Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Sensor Measurements
2.3. Earth Observation Data
2.4. Methods
2.4.1. Experimental Design
- ‘Multi-seasonal by Individual Sensor’ (M-I-S). This setup incorporates data from multiple seasons, analysing observations from each of the four in situ sensors individually.
- ‘Multi-seasonal—All Sensors’ (M-A-S). This approach incorporates data from all in situ measurements across three seasons, spanning from March to October.
- ‘Seasonal—All Sensors’ (S-A-S). This experiment consolidates sensor recordings on a per-season basis, separately analysing the spring period (25 March–30 May) and the summer period (2 June–31 August).
2.4.2. Water Quality Parameter Modelling
2.4.3. Accuracy Assessment
3. Results
3.1. ‘Multi-Seasonal by Individual Sensor’ (M-I-S) Experiment
3.2. ‘Multi-Seasonal—All Sensors’ (M-A-S) Experiment
3.3. ‘Seasonal—All Sensors’ (S-A-S) Experiment
3.4. Spatial Distribution of DO and EC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, J.C.; Schiebe, F.R. Water Quality. In Remote Sensing in Hydrology and Water Management; Schultz, G.A., Engman, E.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 287–303. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and Cloud Computing. Earth Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- IOCCG. Earth Observations in Support of Global Water Quality; International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2018. [Google Scholar] [CrossRef]
- Grizzetti, B.; Liquete, C.; Pistocchi, A.; Vigiak, O.; Zulian, G.; Bouraoui, F.; De Roo, A.; Cardoso, A.C. Relationship between Ecological Condition and Ecosystem Services in European Rivers, Lakes and Coastal Waters. Sci. Total Environ. 2019, 671, 452–465. [Google Scholar] [CrossRef]
- Heino, J.; Alahuhta, J.; Bini, L.M.; Cai, Y.; Heiskanen, A.; Hellsten, S.; Kortelainen, P.; Kotamäki, N.; Tolonen, K.T.; Vihervaara, P.; et al. Lakes in the Era of Global Change: Moving beyond Single-lake Thinking in Maintaining Biodiversity and Ecosystem Services. Biol. Rev. 2021, 96, 89–106. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- El Saadi, A.M.; Yousry, M.M.; Jahin, H.S. Statistical Estimation of Rosetta Branch Water Quality Using Multi-Spectral Data. Water Sci. 2014, 28, 18–30. [Google Scholar] [CrossRef]
- Vallecillo, S.; Maes, J.; Teller, A.; Babí Almenar, J.; Barredo, J.I.; Trombetti, M.; Malak, A. EU-Wide Methodology to Map and Assess Ecosystem Condition Towards a Common Approach Consistent with a Global Statistical Standard; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and Their Services: An Analytical Framework for Ecosystem Assessments; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Edens, B.; Maes, J.; Hein, L.; Obst, C.; Siikamaki, J.; Schenau, S.; Javorsek, M.; Chow, J.; Chan, J.Y.; Steurer, A.; et al. Establishing the SEEA Ecosystem Accounting as a Global Standard. Ecosyst. Serv. 2022, 54, 101413. [Google Scholar] [CrossRef]
- Samarinas, N.; Spiliotopoulos, M.; Tziolas, N.; Loukas, A. Synergistic Use of Earth Observation Driven Techniques to Support the Implementation of Water Framework Directive in Europe: A Review. Remote Sens. 2023, 15, 1983. [Google Scholar] [CrossRef]
- European Environment Agency. European Waters—Assessment of Status and Pressures; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Muller-Karger, F.E. Remote Sensing of Marine Pollution: A Challenge for the 1990s. Mar. Pollut. Bull. 1992, 25, 54–60. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Kumaran, S.S.; Partee, E.B.; Willis, L.P.; Mitchell, K. Potential of Mapping Dissolved Oxygen in the Little Miami River Using Sentinel-2 Images and Machine Learning Algorithms. Remote Sens. Appl. 2022, 26, 100759. [Google Scholar] [CrossRef]
- Kauppila, P.; Meeuwig, J.J.; Pitkänen, H. Predicting Oxygen in Small Estuaries of the Baltic Sea: A Comparative Approach. Estuar. Coast Shelf Sci. 2003, 57, 1115–1126. [Google Scholar] [CrossRef]
- Steinebach, Y. Water Quality and the Effectiveness of European Union Policies. Water 2019, 11, 2244. [Google Scholar] [CrossRef]
