tanner, C.C. Constructed Wetlands with Floating Emergent Macrophytes: An Innovative Stormwater Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2261–2310. [Google Scholar] [CrossRef]
- Cardwell, A.; Hawker, D.; Greenway, M. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 2002, 48, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Yangui, A.; Abderrabba, M. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chem. 2018, 262, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Long, J.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Protein recovery and anti-nutritional factor removal from soybean wastewater by complexing with a high concentration of polysaccharides in a novel quick-shearing system. J. Food Eng. 2019, 241, 1–9. [Google Scholar] [CrossRef]
- Li, R.; Zhai, Z.; Li, Y.; Yang, T.; Chen, Y. Kinetic study of heavy metals Cu and Zn removal during sewage sludge ash calcination in air and N2 atmospheres. J. Hazard. Mater. 2018, 347, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Imron, M.F.; Kurniawan, S.B.; Ismail, N.I.; Abdullah, S.R.S. Future challenges in diesel biodegradation by bacteria isolates: A review. J. Clean. Prod. 2020, 251, 119716. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Said, N.S.M.; Ismail, N.I.; Hasan, H.A.; Othman, A.R.; Purwanti, I.F. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health 2020, 17, 9312. [Google Scholar] [CrossRef] [PubMed]
- Kwoczynski, Z.; Čmelík, J. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod. 2021, 280, 124302. [Google Scholar] [CrossRef]
- Lahon, D.; Sahariah, D.; Debnath, J.; Nath, N.; Meraj, G.; Farooq, M.; Kanga, S.; Singh, S.; Chand, K. Growth of water hyacinth biomass and its impact on the floristic composition of aquatic plants in a wetland ecosystem of the Brahmaputra floodplain of Assam, India. PeerJ 2023, 11, e14811. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Debusk, W.F. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I. Water hyacinth, water lettuce, and pennywort. Econ. Bot. 1984, 38, 229–239. [Google Scholar] [CrossRef]
- Miranda, A.F.; Biswas, B.; Ramkumar, N.; Singh, R.; Kumar, J.; James, A.; Roddick, F.; Lal, B.; Subudhi, S.; Bhaskar, T. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol. Biofuels 2016, 9, 221. [Google Scholar] [CrossRef]
- Brouwer, P.; Schluepmann, H.; Nierop, K.G.; Elderson, J.; Bijl, P.K.; van der Meer, I.; de Visser, W.; Reichart, G.J.; Smeekens, S.; van der Werf, A. Growing Azolla to produce sustainable protein feed: The effect of differing species and CO2 concentrations on biomass productivity and chemical composition. J. Sci. Food Agric. 2018, 98, 4759–4768. [Google Scholar] [CrossRef]
- Costa, M.L.; Santos, M.C.; Carrapiço, F. Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 1999, 415, 323–327. [Google Scholar] [CrossRef]
- Basha, S.A.; Gopal, K.R.; Jebaraj, S. A review on biodiesel production, combustion, emissions and performance. Renew. Sustain. Energy Rev. 2009, 13, 1628–1634. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2019—Analysis-IEA. World Energy Outlook 2019. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 21 February 2024).
- Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.V.; Nikhil, G.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Barbora, L.; Bora, D.; Mitra, S.; Rangan, L.; Mahanta, P. An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. Int. Biodeterior. Biodegrad. 2017, 119, 253–259. [Google Scholar] [CrossRef]
- Koutinas, A.; Kanellaki, M.; Bekatorou, A.; Kandylis, P.; Pissaridi, K.; Dima, A.; Boura, K.; Lappa, K.; Tsafrakidou, P.; Stergiou, P.-Y. Economic evaluation of technology for a new generation biofuel production using wastes. Bioresour. Technol. 2016, 200, 178–185. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Wang, Y.; Bai, J.; Bai, H.; Yan, D.; Cao, Y.; Li, Y.; Yu, Z.; Dong, G. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresour. Technol. 2017, 245, 372–378. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Chiranjeevi, P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresour. Technol. 2011, 102, 7036–7042. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Xing, D.; Ren, Z.J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour. Technol. 2015, 195, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Zeng, R.; Yin, X.-Y.; Zhang, S.-X.; Yang, Z.-H. Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis. BioResources 2016, 11, 2372–2380. [Google Scholar] [CrossRef]
- Barua, V.B.; Goud, V.V.; Kalamdhad, A.S. Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew. Energy 2018, 126, 21–29. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Liu, H.; Evrendilek, F.; Buyukada, M. Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses. Energy Convers. Manag. 2020, 207, 112552. [Google Scholar] [CrossRef]
