Research Progress on Spatiotemporal Interpolation Methods for Meteorological Elements
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Characteristics of the Study
3.2. Spatiotemporal Geostatistical Interpolation
3.2.1. Spatiotemporal Variability Function
3.2.2. Spatiotemporal Kriging
3.2.3. Bayesian Maximum Entropy
3.3. Spatiotemporal Deterministic Interpolation
3.3.1. State Space Model
3.3.2. Funk-SVD Model
3.3.3. Poly-log Weibull
3.3.4. Residual Network Model
3.4. Spatiotemporal Mixed Interpolation
3.4.1. Approximate Reduction Method and Extension Method
3.4.2. Spatiotemporal Heterogeneous Covariance Method
3.4.3. Fit-Coefficient Method
3.4.4. Integrated Approach
3.5. Precision Evaluation
4. Conclusions and Future Remarks
- The development of spatiotemporal interpolation methods: The first problem faced by the current spatiotemporal interpolation methods is that there is no obvious similarity between the spatial and temporal domains of meteorological element data in terms of units of measurement, characteristics of data arrangement, and data volume [28], and the establishment of a more appropriate model of the relationship between spatiotemporal variables becomes crucial. Secondly, the main research of the current spatiotemporal interpolation method is conducted to improve the existing method. The improved spatiotemporal interpolation model has some degree of improvement in estimation accuracy, but the spatiotemporal variability of spatiotemporal data is extremely complex, and the spatiotemporal stability and spatiotemporal correlation are poorly interpreted [41,54], so how can we build a spatiotemporal interpolation model in conformity with the spatiotemporal mechanism? For example, the stochastic simulation based on geostatistics can reproduce the spatial pattern using various types of data, and the effect of smoothing in kriging can be overcome by the stochastic simulation. If the stochastic simulation based on geostatistics is extended to the spatiotemporal pattern and the results are compared with the prediction results of the univariate-based spatiotemporal interpolation methods such as spatiotemporal kriging, it will be helpful for evaluating the uncertainties in the interpolation results, and it has a very important practical significance [62]. The third aspect is that, based on analyzing the spatiotemporal mechanisms affecting the changes in interpolated elements and the spatiotemporal distribution of the available data, it is also necessary to consider the accuracy and computational efficiency of the method [63]. In addition to the preprocessing stage of meteorological data, spatiotemporal data analyses such as the cluster analysis and trend analysis of the original dataset can help to obtain a better estimation accuracy [31]. Machine learning can also be chosen to improve the accuracy and computational efficiency of the method and is able to adaptively establish complex nonlinear relationships and adapt to various complex data patterns, such as building spatiotemporal interpolation models based on vector machines [61] and Gaussian process regression [64]. Combining machine learning with spatiotemporal statistical methods not only satisfies the spatiotemporal dependence and non-stationarity of spatiotemporal data and reflects the physical mechanism of meteorological element changes but also improves the interpolation efficiency.
- The assessment of spatiotemporal interpolation methods: When evaluating the interpolation accuracy of the novel spatiotemporal interpolation model, scholars often use the spatial interpolation model to make comparisons, ignoring the different dimensions between the two and obtaining different results. Therefore, in the following evaluation of spatiotemporal interpolation methods, in addition to the new spatiotemporal interpolation model and the STOK model for accuracy comparison, other spatiotemporal geostatistical interpolation methods, spatiotemporal deterministic interpolation methods, and spatiotemporal hybrid interpolation methods can be considered for accuracy comparison. At present, a lot of spatiotemporal interpolation methods are proposed, but a unified evaluation standard needs to be developed, and the applicable scenarios about spatiotemporal interpolation models need to be discussed.
- The selection of data sources: At present, when estimating or forecasting meteorological elements, the data from meteorological stations are mainly used. However, when the meteorological stations are sparsely distributed, their measured data cannot fully reflect the spatial and temporal variation characteristics of meteorological elements [65]. Remote sensing-based meteorological products can obtain more accurate estimates of meteorological values than meteorological stations [66,67,68], but remote-sensing meteorological products are susceptible to certain errors due to the influence of sensor performance and other factors [69]. Combining these two types of observations using kriging [39,65], Bayesian modeling [48], and regression modeling [36], which utilizes high-quality data from meteorological stations while also obtaining spatially continuous information observed by remote sensing, can effectively improve the estimation accuracy of meteorological values [7,70].
