Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
3.1. Sampling and Analysis Methods
3.2. Water Quality Index
3.3. Statistical Analysis
4. Results
4.1. Hydrochemical Compositions
4.2. Water Quality Assessment
5. Discussion
5.1. Origin and Isotopic Characteristics of Hot-Spring Waters
5.2. Hydrogeochemical Characteristics of Hot Springs
5.2.1. Water–Rock Reaction and Major Ion Variations
5.2.2. Mineral Saturation Index
5.3. Geochemistry of Trace Element
5.3.1. Sources and Controlling Factors of Trace Elements in the XSHF
5.3.2. Sources and Controlling Factors of Trace Elements in the AZF and XJF
5.3.3. Influence of Fault-Controlled Circulation Depth on Trace Elements
5.4. Conceptual Model of Hot Springs in the XSF-XJF
6. Conclusions
- (1)
- The hot-spring water was recharged by atmospheric precipitation, and the isotope compositions were more depleted in the XSHF owing to the elevation effect.
- (2)
- High concentrations of B, Fe, Mn, and As were found in the XSHF-XJF, and the values of WQI indicated that the water quality was spatially heterogeneous and the hot-spring waters were not entirely suitable for drinking.
- (3)
- The leaching of the surrounding rock during water–rock interaction was the main source of trace elements, and the diversity of stratigraphic lithology was the main factor affecting their concentrations. High concentrations of B and Li were mainly derived from the dissolution of granite. Arsenic concentrations were affected by the reductive breakdown of iron oxides in the ANHF-XJF. In addition, B/Cl ratios showed that hot springs have different reservoir sources in the XSHF and XJF, respectively, and circulation depth could influence the concentrations of trace elements.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martínez-Florentino, T.A.K.; Esteller-Alberich, M.V.; Expósito, J.L.; Domínguez-Mariani, E.; Morales-Arredondo, J.I. Hydrogeochemistry and geothermometry of thermal springs in the eastern Trans-Mexican Volcanic Belt. Geothermics 2021, 96, 102176. [Google Scholar] [CrossRef]
- Welch, A.H.; Westjohn, D.B.; Helsel, D.R.; Wanty, R.B. Arsenic in groundwater of the United States: Occurrence and geochemistry. Groundwater 2000, 38, 589–604. [Google Scholar] [CrossRef]
- Cacciapuoti, S.; Luciano, M.A.; Megna, M.; Annunziata, M.C.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The role of thermal water in chronic skin diseases management: A review of the literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef]
- Chandrajith, R.; Barth, J.A.C.; Subasinghe, N.D.; Merten, D.; Dissanayake, C.B. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. J. Hydrol. 2013, 476, 360–369. [Google Scholar] [CrossRef]
- Wang, J.; Pang, Z.; Cheng, Y.; Huang, Y.; Jiang, G.; Lu, Z.; Kong, Y. Current state, utilization and prospective of global geothermal energy. Sci. Technol. Rev. 2023, 41, 5–11. [Google Scholar]
- Liu, W.; Guan, L.F.; Liu, Y.; Xie, X.A.; Zhang, M.L.; Chen, B.Y.; Xu, S.; Sano, Y. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity. J. Hydrol. 2022, 607, 127554. [Google Scholar] [CrossRef]
- Tapponnier, P.; Xu, Z.Q.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J.S. Geology-Oblique stepwise rise and growth of the Tibet platea. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, J.; Pang, Z.; Hu, S.; Tian, J.; Bao, S. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system. Tectonophysics 2017, 717, 433–448. [Google Scholar] [CrossRef]
- Liao, Z. Thermal Springs and Geothermal Energy in the Qinghai-Tibetan Plateau and the Surroundings; Springer: Singapore, 2018. [Google Scholar]
- Maity, J.P.; Chen, C.Y.; Bundschuh, J.; Bhattacharya, P.; Mukherjee, A.; Chang, Y.F. Hydrogeochemical reconnaissance of arsenic cycling and possible environmental risk in hydrothermal systems of Taiwan. Groundw. Sustain. Dev. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Okan, Ö.; Kalender, L.; Çetindag, B. Trace-element hydrogeochemistry of thermal waters of Karakocan (Elazig) and Mazgirt (Tunceli), eastern Anatolia, Turkey. J. Geochem. Explor. 2018, 194, 29–43. [Google Scholar] [CrossRef]
- Daniele, L.; Taucare, M.; Viguier, B.; Arancibia, G.; Aravena, D.; Roquer, T.; Sepúlveda, J.; Molina, E.; Delgado, A.; Muñoz, M.; et al. Exploring the shallow geothermal resources in the Chilean southern Volcanic Zone: Insight from the Liquine thermal springs. J. Geochem. Explor. 2020, 218, 106611. [Google Scholar] [CrossRef]
- Liu, M.L.; Guo, Q.H.; Luo, L.; He, T. Environmental impacts of geothermal waters with extremely high boron concentrations: Insight from a case study in Tibet, China. J. Volcanol. Geotherm. Res. 2020, 397, 106887. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhou, X.; Liu, Y.; Xu, H.F.; Wu, Y.Q.; Zhuo, L.Y. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China. Appl. Geochem. 2020, 119, 104639. [Google Scholar] [CrossRef]