- Varanasi, J.L.; Kumari, S.; Das, D. Improvement of energy recovery from water hyacinth by using integrated system. Int. J. Hydrog. Energy 2018, 43, 1303–1318. [Google Scholar] [CrossRef]
- Alalade, O.; Iyayi, E. Chemical composition and the feeding value of Azolla (Azolla pinnata) meal for egg-type chicks. Int. J. Poult. Sci. 2006, 5, 137–141. [Google Scholar]
- Mosha, S. A review on significance of Azolla meal as a protein plant source in finfish culture. J. Aquac. Res. Dev. 2018, 9. [Google Scholar] [CrossRef]
- Gupta, S.K.; Chandra, R.; Dey, D.; Mondal, G.; Shinde, K.P. Study of chemical composition and mineral content of sun dried Azolla pinnata. J. Pharmacogn. Phytochem. 2018, 7, 1214–1216. [Google Scholar]
- Verma, D.; Dey, K.P.S.D. Effect of supplementation of azolla (Azolla pinnata) on productive performance in cattle and economics of farmers: A field study. Pharma Innov. J. 2021, 10, 336–339. [Google Scholar]
- Xu, J.; Deshusses, M.A. Fermentation of swine wastewater-derived duckweed for biohydrogen production. Int. J. Hydrog. Energy 2015, 40, 7028–7036. [Google Scholar] [CrossRef]
- Zhao, X.; Moates, G.; Wellner, N.; Collins, S.; Coleman, M.; Waldron, K. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohydr. Polym. 2014, 111, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Felycia, E.S.; Suryadi, I.; Yi-Hsu, J. Conversion of water hyacinth Eichhornia crassipes into biofuel intermediate: Combination subcritical water and zeolite based catalyst processes. Can Tho Univ. J. Sci. 2016, 14, 64–69. [Google Scholar]
- Shahbazi, A.; Croonenberghs, J.; Wang, L. Thermochemical Liquefaction of Duckweed to Biofuel. In Proceedings of the 2008 Providence, Rhode Island, St. Joseph, MI, USA, 29 June–2 July 2008; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008. [Google Scholar]
- Hossain, R.; Chowdhury, M.K.; Yeasmin, S.; Hoq, M.M. Production of ethanol using yeast isolates on water hyacinth and azolla. Bangladesh J. Microbiol. 2010, 27, 56–60. [Google Scholar] [CrossRef]
- Magdum, S.; More, S.; Nadaf, A. Biochemical conversion of acid-pretreated water hyacinth (Eichhornia crassipes) to alcohol using Pichia Stipitis NCIM3497. Int. J. Adv. Biotechnol. Res. 2012, 3, 585–590. [Google Scholar]
- Das, S.; Bhattacharya, A.; Haldar, S.; Ganguly, A.; Gu, S.; Ting, Y.; Chatterjee, P. Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 2015, 3, 17–28. [Google Scholar] [CrossRef]
- Su, H.; Zhao, Y.; Jiang, J.; Lu, Q.; Li, Q.; Luo, Y.; Zhao, H.; Wang, M. Use of Duckweed (Landoltia punctata) as a Fermentation Substrate for the Production of Higher Alcohols as Biofuels. Energy Fuels 2014, 28, 3206–3216. [Google Scholar] [CrossRef]
- Xu, J.; Cui, W.; Cheng, J.J.; Stomp, A.-M. Production of high-starch duckweed and its conversion to bioethanol. Biosyst. Eng. 2011, 110, 67–72. [Google Scholar] [CrossRef]
- Singhal, V.; Rai, J. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour. Technol. 2003, 86, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Ramaraj, R.; Unpaprom, Y. Effect of temperature on the performance of biogas production from Duckweed. Chem. Res. J. 2016, 1, 58–66. [Google Scholar]
- Patil, J.H.; AntonyRaj, M.; Gavimath, C. Study on effect of pretreatment methods on biomethanation of water hyacinth. Int. J. Adv. Biotechnol. Res. 2011, 2, 143–147. [Google Scholar]
- Madian, H.R.; Sidkey, N.M.; Abo Elsoud, M.M.; Hamouda, H.I.; Elazzazy, A.M. Bioethanol production from water hyacinth hydrolysate by Candida tropicalis Y-26. Arab. J. Sci. Eng. 2019, 44, 33–41. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Environ. Monit. Assess. 2019, 191, 221. [Google Scholar] [CrossRef]
- Shanab, S.M.; Hanafy, E.A.; Shalaby, E.A. Water hyacinth as non-edible source for biofuel production. Waste Biomass Valorization 2018, 9, 255–264. [Google Scholar] [CrossRef]
- Brouwer, P.; van der Werf, A.; Schluepmann, H.; Reichart, G.-J.; Nierop, K.G. Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. Bioenergy Res. 2016, 9, 369–377. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Kumar, P.; Singh, J. Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies. Environ. Technol. Innov. 2020, 17, 100627. [Google Scholar] [CrossRef]
- Chupaza, M.H.; Park, Y.-R.; Kim, S.H.; Yang, J.W.; Jeong, G.-T.; Kim, S.-K. Bioethanol Production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus. Appl. Biochem. Biotechnol. 2021, 193, 502–514. [Google Scholar] [CrossRef]
- Dohaei, M.; Karimi, K.; Rahimmalek, M.; Satari, B. Integrated biorefinery of aquatic fern Azolla filiculoides for enhanced extraction of phenolics, protein, and lipid and methane production from the residues. J. Clean. Prod. 2020, 276, 123175. [Google Scholar] [CrossRef]