Author Contributions
Funding
Conflicts of Interest
References
- Lu, Y.Y.; Wu, B.W.; Tian, H.; Sun, W. Spatial and temporal variability characteristics of precipitation in HUAI river basin during 1961~2005. Resour. Environ. Yangtze Basin 2011, 20, 567–573. [Google Scholar]
- Sun, P.; Jin, Y.T.; Guo, Z.C.; Liu, N.; Su, H.M. Study on the summer precipitation spatial-temporal variation and influencing factors in Anhui Province in 1959–2017. J. Irrig. Drain. 2020, 39, 99–106. [Google Scholar]
- Xu, S.Q.; Ding, X.C.; Wang, B. Alternative observation of ground stations by multiple satellite remote sensing precipitation in Alpine region. J. Northeast Agric. Univ. 2017, 48, 63–73. [Google Scholar]
- Hu, Q.; Li, Z.; Wang, L.; Huang, Y.; Wang, Y.; Li, L. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water 2019, 11, 579. [Google Scholar] [CrossRef]
- Chen, F.R.; Liu, Y.; Li, X. A novel imputation method of missing air temperature records based on merging Spatio-temporal Characteristics. Sci. Geogr. Sin. 2014, 34, 1125–1133. [Google Scholar]
- Shope, C.L.; Maharjan, G.R. Modeling spatiotemporal precipitation: Effects of density, interpolation, and land use distribution. Adv. Meteorol. 2015, 2015, 174196. [Google Scholar] [CrossRef]
- Caseri, A.; Ramos, M.H.; Javelle, P.; Leblois, E. A space-time geostatistical approach for ensemble rainfall nowcasting. E3S Web Conf. 2016, 7, 18001. [Google Scholar] [CrossRef]
- Casellas, E.; Bech, J.; Veciana, R.; Miró, J.R.; Sairouni, A.; Pineda, N. A meteorological analysis interpolation scheme for high spatial-temporal resolution in complex terrain. Atmos. Res. 2020, 246, 105103. [Google Scholar] [CrossRef]
- Wu, L.; Wu, X.J.; Xiao, C.C.; Tian, Y. On temporal and spatial error distributions of five precipitation interpolation models: A case of Shenzhen. Geogr. Geo-Inf. Sci. 2010, 26, 19–24. [Google Scholar]
- Subyani, A.M. Climate variability in space-time variogram models of annual rainfall in arid regions. Arab. J. Geosci. 2019, 12, 650. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Kalo, M.; Piltner, R. Spatiotemporal interpolation methods for the application of estimating population exposure to fine particulate matter in the contiguous US and a real-time web application. Int. J. Environ. Res. Public Health 2016, 13, 749. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Ge, Y.; Li, L.F.; Meng, B.; Wu, J.L.; Bo, Y.C.; Du, S.H.; Liao, Y.L.; Hu, M.G.; Xu, C.D. Spatiotemporal data analysis in geography. Acta Geogr. Sin. 2014, 69, 20. [Google Scholar]
- Li, Y.; Wang, L.N. Research of spatio-temporal interpolation algorithm based on time series. Comput. Sci. 2014, 41, 414–416. [Google Scholar]
- Li, Y.; Qi, S.; Cheng, B.; Ma, J.; Ma, C.; Qiu, Y.; Chen, Q. Influencing factors of space-time distribution of precipitation and comparison of interpolation methods for mountain areas in Southwest China. Fresenius Environ. Bull. 2019, 28, 4759–4777. [Google Scholar]
- Wu, C.G.; Lin, D.S.; Zhou, Z.X.; Wang, P.C.; Xiao, W.F.; Teng, M.J. Patial interpolation methods and temporal-spatial distribution of precipitation in the three gorges reservoir area. Resour. Environ. Yangtze Basin 2010, 19, 752–758. [Google Scholar]
- Zhu, Q.A.; Jiang, H.; Song, X.D. Simulation and analysis of spatial-temporal patterns of acid rain in southern China based on spatial interpolation. Res. Environ. Sci. 2009, 22, 1237–1244. [Google Scholar]
- Fung, K.F.; Chew, K.S.; Huang, Y.F.; Ahmed, A.N.; Teo, F.Y.; Ng, J.L.; Elshafie, A. Evaluation of spatial interpolation methods and spatiotemporal modeling of rainfall distribution in Peninsular Malaysia. Ain Shams Eng. J. 2022, 13, 101571. [Google Scholar] [CrossRef]