- Bundschuh, J.; Maity, J.P. Geothermal arsenic: Occurrence, mobility and environmental implications. Renew. Sustain. Energ. Rev. 2015, 42, 1214–1222. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchem. J. 2020, 152, 104304. [Google Scholar] [CrossRef]
- Baba, A.; Uzelli, T.; Sozbilir, H. Distribution of geothermal arsenic in relation to geothermal play types: A global review and case study from the Anatolian plate (Turkey). J. Hazard. Mater. 2021, 414, 125510. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Pang, Z.; Hu, S.; Wu, Y.; Bao, S. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China. Environ. Earth Sci. 2016, 76, 31. [Google Scholar] [CrossRef]
- Li, C.H.; Zhou, X.C.; Yan, Y.C.; Ouyang, S.P.; Liu, F.L. Hydrogeochemical characteristics of hot springs and their short-term seismic precursor anomalies along the Xiaojiang Fault Zone, southeast Tibet Plateau. Water 2021, 13, 2638. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, X.C.; Yan, Y.C.; He, M.; Li, J.C.; Dong, J.Y.; Liu, F.L.; Ouyang, S.P.; Li, Y.; Tian, L.; et al. Earthquake-induced impulsive release of water in the fractured aquifer system: Insights from the long-term hydrochemical monitoring of hot springs in the southeast Tibetan Plateau. Appl. Geochem. 2023, 148, 105553. [Google Scholar] [CrossRef]
- Yan, Y.C.; Zhou, X.C.; Liao, L.X.; Tian, J.; Li, Y.; Shi, Z.M.; Liu, F.L.; Ouyang, S.P. Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe Fault Zone, southwestern China. Water 2022, 14, 550. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.L.; Chen, B.Y.; Liu, Y.; Cao, C.H.; Xu, W.; Zheng, G.D.; Zhou, X.C.; Lang, Y.C.; Sano, Y.; et al. Hydrothermal He and CO2 degassing from a Y-shaped active fault system in eastern Tibetan Plateau with implications for seismogenic processes. J. Hydrol. 2023, 620, 129482. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Pang, Z.H.; Kong, Y.L.; Chen, X.B.; Wang, G.J. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey. Geothermics 2022, 102, 102386. [Google Scholar] [CrossRef]
- Li, B.; Shi, Z.; Wang, G.; Liu, C. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China. J. Hydrol. 2019, 579, 124175. [Google Scholar] [CrossRef]
- Du, J.G.; Cheng, W.Z.; Zhang, Y.L.; Jie, C.L.; Guan, Z.J.; Liu, W.; Bai, L.P. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, southwestern China. J. Asian Earth Sci. 2006, 26, 533–539. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, M.; Li, X.; Qi, J.H.; Zhang, Q.; Guo, J.; Yu, L.L.; Zhao, R. Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding county, southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yuan, D.X.; He, S.Y.; Zhang, M.L.; Zhang, J.G. Geochemical features of the geothermal CO2-water-carbonate rock system and analysis on its CO2 sources-Examples from Huanglong Ravine and Kangding, Sichuan, and Xiage, Zhongdian, Yunnan. Sci. China Earth Sci. 2000, 43, 569–576. [Google Scholar] [CrossRef]
- Ren, Z.; Lin, A.; Rao, G. Late Pleistocene–Holocene activity of the Zemuhe Fault on the southeastern margin of the Tibetan Plateau. Tectonophysics 2010, 495, 324–336. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, G. Evaluation of the permeability properties of the Xiaojiang Fault Zone using hot springs and water wells. Geophys. J. Int. 2017, 209, 1526–1533. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Liao, X.; Zhang, Y.H. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, southwestern China. Int. J. Environ. Res. Public Health 2020, 17, 500. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, X.; Du, J.; Xie, C.; Liu, L.; Li, Y.; Yi, L.; Liu, H.; Cui, Y. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS=7.0 earthquake in Sichuan, China. Nat. Hazards Earth Syst. Sci. 2015, 15, 1149–1156. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, L.S.; Chang, Y.; Fan, Z.W.; Guo, D.F. Determination trace elements in rock samples containing refractory minerals by pressurization-microwave inductively coupled plasma mass spectrometry. Uranium Geol. 2018, 34, 105–111, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.B.; Jing, G.S.; Li, J.J.; Han, J.; Zhang, J.F.; Zhang, J.; Zhong, F.W.; Guo, D.Q. Determination of stable isotope composition in uranium geological samples. Word Nuclear Geosci. 2013, 30, 174–179, (In Chinese with English Abstract). [Google Scholar]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpää, M. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ. 2019, 649, 571–581. [Google Scholar] [CrossRef]
- GB 5749–2022; Standards for Drinking Water Quality. Ministry of Health of the People’s Republic of China: Beijing, China, 2022.