- Biswas, B.; Singh, R.; Krishna, B.B.; Kumar, J.; Bhaskar, T. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresour. Technol. 2017, 242, 139–145. [Google Scholar] [CrossRef]
- Gaur, R.Z.; Khan, A.A.; Suthar, S. Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production. Chemosphere 2017, 174, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Chusov, A.; Maslikov, V.; Badenko, V.; Zhazhkov, V.; Molodtsov, D.; Pavlushkina, Y. Biogas potential assessment of the composite mixture from duckweed biomass. Sustainability 2021, 14, 351. [Google Scholar] [CrossRef]
- Lee, C.J.; Yangcheng, H.; Cheng, J.J.; Jane, J.L. Starch characterization and ethanol production of duckweed and corn kernel. Starch-Stärke 2016, 68, 348–354. [Google Scholar] [CrossRef]
- Muradov, N.; Fidalgo, B.; Gujar, A.C.; Ali, T. Pyrolysis of fast-growing aquatic biomass–Lemna minor (duckweed): Characterization of pyrolysis products. Bioresour. Technol. 2010, 101, 8424–8428. [Google Scholar] [CrossRef]
- Demirbas, A.; Arin, G. An overview of biomass pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Heidenreich, S.; Foscolo, P.U. New concepts in biomass gasification. Prog. Energy Combust. Sci. 2015, 46, 72–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.T. 5—Hydrothermal liquefaction of protein-containing feedstocks. In Direct Thermochemical Liquefaction for Energy Applications; Rosendahl, L., Ed.; Woodhead Publishing: Delhi, India, 2018; pp. 127–168. [Google Scholar]
- Muradov, N.; Taha, M.; Miranda, A.F.; Kadali, K.; Gujar, A.; Rochfort, S.; Stevenson, T.; Ball, A.S.; Mouradov, A. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol. Biofuels 2014, 7, 30. [Google Scholar] [CrossRef]
- Golzary, A.; Abdoli, M.A.; Yoshikawa, K.; Khodadadi, A.; Karbassi, A. Azolla as a Feedstock for Bio-Refinery: Cultivation, Conversion and Application. In Proceedings of the Qatar Foundation Annual Research Conference Proceedings Volume 2016 Issue 1, Doha, Qatar, 22–23 March 2016; p. EESP2082. [Google Scholar]
- Singh, R.; Balagurumurthy, B.; Prakash, A.; Bhaskar, T. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 2015, 178, 157–165. [Google Scholar] [CrossRef]
- Gouri, M.D.; Sanganal, J.S.; Gopinath, C.; Kalibavi, C. Importance of azolla as a sustainable feed for livestock and poultry-A review. Agric. Rev. 2012, 33, 93–103. [Google Scholar]
- Forte, A.; Fagnano, M.; Fierro, A. Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems. J. Environ. Manag. 2017, 192, 68–78. [Google Scholar] [CrossRef] [PubMed]
- de Queiroz, R.d.C.S.; Maranduba, H.L.; Hafner, M.B.; Rodrigues, L.B.; de Almeida Neto, J.A. Life cycle thinking applied to phytoremediation of dairy wastewater using aquatic macrophytes for treatment and biomass production. J. Clean. Prod. 2020, 267, 122006. [Google Scholar] [CrossRef]
- Datta, S.N. Culture of Azolla and its efficacy in diet of Labeo rohita. Aquaculture 2011, 310, 376–379. [Google Scholar] [CrossRef]
- Hossain, M.; Shimu, S.; Sarker, M.; Ahsan, M.; Banu, M. Biomass growth and composition of Azolla (Azolla pinnata R. BR.) supplemented with inorganic phosphorus in outdoor culture. SAARC J. Agric. 2021, 19, 177–184. [Google Scholar] [CrossRef]
- Adzman, N.; Goh, S.; Johari, A.; Alam, M.Z.; Kamaruddin, M. Preliminary study on Azolla cultivation and characterization for sustainable biomass source. J. Phys. Conf. Ser. 2022, 2259, 012018. [Google Scholar] [CrossRef]
- Shiomi, N.; Kitoh, S. Physiology: Nutrient absorption capacity of Azolla from waste water and use of Azolla plant as biomass. J. Plant Nutr. 1987, 10, 1663–1670. [Google Scholar] [CrossRef]
- Kalita, P.; Mukhopadhyay, P.K.; Mukherjee, A.K. Evaluation of the nutritional quality of four unexplored aquatic weeds from northeast India for the formulation of cost-effective fish feeds. Food Chem. 2007, 103, 204–209. [Google Scholar] [CrossRef]
- Duan, P.; Chang, Z.; Xu, Y.; Bai, X.; Wang, F.; Zhang, L. Hydrothermal processing of duckweed: Effect of reaction conditions on product distribution and composition. Bioresour. Technol. 2013, 135, 710–719. [Google Scholar] [CrossRef]
- Aguilera-Morales, M.E.; Canales-Martínez, M.M.; Ávila-González, E.; Flores-Ortíz, C.M. Nutrients and bioactive compounds of the Lemna gibba and Ulva lactuca as possible ingredients to functional foods. Lat. Am. J. Aquat. Res. 2018, 46, 709–716. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, Y.; Zhang, G.; Fang, Y.; Xiao, Y.; Zhao, H. Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 2012, 5, 3019–3032. [Google Scholar] [CrossRef]
- Adelakun, K.; Kehinde, A.; Amali, R.; Ogundiwin, D.; Omotayo, O. Nutritional and phytochemical quality of some tropical aquatic plants. Poultry, Fish. Wildl. Sci. 2016, 4, 1–4. [Google Scholar]