- Ali, G.; Sajjad, M.; Kanwal, S.; Xiao, T.; Khalid, S.; Shoaib, F.; Gul, H.N. Spatial-temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep. 2021, 11, 6935. [Google Scholar] [CrossRef]
- Hu, D.G. Multivariate Spatiotemporal Kriging Interpolation and Spatiotemporal Analysis of Precipitation in Xinjiang. Ph.D. Thesis, Wuhan University, Wuhan, China, 2019. [Google Scholar]
- Ye, J.T.; Ji, S.M.; Yang, Y. Spatio-temporal geostatistics method research and progress. Geomat. Spat. Info R Mation Technol. 2014, 37, 38–43. [Google Scholar]
- Kebaili, B.Z.; Chebbi, A. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 2009, 365, 56–73. [Google Scholar] [CrossRef]
- Fernández-Cortés, A.; Calaforra, J.M.; Jiménez-Espinosa, R.; Sánchez-Martos, F. Geostatistical spatiotemporal analysis of air temperature as an aid to delineating thermal stability zones in a potential show cave: Implications for environmental management. J Environ. Manag. 2006, 81, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.G.; Shu, H. Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging. J. Cent. South Univ. 2019, 26, 684–694. [Google Scholar] [CrossRef]
- Deng, M.; Cai, J.N.; Yang, W.T.; Tang, J.; Yang, X.; Liu, Q.; Shi, Y. Spatio-temporal analysis methods for multi-modal geographic big data. J. Geo-Inf. Sci. 2020, 22, 41–56. [Google Scholar]
- Chen, W.F.; Genton, M.G.; Su, Y. Space-time covariance structures and models. Annu. Rev. Stat. Its Appl. 2021, 8, 191–215. [Google Scholar] [CrossRef]
- Hu, D.G.; Shu, H.; Hu, H.D. Variogram modeling in space-time CoKriging. J. Cent. China Norm. Univ. (Nat Sci.) 2015, 49, 596–602+22. [Google Scholar]
- Liu, Q.F. A Study on Two Classes of Spatio-Temporal Data Models and Their Application. Master’s Thesis, Chang’an University, Xi’an, China, 2015. [Google Scholar]
- Li, S.; Shu, H.; Xu, Z.Q. Study on Spatial-temporal kriging interpolation of monthly precipitation in three provinces of northeast China. J. China Hydrol. 2011, 31, 31–35. [Google Scholar]
- Bourotte, M.; Allard, D.; Porcu, E. A flexible class of non-separable cross-covariance functions for multivariate space–time data. Spat. Stat. 2016, 18, 125–146. [Google Scholar] [CrossRef]
- Xu, M.L.; Xing, T.; Han, M. Spatial-temporal data interpolation based on spatial-temporal Kriging method. Acta Autom. Sin. 2020, 46, 1681–1688. [Google Scholar]
- Nasseri, M.; Zahraie, B. Application of simple clustering on space-time mapping of mean monthly rainfall pattern. Int. J. Climatol. 2011, 31, 732–741. [Google Scholar] [CrossRef]
- Raja, N.B.; Aydin, O.; Turkoglu, N.; Çiçek, I. Space-time kriging of precipitation variability in Turkey for the period 1976–2010. Theor. Appl. Climatol. 2017, 129, 293–304. [Google Scholar] [CrossRef]
- Liu, X.M.; Wan, Z.; Liu, H.Y. Spatial and temporal variation of rainfall in the Hailar river basin based on geostatistics theory. South North Water Transf. Water Sci. Technol. 2014, 12, 16–20. [Google Scholar]
- Li, S.; Griffith, D.A.; Shu, H. Temperature prediction based on a space-time regression-kriging model. J. Appl. Stat. 2020, 47, 1168–1190. [Google Scholar] [CrossRef]
- Hu, D.G.; Shu, H.; Hu, H.D.; Xu, J. Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data. Clust. Comput. J. Netw. Softw. Tools Appl. 2017, 20, 347–357. [Google Scholar] [CrossRef]
- Zhang, G.; Tian, G.; Cai, D.; Bai, R.; Tong, J. Merging radar and rain gauge data by using spatial–temporal local weighted linear regression kriging for quantitative precipitation estimation. J. Hydrol. 2021, 601, 126612. [Google Scholar] [CrossRef]