- Ma, Y.Q.; Shi, Y.; Qin, Y.W.; Zheng, B.H.; Zhao, Y.M.; Zhang, L. Temporal-spatial distribution and pollution assessment of heavy metals in the upper reaches of Hunhe River (Qingyuan section), northeast China. Environ. Sci. 2014, 35, 108–116. [Google Scholar]
- Huang, X.; Sillanpää, M.; Duo, B.; Gjessing, E.T. Water quality in the Tibetan Plateau: Metal contents of four selected rivers. Environ. Pollut. 2008, 156, 270–277. [Google Scholar] [CrossRef]
- Elenga, H.I.; Tan, H.; Su, J.; Yang, J. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes. Geochemistry 2021, 81, 125797. [Google Scholar] [CrossRef]
- Guo, Q.; Planer-Friedrich, B.; Liu, M.; Li, J.; Zhou, C.; Wang, Y. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China. Chem. Geol. 2017, 453, 12–20. [Google Scholar] [CrossRef]
- Bénard, B.; Famin, V.; Agrinier, P.; Aunay, B.; Lebeau, G.; Sanjuan, B.; Vimeux, F.; Bardoux, G.; Dezayes, C. Origin and fate of hydrothermal fluids at Piton des Neiges volcano (Réunion Island): A geochemical and isotopic (O, H, C, Sr, Li, Cl) study of thermal springs. J. Volcanol. Geotherm. Res. 2020, 392, 106682. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Kong, Y.L.; Wang, K.; Li, J.; Pang, Z.H. Stable isotopes of precipitation in China: A consideration of moisture sources. Water 2019, 11, 1239. [Google Scholar] [CrossRef]
- Xu, Q.; Hoke, G.D.; Jing, L.Z.; Ding, L.; Wang, W.; Yang, Y. Stable isotopes of surface water across the Longmenshan margin of the eastern Tibetan Plateau. Geochem. Geophys. Geosyst. 2014, 15, 3416–3429. [Google Scholar] [CrossRef]
- Yi, L.; Qi, J.; Li, X.; Xu, M.; Zhang, X.; Zhang, Q.; Tang, Y. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau. J. Volcanol. Geotherm. Res. 2021, 414, 107244. [Google Scholar] [CrossRef]
- Pang, Z.; Kong, Y.; Li, J.; Tian, J. An isotopic geoindicator in the hydrological cycle. Procedia Earth Planet. Sci. 2017, 17, 534–537. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, L.S.; Liu, S.W.; Yang, Y.; Shi, D.Y. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan, Province, China. Acta Petrol. 2021, 37, 589–598, (In Chinese with English Abstract). [Google Scholar]
- Das, P.; Maya, K.; Padmalal, D. Hydrochemistry, geothermometry and origin of the low temperature thermal springs of South Konkan region, India. Geothermics 2021, 90, 101997. [Google Scholar] [CrossRef]
- Cui, Y.J.; Sun, F.X.; Liu, L.; Xie, C.; Li, J.; Chen, Z.; Li, Y.; Du, J.G. Contribution of deep-earth fluids to the geothermal system: A case study in the Arxan volcanic region, northeastern China. Front. Earth Sci. 2023, 10, 996583. [Google Scholar] [CrossRef]
- Guo, Q. Hydrogeochemistry of high-temperature geothermal systems in China: A review. Appl. Geochem. 2012, 27, 1887–1898. [Google Scholar] [CrossRef]
- Cui, Y.J.; Sun, F.X.; Du, J.G. Methods for identification of seismic geochemical precursors and source partitioning of hot spring fluids in eastern Chinese Mainland. J. Seismol. Res. 2022, 45, 199–216, (In Chinese with English Abstract). [Google Scholar]
- Zhu, X.Q.; Liu, L.; Lan, F.N.; Li, J.; Hou, S.T. Hydrogeochemistry characteristics of groundwater in the Nandong Karst water system, China. Atmosphere 2022, 13, 604. [Google Scholar] [CrossRef]
- Davraz, A.; Nalbantçilar, M.T.; Önden, I. Hydrogeochemical characteristics and trace element of geothermal systems in central Anatolia, Turkey. J. Afr. Earth Sci. 2022, 195, 104666. [Google Scholar] [CrossRef]
- Liu, M.; Guo, Q.; Wu, G.; Guo, W.; She, W.; Yan, W. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in southern Tibet (China): Daggyai and Quzhuomu. Geothermics 2019, 82, 190–202. [Google Scholar] [CrossRef]