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of Water Quality Indices and Dissolved Oxygen as Indicators for River Water Classification and Urban Impact Assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Tian, S.; Guo, H.; Xu, W.; Zhu, X.; Wang, B.; Zeng, Q.; Mai, Y.; Huang, J.J. Remote Sensing Retrieval of Inland Water Quality Parameters Using Sentinel-2 and Multiple Machine Learning Algorithms. Environ. Sci. Pollut. Res. 2022, 30, 18617–18630. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-Based Algorithm for Semi-Empirically Partitioning Absorption Coefficient and Estimating Chlorophyll a Concentration in Various Turbid Case-2 Waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- Avdan, Z.Y.; Kaplan, G.; Goncu, S.; Avdan, U. Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2019, 8, 553. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C. Dependence of Satellite Ocean Color Data Products on Viewing Angles: A Comparison between SeaWiFS, MODIS, and VIIRS. Remote Sens. Environ. 2016, 175, 120–129. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. [Google Scholar] [CrossRef]
- Nguyen, U.N.T.; Pham, L.T.H.; Dang, T.D. An Automatic Water Detection Approach Using Landsat 8 OLI and Google Earth Engine Cloud Computing to Map Lakes and Reservoirs in New Zealand. Environ. Monit. Assess. 2019, 191, 235. [Google Scholar] [CrossRef] [PubMed]
- Theologou, I.; Patelaki, M.; Karantzalos, K. Can Single Empirical Algorithms Accurately Predict Inland Shallow Water Quality Status From High Resolution, Multi-Sensor, Multi-Temporal Satellite Data? Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-7/W3, 1511–1516. [Google Scholar] [CrossRef]
- Carlos González-Márquez, L.; Torres-Bejarano, F.M.; Torregroza-Espinosa, A.C.; Hansen-Rodríguez, I.R.; Rodríguez-Gallegos, H.B. Use of LANDSAT 8 Images for Depth and Water Quality Assessment of El Guájaro Reservoir, Colombia. J. S. Am. Earth Sci. 2018, 82, 231–238. [Google Scholar] [CrossRef]
- Mansaray, A.S.; Dzialowski, A.R.; Martin, M.E.; Wagner, K.L.; Gholizadeh, H.; Stoodley, S.H. Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sens. 2021, 13, 1847. [Google Scholar] [CrossRef]
- Sunar, F.; Dervisoglu, A.; Yagmur, N.; Aslan, E.; Ozguven, M. Analyzing the Retrieval Accuracy of Optically Active Water Components from Satellite Data under Varying Image Resolutions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-1–2023, 595–600. [Google Scholar] [CrossRef]
- Perin, V.; Roy, S.; Kington, J.; Harris, T.; Tulbure, M.G.; Stone, N.; Barsballe, T.; Reba, M.; Yaeger, M.A. Monitoring Small Water Bodies Using High Spatial and Temporal Resolution Analysis Ready Datasets. Remote Sens. 2021, 13, 5176. [Google Scholar] [CrossRef]
- Isidro, C.M.; McIntyre, N.; Lechner, A.M.; Callow, I. Quantifying Suspended Solids in Small Rivers Using Satellite Data. Sci. Total Environ. 2018, 634, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote Sensing of Ecosystem Services: A Systematic Review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-Sensing Estimation of Dissolved Inorganic Nitrogen Concentration in the Bohai Sea Using Band Combinations Derived from MODIS Data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Sharaf El Din, E.; Zhang, Y.; Suliman, A. Mapping Concentrations of Surface Water Quality Parameters Using a Novel Remote Sensing and Artificial Intelligence Framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar] [CrossRef]
- Li, L.; Gu, M.; Gong, C.; Hu, Y.; Wang, X.; Yang, Z.; He, Z. An Advanced Remote Sensing Retrieval Method for Urban Non-Optically Active Water Quality Parameters: An Example from Shanghai. Sci. Total Environ. 2023, 880, 163389. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A New Approach to Monitor Water Quality in the Menor Sea (Spain) Using Satellite Data and Machine Learning Methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef]
- Vatitsi, K.; Ioannidou, N.; Mirli, A.; Siachalou, S.; Kagalou, I.; Latinopoulos, D.; Mallinis, G. LULC Change Effects on Environmental Quality and Ecosystem Services Using EO Data in Two Rural River Basins in Thrace, Greece. Land 2023, 12, 1140. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Ntislidou, C.; Lazarina, M.; Papaevangelou, V.; Akratos, C.; Kagalou, I. Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River. Sustainability 2023, 15, 16569. [Google Scholar] [CrossRef]
- Gikas, G.; Dimou, D.; Tsihrintzis, V. River Water Quantity and Quality Monitoring in an Agricultural Basin in North Greece. Fresenius Environ. Bull. 2013, 22, 2006–2016. [Google Scholar]
- Bennett, K.R.; Zeng, J.; Diggins, D.; Nonas-Hunter, L.; Snow, C.; Bennett, A.A. The Development and Implementation of an Automated Coastal Environment Monitoring System. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Virtual, 5–30 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Aqua TROLL® Sondes; In-Situ Inc.: Fort Collins, CO, USA, 2023.