- Medeiros, E.S.; Lima, R.R.; Olinda, R.A.; Dantas, L.G.; Santos, C.A.D. Space-time kriging of precipitation: Modeling the large-scale variation with model GAMLSS. Water 2019, 11, 2368. [Google Scholar] [CrossRef]
- Medeiros, E.S.; Lima, R.R.; Olinda, R.A.; Dantas, L.G.; Santos, C.A.D. Performance assessment of spatio-temporal regression kriging with GAMLSS models as trends. Acad. Bras. Cienc. 2022, 94 (Suppl. 3), e20211241. [Google Scholar] [CrossRef] [PubMed]
- Varouchakis, E.A.; Kamińska-Chuchmala, A.; Kowalik, G.; Spanoudaki, K.; Graña, M. Combining geostatistics and remote sensing data to improve spatiotemporal analysis of precipitation. Sensors 2021, 21, 3132. [Google Scholar] [CrossRef]
- Martinez, W.A.; Melo, C.E.; Melo, O.O. Median polish kriging for space-time analysis of precipitation. Spat. Stat. 2017, 19, 1–20. [Google Scholar] [CrossRef]
- Cressie, N.; Shi, T.; Kang, E.L. Fixed rank filtering for spatio-temporal data. J. Comput. Graph. Stat. 2010, 19, 724–745. [Google Scholar] [CrossRef]
- Duan, Y.; Shu, H.; Hu, H.D. Using fixed rank filtering to make spatio-temporal interpolation of MODIS temperature. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 1027–1033. [Google Scholar]
- Zhang, Y.H.; Zheng, X.Q.; Wang, Z.H.; Ai, G.; Huang, Q. Implementation of a parallel GPU-based space-time kriging framework. Int. J. Geo-Inf. 2018, 7, 193. [Google Scholar] [CrossRef]
- Bayat, B.; Nasseri, M.; Zahraie, B. Identification of long-term annual pattern of meteorological drought based on spatiotemporal methods: Evaluation of different geostatistical approaches. Nat. Hazards 2015, 76, 515–541. [Google Scholar] [CrossRef]
- Shi, T.T.; Yang, X.M.; Christakos, G.; Wang, J.; Liu, L. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates. Atmosphere 2015, 6, 1307–1326. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhong, S.B.; Yao, G.N.; Huang, Q.Y. BME Spatiotemporal estimation of annual precipitation and detection of drought hazard clusters using space-time scan statistics in the Yun-Gui-Guang region, mainland China. J. Appl. Meteorol. Climatol. 2017, 56, 2301–2316. [Google Scholar] [CrossRef]
- Bayat, B.; Zahraie, B.; Taghavi, F.; Nasseri, M. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns. Theor. Appl. Climatol. 2013, 113, 429–444. [Google Scholar] [CrossRef]
- Jin, B.S.; Wu, Y.H.; Miao, B.Q.; Wang, X.L.; Guo, P. Bayesian spatiotemporal modeling for blending in situ observations with satellite precipitation estimates. J. Geophys. Res. Atmos. 2014, 119, 1806–1819. [Google Scholar] [CrossRef]
- Shi, T.T.; Yang, X.M.; Zhang, T.; Liu, L.; Tian, W.J. Spatiotemporal Analytical Research of Precipitation in Fujian Province Based on TRMM and BME. J. Geo-Inf. Sci. 2014, 16, 470–481. [Google Scholar]
- Militino, A.F.; Ugarte, M.D.; Goicoa, T.; Genton, M. Interpolation of daily rainfall using spatiotemporal models and clustering. Int. J. Climatol. 2015, 35, 1453–1464. [Google Scholar] [CrossRef]
- Padilla, L.; Lagos-Álvarez, B.; Mateu, J.; Porcu, E. Space-time autoregressive estimation and prediction with missing data based on Kalman filtering. Environmetrics 2020, 31, e2627. [Google Scholar] [CrossRef]
- Lagos-Álvarez, B.; Padilla, L.; Mateu, J.; Ferreira, G. A Kalman filter method for estimation and prediction of space–time data with an autoregressive structure. J. Stat. Plan. Inference 2019, 203, 117–130. [Google Scholar] [CrossRef]
- Chen, H.; Sheng, S.; Xia, R.; Ma, R.; Zhu, Y.; Li, T. Spatiotemporal interpolation method of rainfall based on matrix decomposition. J. Hohai Univ. (Nat. Sci.) 2021, 49, 35–41. [Google Scholar]