- Hossain, M.E.; Sikder, H.; Kabir, M.H.; Sarma, S.M. Nutritive value of water hyacinth (Eichhornia crassipes). Online J. Anim. Feed Res. 2015, 5, 40–44. [Google Scholar]
- Aboud, A.; Kidunda, R.; Osarya, J. Potential of water hyacinth (Eicchornia crassipes) in ruminant nutrition in Tanzania. Livest. Res. Rural Dev. 2005, 17, 2005. [Google Scholar]
- Mako, A.; Babayemi, O.; Akinsoyinu, A. An evaluation of nutritive value of water hyacinth (Eichhornia crassipes Mart. Solms-Laubach) harvested from different water sources as animal feed. Livest. Res. Rural Dev. 2011, 23, 10. [Google Scholar]
- Malik, A.A.; Aremu, A.; Ayanwale, B.; Ijaiya, A. A nutritional evaluation of water hyacinth {Eichhornia crassipes (Martius) Solms-Laubach} meal diets supplemented with Maxigrain enzyme for growing pullets. Agric. Food Sci. 2016, 10, 18–44. [Google Scholar]
- Pillai, P.K.; Premalatha, S.; Rajamony, S. Azolla-A sustainable feed substitute for livestock. Leisa India 2002, 4, 15–17. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, N.; Phillips, G.C.; Xu, J. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour. Technol. 2012, 124, 485–488. [Google Scholar] [CrossRef]
- Mwale, M.; Gwaze, F.R. Characteristics of duckweed and its potential as feed source for chickens reared for meat production: A review. Sci. Res. Essays 2013, 8, 689–697. [Google Scholar]
- Rusoff, L.L.; Blakeney, E.W., Jr.; Culley, D.D., Jr. Duckweeds (Lemnaceae family): A potential source of protein and amino acids. J. Agric. Food Chem. 1980, 28, 848–850. [Google Scholar] [CrossRef]
- Skillicorn, P.; Spira, W.; Journey, W. Duckweed Aquaculture: A New Aquatic Farming System for Developing Countries; CABI: Hong Kong, China, 1993. [Google Scholar]
- Mukherjee, R.; Nandi, B. Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int. Biodeterior. Biodegrad. 2004, 53, 7–12. [Google Scholar] [CrossRef]
- Akter, M.; Chowdhury, S.; Akter, Y.; Khatun, M. Effect of duckweed (Lemna minor) meal in the diet of laying hen and their performance. Bangladesh Res. Pub. J 2011, 5, 252–261. [Google Scholar]
- Huque, K.; Chowdhury, S.; Kibria, S. Study on the potentiality of duckweeds as a feed for cattle. Asian-Australas. J. Anim. Sci. 1996, 9, 133–137. [Google Scholar] [CrossRef]
- Effiong, B.; Sanni, A.; Fakunle, J. Effect of partial replacement of fishmeal with duckweed (Lemna pauciscostata) meal on the growth performance of Heterobranchus longifilis fingerlings. Rep. Opin. 2009, 1, 76–81. [Google Scholar]
- Devendra, C.; Leng, R. Feed resources for animals in Asia: Issues, strategies for use, intensification and integration for increased productivity. Asian-Australas. J. Anim. Sci. 2011, 24, 303–321. [Google Scholar] [CrossRef]
- Thu, N.; Dong, N.K. A Study of Water Hyacinth (Eichhornia crassipes) as a Feed Resource for Feeding Growing Rabbits. Available online: https://hostcambodia.com/mekarn/workshops/environ/PDF/kdong.pdf (accessed on 21 February 2024).
- Chatterjee, A.; Sharma, P.; Ghosh, M.; Mandal, M.; Roy, P. Utilization of Azolla microphylla as feed supplement for crossbred cattle. Int. J. Agric. Food Sci. Technol. 2013, 4, 207–214. [Google Scholar]
- Kumari, J.; Kumar, S.; Kumar, K.; Singh, P.K.; MONI, C.; Kumar, P.; Kumari, R. Effect of different level of azolla meal on nutrient utilization and growth performance in goat kids: Influence of azolla meal on nutrient utilization and growth in goat kids. J. AgriSearch 2021, 8, 275–280. [Google Scholar] [CrossRef]
- Van der Spiegel, M.; Noordam, M.; Van der Fels-Klerx, H. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Babayemi, O.; Bamikole, M.; Omojola, A. Evaluation of the nutritive value and free choice intake of two aquatic weeds (Nephrolepis biserrata and Spirodela polyrhiza) by West African dwarf goats. Trop. Subtrop. Agroecosystems 2006, 6, 15–22. [Google Scholar]
- Tintin Rostini, J.; Achmad, I.Z.; Diyamoko, D. Utilization of duckweed in feed goats on availability of protein and energy balance. Int. J. Agric. Res. (IJAIR) 2016, 4, 694–697. [Google Scholar]
- Biswas, P. Use of water hyacinth (Eichhornia crassipes) in the ration of growing calves. Indian Vet. J. 1988, 65, 496–500. [Google Scholar]
- Thu, N. Effects of water hyacinth (Eichhornia crassipes) in local cattle diets on nutrient utilization, rumen parameters and microbial protein synthesis. In SAADC 2011 Strategies and Challenges for Sustainable Animal Agriculture-Crop Systems, Volume III: Full Papers. Proceedings of the 3rd International Conference on Sustainable Animal Agriculture for Developing Countries, Nakhon Ratchasima, Thailand, 26–29 July 2011; Suranaree University of Technology: Nakhon Ratchasima, Thailand; pp. 422–426.