- AddVANTAGE Pro 6.6 User Manual; OTT Hydromet GmbH: Klosterneuburg, Austria, 2017.
- PLANET IMAGERY PRODUCT SPECIFICATIONS; Planet Labs PBC: San Francisco, CA, USA, 2022.
- Tu, Y.-H.; Johansen, K.; Aragon, B.; El Hajj, M.M.; McCabe, M.F. The Radiometric Accuracy of the 8-Band Multi-Spectral Surface Reflectance from the Planet SuperDove Constellation. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103035. [Google Scholar] [CrossRef]
- Rösch, M.; Sonnenschein, R.; Buchelt, S.; Ullmann, T. Comparing PlanetScope and Sentinel-2 Imagery for Mapping Mountain Pines in the Sarntal Alps, Italy. Remote Sens. 2022, 14, 3190. [Google Scholar] [CrossRef]
- Vapnik, V.; Chervonenkis, A.Y. The Method of Ordered Risk Minimization, I. Avtom. Telemekh. 1974, 8, 21–30. [Google Scholar]
- Sallaba, F. Seminar Series Nr 220 The Potential of Support Vector Machine Classification of Land Use and Land Cover Using Seasonality from MODIS Satellite Data. Master’s Thesis, Lund University, Lund, Sweden, 2011. [Google Scholar]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ghani, A.A.; Chan, N.W. Prediction of Water Quality Index in Constructed Wetlands Using Support Vector Machine. Environ. Sci. Pollut. Res. 2015, 22, 6208–6219. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Basant, N.; Gupta, S. Support Vector Machines in Water Quality Management. Anal. Chim. Acta 2011, 703, 152–162. [Google Scholar] [CrossRef]
- Pizani, F.M.C.; Maillard, P.; Ferreira, A.F.F.; De Amorim, C.C. Estimation of Water Quality in a Reservoir from Sentinel-2 MSI and Landsat-8 OLI Sensors. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, V-3-2020, 401–408. [Google Scholar] [CrossRef]
- Xu, W.; Duan, L.; Wen, X.; Li, H.; Li, D.; Zhang, Y.; Zhang, H. Effects of Seasonal Variation on Water Quality Parameters and Eutrophication in Lake Yangzong. Water 2022, 14, 2732. [Google Scholar] [CrossRef]
- Mushtaq, F.; Nee Lala, M.G. Remote Estimation of Water Quality Parameters of Himalayan Lake (Kashmir) Using Landsat 8 OLI Imagery. Geocarto Int. 2017, 32, 274–285. [Google Scholar] [CrossRef]
- Boskidis, I.; Gikas, G.D.; Sylaios, G.; Tsihrintzis, V.A. Water Quantity and Quality Assessment of Lower Nestos River, Greece. J. Environ. Sci. Health Part A 2011, 46, 1050–1067. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, R.; Ni, M.; Zhang, J.; Ji, Q.; Xiao, Z. Seasonal Variations of Water Quality Response to Land Use Metrics at Multi-Spatial Scales in the Yangtze River Basin. Environ. Sci. Pollut. Res. 2021, 28, 37172–37181. [Google Scholar] [CrossRef] [PubMed]
- Gikas, G.D. Water Quantity and Hydrochemical Quality Monitoring of Laspias River, North Greece. J. Environ. Sci. Health Part A 2017, 52, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Vidal, T.; Gonçalves, F.J.M.; Castro, B.B.; Pereira, J.L. Challenges to Water Quality Assessment in Europe—Is There Scope for Improvement of the Current Water Framework Directive Bioassessment Scheme in Rivers? Ecol. Indic. 2021, 121, 107030. [Google Scholar] [CrossRef]
- Kunlasak, K.; Chitmanat, C.; Whangchai, N.; Promya, J.; Lebel, L. Relationships of Dissolved Oxygen with Chlorophyll-a and Phytoplankton Composition in Tilapia Ponds. Int. J. Geosci. 2013, 4, 46–53. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-Based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F. Water Quality Retrieval and Algal Bloom Detection Using High-Resolution Cubesat Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, V-3–2021, 191–195. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
Sensor Site Description | Code | Start Date of Collection | End Date of Collection | Lon (E) | Lat (N) | |
---|---|---|---|---|---|---|
Lissos | Upstream area of river basin by agricultural sites, livestock units, and Natura 2000 protected site. | Lis-1 | 25 March 2022 | 28 October 2022 | 25.6187 | 41.0528 |