- Chen, H.; Sheng, S.; Xu, C.Y.; Li, Z.Y.; Zhang, W.; Wang, S.W.; Guo, S.L. A spatiotemporal estimation method for hourly rainfall based on F-SVD in the recommender system. Environ. Model. Softw. 2021, 144, 105148. [Google Scholar] [CrossRef]
- Mota, A.L.; De Lima, M.S.; Demarqui, F.N.; Duczmal, L.H. The poly-log Weibull model applied to space-time interpolation of temperature. Environmetrics 2018, 29, e2520. [Google Scholar] [CrossRef]
- Fang, Y.; Li, L.F. Spatiotemporal estimation of high-accuracy and high-resolution meteorological parameters based on machine learning. J. Geo-Inf. Sci. 2019, 21, 799–813. [Google Scholar]
- Peng, S.L. Developments Spatio-Temporal Interpolation Methods for Meteorological Elements. Master’s Thesis, Central South University, Changsha, China, 2010. [Google Scholar]
- Li, L.X.; Revesz, P. Interpolation methods for spatio-temporal geographic data. Comput. Environ. Urban Syst. 2004, 28, 201–227. [Google Scholar] [CrossRef]
- Fan, Z.D.; Gong, J.Y.; Liu, B.; Li, J.L.; Deng, M. A Space-time interpolation method of missing data based on spatio-temporal heterogeneity. Acta Geod. Cartogr. Sin. 2016, 45, 458–465. [Google Scholar]
- Wentz, E.A.; Peuquet, D.J.; Anderson, S. An ensemble approach to space-time interpolation. Int. J. Geogr. Inf. Sci. 2010, 24, 1309–1325. [Google Scholar] [CrossRef]
- Su, S.F.; Zhu, C.; Zhu, W.J.; Zhao, F.C. Algorithm of missing value filling based on temporal-spatial fusion. Comput. Eng. Des. 2020, 41, 78–84. [Google Scholar]
- Leblois, E.; Creutin, J.D. Space-time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method. Water Resour. Res. 2013, 49, 3375–3387. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Jia, Y.W.; Wang, H.; Zhu, H.H.; Wang, J.H.; Yan, D.H. Interpolating precipitation in space and time in large-scale basin based on rain gauges. J. China Hydrol. 2006, 1, 6–11. [Google Scholar]
- Kuang, Y.; Chen, T.S.; Yin, F.; Zhong, R. Recursive implementation of gaussian process regression for spatial-temporal data modeling. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019. [Google Scholar]
- Cassiraga, E.; Gomez-hernandez, J.J.; Berenguer, M.; Sempere-Torres, D.; Rodrigo-Ilarri, J. Spatiotemporal precipitation estimation from rain gauges and meteorological radar using geostatistics. Math. Geosci. 2021, 53, 499–516. [Google Scholar] [CrossRef]
- Manz, B.; Paez-Bimos, S.; Horna, N.; Buytaert, W.; Ochoa-Tocachi, B.; Lavado-Casimiro, W.; Willems, B. Comparative ground validation of IMERG and TMPA at variable spatiotemporal scales in the tropical Andes. J. Hydrometeorol. 2017, 18, 2469–2489. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S. Spatiotemporal changes in precipitation indicators related to bioclimate in Iran. Theor. Appl. Climatol. 2020, 141, 99–115. [Google Scholar] [CrossRef]
- Mosaffa, H.; Sadeghi, M.; Hayatbini, N.; Afzali Gorooh, V.; Akbari Asanjan, A.; Nguyen, P.; Sorooshian, S. Spatiotemporal variations of precipitation over Iran using the high-resolution and nearly four decades satellite-based PERSIANN-CDR dataset. Remote Sens. 2020, 12, 1584. [Google Scholar] [CrossRef]
- Long, Y.P.; Zhang, Y.N.; Ma, Q.M. A Merging framework for rainfall estimation at high spatiotemporal resolution for distributed hydrological modeling in a data-scarce area. Remote Sens. 2016, 8, 599. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
Usage | Evaluation Indicators |
---|---|