- Islam, S.; Khan, M.; Islam, M. Effect of feeding wilted water hyacinth (Eichhornia crassipes) on the performance of growing bull cattle. Indian J. Anim. Sci. 2009, 79, 494–497. [Google Scholar]
- Chakraborty, B.; Biswas, P.; Mandal, L.; Banerjee, G. Effect of Feeding Fresh Water Hyacinth (Eichhornia crassipes), or its Silage on the Milk Production in Crossbred Cows. Indian J. Anim. Nutr. 1991, 8, 115–118. [Google Scholar]
- Hertrampf, J.W.; Piedad-Pascual, F. Handbook on Ingredients for Aquaculture Feeds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Kabir, A.; Hossain, M.; Rahman, M. Use of duckweed as feed for fishes in polyculture. J. Agric. Rural Dev. 2009, 7, 157–160. [Google Scholar] [CrossRef]
- Buddington, R.K. Hydrolysis-resistant organic matter as a reference for measurement of fish digestive efficiency. Trans. Am. Fish. Soc. 1980, 109, 653–656. [Google Scholar] [CrossRef]
- Talukdar, M.; Shahjahan, M.; Rahman, M. Suitability of duckweed (Lemna minor) as feed for fish in polyculture system. Int. J. Agric. Res. Innov. Technol. 2012, 2, 42–46. [Google Scholar] [CrossRef]
- Alalade, O.A.; Iyayi, E.A.; Alalade, T.O. The nutritive value of Azolla (Azolla pinnata) meal in diets for growing pullets and subsequent effect on laying performance. J. Poult. Sci. 2007, 44, 273–277. [Google Scholar] [CrossRef]
- Basak, B.; Pramanik, M.A.H.; Rahman, M.S.; Tarafdar, S.U.; Roy, B.C. Azolla (Azolla pinnata) as a feed ingredient in broiler ration. Int. J. Poult. Sci. 2002, 1, 29–34. [Google Scholar]
- Khandaker, T.; Khan, M.J.; Shahjalal, M.; Rahman, M.M. Use of duckweed (Lemna perpusilla) as a protein source feed item in the diet of semi-scavenging jinding layer ducks. J. Poult. Sci. 2007, 44, 314–321. [Google Scholar] [CrossRef]
- Men, B.X.; Yamasaki, S. Use of water hyacinth as partial supplements in diets of growing crossbred common ducks. In Proceedings of the Workshop on the Technology Development for Livestock Production, JIRCAS-CTU; JIRCAS: Ibaraki, Japan, 2005. [Google Scholar]
- McLaughlin, N.; Hiba, A.; Wall, G.; King, D. Comparison of energy inputs for inorganic fertilizer and manure based corn production. Can. Agric. Eng. 2000, 42, 9–18. [Google Scholar]
- Tuomisto, H.L.; Hodge, I.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Carrapiço, F. Azolla as a superorganism. Its implication in symbiotic studies. In Symbioses and Stress; Springer: Berlin/Heidelberg, Germany, 2010; pp. 225–241. [Google Scholar]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zeng, K.; Zhang, B.; Zhao, M.; Yin, B. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Res. 2018, 216, 158–164. [Google Scholar] [CrossRef]
- Kreider, A.N.; Fernandez Pulido, C.R.; Bruns, M.A.; Brennan, R.A. Duckweed as an Agricultural Amendment: Nitrogen Mineralization, Leaching, and Sorghum Uptake. J. Environ. Qual 2019, 48, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Lata, N.; Veenapani, D. Response of Water Hyacinth Manure on Growth Attributes and Yield in Brassica Juncea. J. Cent. Eur. Agric. 2011, 12, 336–343. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q. Energy-nutrients-water nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 2013, 127, 255–267. [Google Scholar] [CrossRef]
- Valdes, R.; Aguilera, G.; Tobón, E.; Samaniego, M.; Díaz, J.; Carlos, H. Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico. Sustainability 2019, 11, 2217. [Google Scholar] [CrossRef]
- Ng, Y.S.; Chan, D.J.C. Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: A comparative study. Int. J. Phytoremediation 2018, 20, 1179–1186. [Google Scholar] [CrossRef]
- Huang, J.-L.; Chen, Q.; Xu, L.-H. Problems and countermeasures in the application of constructed wetlands. Huan Jing Ke Xue Huanjing Kexue 2013, 34, 401–408. [Google Scholar]
- Chandra, P.; Kulshreshtha, K. Chromium accumulation and toxicity in aquatic vascular plants. Bot. Rev. 2004, 70, 313–327. [Google Scholar] [CrossRef]
- Landesman, L.; Chang, J.; Yamamoto, Y.; Goodwin, J. Nutritional value of wastewater-grown duckweed for fish and shrimp feed. World Aquac. 2002, 33, 39–40. [Google Scholar]
- Men, B.X.; Ogle, B.; Lindberg, J.E. Use of duckweed as a protein supplement for growing ducks. Asian-Australas. J. Anim. Sci. 2001, 14, 1741–1746. [Google Scholar] [CrossRef]
- Zainuddin, N.A.; Md Din, M.F.; Nuida, M.; Abdul Halim, K.; Abdul Salim, N.A.; Elias, S.H.; Mat Lazim, Z. The phytoremediation using water hyacinth and water lettuce: Correlation between sugar content, biomass growth rate, and nutrients. J. Kejuruter. 2022, 34, 915–924. [Google Scholar] [CrossRef] [PubMed]