Downstream area of river basin at weir structure, by local industrial area, wastewater treatment plant, agricultural sites, and Natura 2000 protected site. | Lis-2 | 25 March 2022 | 28 October 2022 | 25.4920 | 41.0250 | |
Downstream area of river basin by agricultural sites and within Natura 2000 protected site. | Lis-3 | 25 March 2022 | 29 October 2022 | 25.4191 | 41.0179 | |
Laspias | Downstream area of river basin by weir structure and Natura 2000 protected site. | Las-1 | 25 March 2022 | 29 October 2022 | 24.8960 | 40.9711 |
Revisit Time | Equator Crossing Time | Spectral Bands | Wavelength Range (nm) |
---|---|---|---|
Daily at nadir | 9:30–11:30 am (local solar time) | Coastal Blue | 431–452 |
Blue | 465–515 | ||
Green Ι | 513–549 | ||
Green | 547–583 | ||
Yellow | 600–620 | ||
Red | 650–680 | ||
Red-Edge | 697–713 | ||
NIR | 845–885 |
In Situ Sensor | Season | Date Range | No. of Images |
---|---|---|---|
Lis-1 | Spring | 25 March–27 May | 16 |
Summer | 2 June–31 August | 19 | |
Autumn | 1 September–29 October | 7 | |
Total | 42 | ||
Lis-2 | Spring | 25 March–28 May | 14 |
Summer | 3 June–31 August | 19 | |
Autumn | 3 September–28 October | 8 | |
Total | 41 | ||
Lis-3 | Spring | 25 March–30 May | 13 |
Summer | 3 June–29 August | 17 | |
Autumn | 7 September–29 October | 8 | |
Total | 38 | ||
Las-1 | Spring | 25 March–30 May | 18 |
Summer | 6 June–30 August | 23 | |
Autumn | 5 September–28 October | 7 | |
Total | 48 |
Dates | DO (mg/L) | EC (μS/cm) | ||||||
---|---|---|---|---|---|---|---|---|
Lissos River and Laspias River | ||||||||
March to October | Multi-seasonal by Individual Sensor (min/max/mean of the parameters and No. of observations) | |||||||
Lis-1 | Lis-2 | Lis-3 | Las-1 | Lis-1 | Lis-2 | Lis-3 | Las-1 | |
8.120/12.120/ 9.714/42 | 1.950/11.680/ 7.343/38 | 7.170/10.160/ 8.336/38 | 0.070/9.860/ 1.606/49 | 242.2/478.8/383.2/42 | 304.3/604.9/485.0/38 | N/A | 281.4/1459.1/601.1/49 | |
Lissos River | ||||||||
March to October | Multi-seasonal—All Sensors (min/max/mean of the parameters and No. of observations) | |||||||
1.950/12.120/8.507/118 | 242.2/604.9/431.6/80 | |||||||
Seasonal—All Sensors (min/max/mean of the parameters and No. of observations) | ||||||||
March to May (Spring) | 7.140/12.120/9.752/43 | 242.2/480.2/363.4/30 | ||||||
June to August (Summer) | 1.950/9.530/7.525/55 | 358.6/577.4/462.2/38 |
Accuracy Metric | Formula |
---|---|
R2 | |
RMSE | |
ΜAΕ |
Study Area | Water Quality Parameter | Sensor | RMSE | R2 | MAE |
---|---|---|---|---|---|
Lissos | DO | Lis-1 | 0.706 | 0.885 | 0.527 |
Lis-2 | 1.414 | 0.821 | 1.074 | ||
Lis-3 | 0.504 | 0.799 | 0.313 | ||
EC | Lis-1 | 47.946 | 0.849 | 30.359 | |
Lis-2 | 50.676 | 0.693 | 32.185 | ||
Lis-3 | - | - | - | ||
Laspias | DO | Las-1 | 0.766 | 0.653 | 0.822 |
EC | 254.452 | 0.442 | 190.811 |
Water Quality Parameter | Season | RMSE | R2 | MAE |
---|---|---|---|---|
DO | Spring | 1.176 | 0.805 | 0.720 |
Summer | 2.267 | 0.690 | 0.782 | |
EC | Spring | 40.310 | 0.911 | 41.709 |
Summer | 22.989 | 0.764 | 31.749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatitsi, K.; Siachalou, S.; Latinopoulos, D.; Kagalou, I.; Akratos, C.S.; Mallinis, G. Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water 2024, 16, 758. https://doi.org/10.3390/w16050758
Vatitsi K, Siachalou S, Latinopoulos D, Kagalou I, Akratos CS, Mallinis G. Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water. 2024; 16(5):758. https://doi.org/10.3390/w16050758
Chicago/Turabian StyleVatitsi, Katerina, Sofia Siachalou, Dionissis Latinopoulos, Ifigenia Kagalou, Christos S. Akratos, and Giorgos Mallinis. 2024. "Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery" Water 16, no. 5: 758. https://doi.org/10.3390/w16050758
APA StyleVatitsi, K., Siachalou, S., Latinopoulos, D., Kagalou, I., Akratos, C. S., & Mallinis, G. (2024). Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water, 16(5), 758. https://doi.org/10.3390/w16050758