Evaluate the interpolation accuracy of the model | Mean Error (ME), Relative Mean Absolute Error (RMAE), Mean Square Error (MSE), Normalized Mean Square Error (NMSE), Root Mean Square Error (RMSE), Bias, Coefficient of Determination (R2, the best variance function/covariance has the highest R2, indicating a strong correlation between the estimates and the observations), Pearson’s Correlation Coefficient, Mean Symmetric Absolute Percentage Error (SMAPE), Standard Deviation (SD), Standard Error (SE), Percentage Error (PERC), and two-sample Kolmogorov–Smirnov test statistic (KS) [54] |
Evaluating the accuracy of variational function model fitting | Mean Absolute Error (MAE), Root Mean Square Error (RMSE, also known as Root Mean Square Deviation, RMSD), Root Mean Squared Interpolation Error (RMSIE, reflecting the sensitivity of estimation using sample data and extreme effects, mainly used in geostatistics or spatial analysis), Normalized Root Mean Square Error (NRMSE), Nash–Sutcliffe Efficiency (NSE), and Relative Root Mean Square Error (RRMSE, indicating the degree of increase in the accuracy of the estimation, such as calculating a decrease in the Root Mean Square Error (RMSE) of the STCK relative to STOK [23]) |
Category | Spatiotemporal Method | Characteristics | Shortcomings |
---|---|---|---|
Spatiotemporal geostatistical interpolation | STOK | STOK is a temporal extension of ordinary kriging that uses the spatiotemporal variability of spatiotemporal data for modeling and estimating the value of an unknown location or time; wide applicability. | Limited ability to predict the future; more suitable for interpolation estimation of data in space; does not consider the uncertainty in the dataset and the fitting technique of the model; more sensitive to the outliers in the data. |
STCK | Adds covariates to STOK; suitable for continuous and stable spatiotemporal data. | Limited modeling capability for non-stationary and nonlinear spatiotemporal data; computationally intensive. | |
STUK | Ability to flexibly handle different forms of spatial and temporal correlations; suitable for non-smooth and nonlinear spatiotemporal data. | The selection and adjustment of parameters may be difficult. Interpolation results may be unstable for cases where the data are not evenly distributed or where there are missing values. | |
STRK | Ability to use auxiliary variables to better explain the spatiotemporal variability of the data; better fit for spatiotemporal data in the presence of more auxiliary variables. | The structure and parameters of the regression model need to be determined in advance; limited modeling capability for non-stationary and nonlinear spatiotemporal data; computationally intensive. | |
MMPK | Able to effectively deal with outliers and outliers, making the interpolation results more robust. Applicable to spatiotemporal data with local outliers or outliers. | The identification and treatment of outliers and outliers may be more fixed and not adaptable to different data situations. | |
FRF | With simple and fast computational characteristics, it is suitable for interpolation of large-scale spatiotemporal data. Works better for smooth and less noisy spatiotemporal data. | Limited modeling capability for non-stationary and nonlinear spatiotemporal data. | |
BME | Flexibility in handling various types of data and complex model structures; introducing a priori knowledge intuitively into the model, which helps to improve the accuracy and robustness of the model; providing a posteriori probability distribution makes the results of the model easier to interpret and understand, providing an intuitive basis for decision-making. | Interpolation results are affected by the choice of prior distributions, and the selection of inappropriate prior distributions may lead to biased or misleading results; computational complexity and long computation time; the need for reasonable settings and adjustments of parameters and hyperparameters, which increases the complexity of the model and the difficulty of debugging. | |