Physical Methods | Chemical Methods | Biological Methods |
---|---|---|
Reverse osmosis | Neutralization | Activated sludge |
Comminution | Flocculation and coagulation | Aerated lagoons |
Sedimentation | Oxidation | Trickling filter |
Filtration | Ion exchange | Rotating biological contactors |
Skimming electrolysis | Ozonation | Stabilization pond |
Chlorination | Phytoremediation |
Macrophyte | Wastewater | Removal Performance | References |
---|---|---|---|
Eichhornia crassipes | River water | Al—63%, Zn—62%, Cd—47%, Mn—22% and As—23% in seven hours of exposure time | [120] |
Eichhornia crassipes | Aquas solution | Adsorption of Pb—29.83 mcg/g, Cr—24 mcg/g Zn—29.94 mcg/g, Cd—28.41 mcg/g | [121] |
Eichhornia crassipes | Synthetic wastewater | In 4 mg/L solution of Cd, the accumulation in root Cd—2044 mg/kg, in shoot Cd—113.2 mg/Kg In 40 mg/L solution of Zn, the accumulation in root Zn—9652.1 mg/Kg, in shoot Zn—1926.7 mg/Kg | [122] |
Eichhornia crassipes | Synthetic wastewater | Adsorption of Cr3+—99.8% and Cr6+—89.15 | [123] |
Eichhornia crassipes | Industrial wastewater | Adsorbed 99.5% of chromium in 15 days of exposure time | [124] |
Eichhornia crassipes | Synthetic wastewater | Zn—95% and Cr—84% in 11 days of exposure time | [98] |
Eichhornia crassipes | Domestic wastewater | Fe reduced from 1.25 mg/L to 0.36 mg/L, Cu reduced from 0.3 mg/L to 0 mg/L, Mn reduced from 0.5 mg/L to 0.08 mg/L, Pb reduced from 0.2 mg/L to 0.01 | [125] |
Eichhornia crassipes | Hydroponic medium | Accumulation of mercury ion in root part—1.99 mg/g, in leaf part—1.74 mg/g and in petiole part—1.39 mg/g | [126] |
Eichhornia crassipes | Synthetic wastewater | Absorption of Cd—59.4%, As—60.8%, Pb—92.4%, Zn—60.2% and Cu—60.7% during 30 days of exposure time. | [127] |
Lemna | Synthetic wastewater | Bioaccumulation of Pb—62.8% | [128] |
Lemna gibba | Synthetic wastewater | Cr removal varied from 37.3% to 98.6% Cd removal varied from 81.6 to 98.6% | [129] |
Lemna minor | Synthetic wastewater | Se—19.5 mg/g when exposed for 20 days | [130] |
Lemna minor | Synthetic wastewater | As—5% when exposed for 21 days | [131] |
Lemna minor | Synthetic wastewater | Co—72%, Cd—66%, Zn—91%, Cr—26%, Ni—50%, Cu—91%, Fe—66% and Mn—89% | [132] |
Lemna minor | Industrial wastewater | Cd—44.93%, Cr—32.26%, Ni—74.48% and Pb—79.1% | [133] |
Lemna gibba | Synthetic wastewater | Removal of Pb ranged from 60.1% to 98.1% Removal of Cd ranged from 41.6% to 84.8% | [134] |
Lemna minor | Coal mine effluent | Fe—19 mg/g | [135] |
Lemna minuta | Synthetic wastewater | Al—97%, Fe—60% and Cr—4.9% | [136] |
Azolla filiculoides | Synthetic wastewater | Inactivated Azolla with methanol: Pb2+—36%, Cd2+—33%, Ni2+—34% and Zn2+—24% Inactivated Azolla with ethanol: Pb2+—41%, Cd2+—36%, Ni2+—38% and Zn2+—31%. | [137] |
Azolla filiculoides | Synthetic wastewater | Al—96%, Fe—90% and Cr—8.3% | [136] |
Azolla filiculoides | Synthetic wastewater | Co—65%, Cd—61%, Zn—87%, Cr—19%, Ni—30% Cu—92%, Fe—70% and Mn—87% | [132] |
Azolla pinnata | Industrial wastewater | Cd—57.3%, Cu—53.9%, Cr—58.1%, Fe—56.1%, Pb—72.4% and Zn—60% | [138] |
Azolla filiculoides | Industrial wastewater | Biosorption of Cr6+—83.341% | [139] |
Azolla pinnata | Industrial wastewater | Removal of Hg ranging from 80% to 94% Removal of Cd ranging from 70% to 91% | [116] |
Azolla pinnata | Synthetic wastewater | Fe—92.7%, Zn—83%, Cu—59.1%, Mn—65.1%, Co—95%, Cd—90%, Ni—73.1% | [140] |
Macrophyte | Wastewater | Removal Performance | References |
---|---|---|---|
Azolla filiculoides | Aqua culture wastewater | NH4+—95% PO43−—31% | [149] |
Azolla filiculoides | Petroleum refinery wastewater | N—36% P—44% | [150] |
Azolla pinnata | Domestic wastewater | Soluble reactive P—60.21% Total N—23.97% | [151] |
Azolla microphylla | Pond water mixed with domestic wastewater | NO3−—57% NH4+—62% PO43−—80% | [152] |
Azolla pinnata | Dairy wastewater | TKN—73.25% TP—65.37% | [22] |
Azolla pinnata | Industrial wastewater | TKN—81.94% TP—60.04% | [138] |
Azolla filiculoides | Livestock wastewater | NH4+—52.7% | [153] |
Lemna minor | Dumpsite leachate | TN—79.77% TP—75.75% | [154] |
Lemna aequinoctialis | Anaerobically digested swine wastewater | TP—98.65% NH4+—68.16% | [155] |
Lemna minor | Livestock wastewater | NH4+—66.4% | [153] |
Lemna minor | Palm oil mill effluent (POME) | NH4+—95.5% (5% POME dilution) PO43−—86.7% (10% of POME dilution) | [156] |
Lemna minor | Domestic wastewater | Soluble reactive P—69.66% Total N—25.57% | [151] |
Lemna minor and Lemna punctata | Swine wastewater | NH4+—67.84% PO43−—11.2 ± 0.74 mg/L to 0.03 ± 0.02 mg/L | [157] |