Spatiotemporal deterministic interpolation | SSM | Captures the dynamics of data in time and space. Typically deals with continuous time-series data, including a wide range of noise, such as measurement error; strong ability to predict the future and capture the evolutionary trends of the system. | Calculations and parameter selection have high complexity and are computationally expensive to handle large-scale data. |
F-SVD | Using regularization methods and stochastic gradient descent algorithms. | Complex calculations, difficult parameter adjustment, and some difficulty in interpreting results. | |
PLW | Being able to effectively deal with extreme values in the data; the ability to flexibly parameterize the data and adapt to different types and scales of spatiotemporal data. | Limited by modeling assumptions, e.g., assumption of Pareto distribution and potential random fields for spatial sharing; high complexity in calculations and parameter selection. | |
Residual network model | Capable of handling complex relationships between multiple input variables and target variables; strong nonlinear fitting ability to model complex spatial and temporal correlations in spatiotemporal data. | Complex calculations, difficult parameter adjustment, and some difficulty in interpreting results. | |
Spatiotemporal mixed interpolation | Approximate reduction and extension method | Simple and easy to implement. | The moment points to be interpolated can only be derived from the measured values of the two moments before and after the moment, ignoring the measured values of other moments on the whole time series, resulting in the deviation of the estimated value from the measured value. |
SH-HC | Considering spatiotemporal heterogeneity, the spatiotemporal dataset is partitioned into temporal and spatial dimensions, respectively, and the correlation coefficient is used to determine the spatiotemporal weights. | Partitioning is difficult for data with fuzzy spatiotemporal partitioning. | |
Fit-coefficient method | By fitting the optimal coefficients, the advantages of temporal and spatial interpolation methods are fully combined. | Interpolation results depend on the quality and distribution of the original data. There is a risk of overfitting when fitting the optimal coefficients. | |
STIE | Iterative use of temporal and spatial dimensionality methods using integrated methods to improve interpolation accuracy and stability. | Complex calculations, difficult parameter adjustment, and some difficulty in interpreting results. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, X.; Liu, R.; Zhang, Z. Research Progress on Spatiotemporal Interpolation Methods for Meteorological Elements. Water 2024, 16, 818. https://doi.org/10.3390/w16060818
Wang Y, Liu X, Liu R, Zhang Z. Research Progress on Spatiotemporal Interpolation Methods for Meteorological Elements. Water. 2024; 16(6):818. https://doi.org/10.3390/w16060818
Chicago/Turabian StyleWang, Yizhen, Xin Liu, Riu Liu, and Zhijie Zhang. 2024. "Research Progress on Spatiotemporal Interpolation Methods for Meteorological Elements" Water 16, no. 6: 818. https://doi.org/10.3390/w16060818
APA StyleWang, Y., Liu, X., Liu, R., & Zhang, Z. (2024). Research Progress on Spatiotemporal Interpolation Methods for Meteorological Elements. Water, 16(6), 818. https://doi.org/10.3390/w16060818