Eichhornia crassipes | Pond water mixed with domestic wastewater | NO3−—74% NH4+—67% PO43−—71% | [152] |
Eichhornia crassipes | Domestic wastewater | TN—76.61%, TP—44.84% NH4+—72.48%, PO43−—38.69% | [158] |
Eichhornia crassipes | Swine wastewater | In hot season, NH4+—97.5% PO43−—81.4% In cold season, NH4+—67.5% PO43−—56.2% | [159] |
Eichhornia crassipes | Domestic wastewater | NH4+—89% | [160] |
Eichhornia crassipes | Rice mill wastewater | TP—80% TN—70% | [161] |
Eichhornia crassipes | Sewage contaminated pond water | TN—47.42% TP—53.44% | [162] |
Eichhornia crassipes | Domestic wastewater | NH4+—63.26 ± 10.47% PO43−—61.96 ± 12.11% | [163] |
Macrophytes | Pollutants | Removal Performances | References |
---|---|---|---|
Lemna minor | Zeta-cypermethrin (concentration was 300 ppb) | Maximum 95.9% removal was observed at the 96th h. | [181] |
Lemna minor and Lemna punctata | Ibuprofen (10 μM) and fluoxetine (10 μM) | Ibuprofen—47.5 ± 3.9% in 9 days Fluoxetine—55.6 ± 3.9% after 1 day | [182] |
Lemna gibba | Acetaminophen, diclofenac, and progesterone at 1000 μg/L | Acetaminophen—66.12 ± 1.4%, diclofenac—47.50 ± 2.0% and progesterone—66.50 ± 1.7% after 4 days of treatment | [183] |
Lemna minor | Landfill leachate | COD—39%, BOD—47% in 15 days of treatment | [184] |
Lemna minor | Cefadroxil, metronidazole, trimethoprim, and sulfamethoxazole | Cefadroxil—100% in 14 days; metronidazole—96%, trimethoprim—73%, and sulfamethoxazole—59% in 24 days | [185] |
Lemna minor | Acid blue 113 (5.0 mg/dm3), Reactive blue 198 (5.1 mg/dm3), Basic red 46 (5.1 mg/dm3), and Direct orange 46 (5.0 mg/dm3) | Acid blue 113—32% Reactive blue 198—19% Basic red 46—51% Direct orange 46—4% | [186] |
Eichhornia crassipes | 2,4-dichlorophenoxy acetic acid (2,4-D) at 4 g/L | Removal was 91% through biosorbent method | [187] |
Eichhornia crassipes | Chlorpyrifos (0.1, 0.5, 1.0 mg/L) | 0.1 mg/L solution—81 ± 1.8% 0.5 mg/L solution—91 ± 2.6% 1.0 mg/L solution—82 ± 1.6% | [188] |
Eichhornia crassipes | Cotton red dye, Cotton blue dye and Cotton yellow dye were maintained at 10 mg/L | Water hyacinth stem powder treated with phosphoric acid at the rate of 10 mg/25 mL used Cotton red dye—82.54 ± 1.2% Cotton blue dye—51.37 ± 0.7% Cotton yellow dye—78.65 ± 0.45% | [189] |
Eichhornia crassipes | Sulfadiazine at 1 mg/L | Removed 83.5% when exposed for 25 days | [190] |
Eichhornia crassipes | Industrial mine wastewater | BOD—50% COD—34% | [124] |
Eichhornia crassipes | Formaldehyde at 200 mg/L | Removed 93% of pollutant when exposed for 10 days | [191] |
Azolla filiculoides | Polyphenols and COD in two different olive mill wastewaters Initial COD—92,000 ± 2200 and 44,400 ± 800. Initial polyphenols—7360 ± 290 and 4367 ± 130. | COD—52% and polyphenols—53% (wastewater from traditional extraction system) COD—95% and polyphenols—65% (wastewater from continuous extraction system) | [192] |
Azolla filiculoides | Acid green 3 at 10 mg/L concentration | 99.1% when absorbent concentration was 4 g/L and the exposed time was 90 min. | [193] |
Azolla filiculoides | Ampicillin at 100 mg/L concentration | 0.8 g/L activated carbon prepared from Azolla filiculoides was proficient to remove 96.84% of ampicillin with a contact time of 60 min. | [194] |
Azolla filiculoides | Pyrocatechol at 5 ppm of concentration. | Removed more than 90% after 14 days of duration | [195] |
Azolla pinnata | Palm oil mill effluent Concentration of effluent varied from 10% to 60% | BOD—92.98% (35% concentration), COD—86.01% (60% of concentration), and oil and grease—79.74% (35% concentration). | [169] |
Floating Aquatic Macrophytes | Productivity (ton/ha/yr) | Reference |
---|---|---|
Eichornia crassipes | 60–100 | [82] |
Eichornia crassipes | 456 | [216] |
Eichornia crassipes | 106 | [217] |
Lemna sp. | 39.2–44 | [218] |
Lemna sp. | 481–730 | [164] |
Azolla sp. | 33–35 | [219] |
Azolla sp. | 100 | [218] |
Azolla sp. | 93.4–100 | [220] |
Biomass | Cellulose (%) | Hemicellulose (%) | Starch (%) | Lignin (%) | Reference |
---|---|---|---|---|---|
Water hyacinth | 24.5 | 34.1 | NA | 8.6 | [230] |
Water hyacinth | 36.84 ± 0.8 | 27.7 ± 0.2 | NA | 7.93 ± 0.5 | [231] |
Water hyacinth (root) | 24.34 | 54.95 | NA | 14.44 | [232] |
Water hyacinth | 13.24 | 64.54 | NA | 8.19 | [232] |
Water hyacinth | 24.8 | 30 | NA | 5.6 | [233] |
Azolla | 21.8 | 13.5 | NA | 10.3 | [218] |
Azolla pinnata | 12.76 | 10.20 | NA | 28.24 | [234] |
Azolla | 5.6–15.2 | 9.8–17.9 | NA | 9.3–34.8 | [235] |
Azolla pinnata | 28.87 ± 0.64 | 11.11 ± 0.29 | NA | 8.07 ± 0.25 | [236] |
Azolla pinnata | 26.00 ± 0.31 | 14.00 ± 0.31 | NA | 7.00 ± 0.11 | [237] |
Duckweed | 10–24.5 | 3.5 | 5–70 | 3.1 | [238] |
Duckweed | 55.2 | 33.6 | NA | 12.2 | [225] |
Duckweed | 43.7 | 3.5 | 20 | 2.4 | [239] |
Duckweed | 29.4 ± 1.8 | 24.6 ± 2.2 | NA | 23.8 ± 1.3 | [240] |
Duckweed | 11.9 | 13.8 | 3.2 | 3.2 | [241] |
Macrophyte | Form of Energy | Description of Produced Bio-Energy | References |
---|---|---|---|
Water hyacinth | Bioethanol | 185 mg/g of dry WH bioethanol was produced during fungal and acid-treated usage. | [250] |
Water hyacinth | Bioethanol | E. crassipes without chromium adhered performed higher (12,100 mg/L) in producing bioethanol than that of chromium adhered (8000 mg/L). | [251] |
Water hyacinth | Biodiesel | Biodiesel content of water hyacinth was susceptible for different season. It varied between 3.32 and 6.36%. The content was highest in summer season (6.36%). | [252] |
Water hyacinth | Biogas | At the end of the 50th day, pretreated water hyacinth produced 3737 ± 21 mL of biogas, whereas non-pretreated water hyacinth produced 3038 ± 13 mL. | [231] |
Water hyacinth | Biogas and bioelectricity | The maximum cumulative bio-H2 production was 904.24 ± 40.69 mL/L within 14 h of fermentation. The bio-methane production improved with time and stopped on the 18th day. The highest cumulative CH4 produced was 796.73 ± 18.62 mL/L. The maximum power density obtained using fuel cells was 18.81 ± 0.75 W m−3. | [233] |
Azolla filiculoides | Biodiesel | Produced biodiesel characteristics matched well and had an estimated density of 880 ± 2.9 kg m−3, cetane number of 63 ± 4.0 and an iodine value of 80 ± 15. | [253] |
Azolla pinnata | Biogas | 1 L of slurry made from Azolla pinnata and cow dung produced 3571.14 mL of biogas, where methane percentage was 55.62% | [254] |
Azolla filiculoides | Bioethanol | Azolla filiculoides hydrolysate used to produce ethanol with different microbes, among them, Kluyveromyces marxianus, produced the highest bioethanol (26.8 g/L) within 60 h. | [255] |
Azolla filiculoides | Biogas | Highest cumulative methane yield was 280.9 mL/g volatile solid in lipid free sample. | [256] |
Azolla spp. | Bio-oil | 38.5% (weight basis) bio-oil was obtained. | [257] |
Lemna gibba | Biogas | Methane yield ranged between 60 and 468 mL/g of volatile solid in pretreated duckweed, and for non-pretreated duckweed it was between 9 and 76 mL/g of volatile solid. | [258] |
Lemna spp. | Biogas | The maximum cumulative biogas production was 11,695 mL for mixure of cattle manure and duckweed in the ratio of 1:1. | [225] |
Lemna minor | Biogas | The reactor with the highest specific biogas output, 0.16 L/g of organic carbon, was found to have a duckweed biomass/inoculum/food waste ratio of 1:1:1. | [259] |
Spirodela polyrrhiza | Ethanol | Ethanol yield of 12.0 ± 0.6 g/100 g dry ground sample of duckweed with conversion efficiency of 90.8% | [260] |
Lemna spp. | Bio-oil | The bio-oil yield was 40% of dry duckweed in weight basis. | [261] |
Macrophytes | Protein | Lipid | Ash | Total Carbohydrate | References |
---|---|---|---|---|---|
Azolla filiculoides | 19.70 | 4.20 | 18.50 | NA | [271] |
Azolla pinnata | 26.84 ± 0.70 | 5.55 ± 0.70 | 18.37 ± 0.10 | NA | [272] |
Azolla | 27.1 | 6.37 | 14.29 | 45.86 | [273] |
Azolla japonica | 23.7–31.2 | 6.0–6.7 | 9.0–9.5 | NA | [274] |
Azolla pinnata | 21.4 | NA | 16.2 | NA | [234] |
Lemna minor | 28.00 | 5.00 | 25.00 | 42.00 | [275] |
Lemna minor | NA | 3.1 | NA | 51.2 | [239] |
Lemna sp. | 16.0 | 9.0 | 26 | 35.0 | [276] |
Lemna gibba | 21.5 | 4.5 | 20.1 | NA | [277] |
Lemna punctata | 16.3 | NA | 3.5 | 24.5 | [278] |
Eichornia crassipes | 17.93 | 16.62 | 8.85 | 49.05 | [279] |
Eichornia crassipes | 10.5 | 1.5 | 12.4 | NA | [280] |
Eichornia crassipes | 8.53 ± 0.43 | 1.42 ± 0.01 | 20.12 ± 0.12 | NA | [281] |
Eichornia crassipes | 10.4 | 1.66 | 24.6 | NA | [282] |
Eichornia crassipes | 13.88 | 4.89 | 24.16 | NA | [283] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayanthan, S.; Hasan, H.A.; Abdullah, S.R.S. Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water 2024, 16, 870. https://doi.org/10.3390/w16060870
Sayanthan S, Hasan HA, Abdullah SRS. Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water. 2024; 16(6):870. https://doi.org/10.3390/w16060870
Chicago/Turabian StyleSayanthan, S., Hassimi Abu Hasan, and Siti Rozaimah Sheikh Abdullah. 2024. "Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy" Water 16, no. 6: 870. https://doi.org/10.3390/w16060870
APA StyleSayanthan, S., Hasan, H. A., & Abdullah, S. R. S. (2024). Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water, 16(6), 870. https://doi.org/10.3390/w16060870