- Lai, S.C.; Qin, J.F.; Long, X.P.; Li, Y.F.; Ju, Y.J.; Zhu, R.Z.; Zhao, S.W.; Zhang, Z.Z.; Zhu, Y.; Wang, J.B. Neoproterozoic gabbro-granite association from the Micangshan area, northern Yangtze Block: Implication for crustal growth in an active continental margin. Geol. J. 2018, 53, 2471–2486. [Google Scholar] [CrossRef]
- Tassi, F.; Aguilera, F.; Darrah, T.; Vaselli, O.; Capaccioni, B.; Poreda, R.J.; Huertas, A.D. Fluid geochemistry of hydrothermal systems in the Arica-Parinacota, Tarapaca and Antofagasta regions (northern Chile). J. Volcanol. Geotherm. Res. 2010, 192, 1–15. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Z.; Xu, S.; Barry, P.H.; Sano, Y.; Zhang, L.; Halldórsson, S.A.; Chen, A.-T.; Cheng, Z.; Liu, C.-Q.; et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nat. Commun. 2021, 12, 4157. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, G.; Sagoe, G.; Li, Y. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province. Geothermics 2018, 75, 154–163. [Google Scholar] [CrossRef]
- Bernard, R.; Taran, Y.; Pennisi, M.; Tello, E.; Ramirez, A. Chloride and boron behavior in fluids of Los Humeros geothermal field (Mexico): A model based on the existence of deep acid brine. Appl. Geochem. 2011, 26, 2064–2073. [Google Scholar] [CrossRef]
- Erdogan, Y.; Aksu, M.; Demirbas, A.; Abali, Y. Analyses of boronic ores and sludges and solubilities of boron minerals in CO2-saturated water. Resour. Conserv. Recycl. 1998, 24, 275–283. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Ruan, C.; Sagoe, G.; Li, J. Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China. J. Hydrol. 2022, 612, 128022. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, T.; Santosh, M.; Li, H.; Li, J.; Zhang, Z.; Song, X.; Wang, M. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol. Rev. 2014, 57, 247–263. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Hou, Z.; Cooke, D.R.; Danyushevsky, L.; Dominy, S.C.; Shuping, Y. A model for carbonatite hosted REE mineralisation—The Mianning–Dechang REE belt, Western Sichuan Province, China. Ore Geol. Rev. 2015, 70, 595–612. [Google Scholar] [CrossRef]
- Kaasalainen, H.; Stefánsson, A. The chemistry of trace elements in surface geothermal waters and steam, Iceland. Chem. Geol. 2012, 330, 60–85. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z. Correlations of the deep structural characteristics, tidal stress variation and earthquake initiation along the Xianshuihe-Anninghe fault zone. Chin. J. Geophy. 2020, 63, 928–943, (In Chinese with English Abstract). [Google Scholar]
- Shen, Z.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2005, 110, 409. [Google Scholar] [CrossRef]
- Li, X.; Bai, D.; Ma, X.; Chen, Y.; Varentsov, I.M.; Xue, G.; Xue, S.; Lozovsky, I. Electrical resistivity structure of the Xiaojiang strike-slip fault system (SW China) and its tectonic implications. J. Asian Earth Sci. 2019, 176, 57–67. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhang, W.; Wang, G.L.; Zhao, J.Y.; Yue, G.F. Distribution and genetic mechanism of high arsenic geothermal water in the Batang area, Western Sichuan. Geothermics 2021, 97, 102232. [Google Scholar] [CrossRef]
- Guo, Q.; Pang, Z.; Wang, Y.; Tian, J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl. Geochem. 2017, 81, 63–75. [Google Scholar] [CrossRef]
- Negri, A.; Daniele, L.; Aravena, D.; Muñoz, M.; Delgado, A.; Morata, D. Decoding fjord water contribution and geochemical processes in the Aysen thermal springs (Southern Patagonia, Chile). J. Geochem. Explor. 2018, 185, 1–13. [Google Scholar] [CrossRef]
- Blomgren, V.J.; Crossey, L.J.; Karlstrom, K.E.; Fischer, T.P.; Darrah, T.H. Hot spring hydrochemistry of the Rio Grande rift in northern New Mexico reveals a distal geochemical connection between Valles Caldera and Ojo Caliente. J. Volcanol. Geotherm. Res. 2019, 387, 106663. [Google Scholar] [CrossRef]
- Bai, D.H.; Unsworth, M.J.; Meju, M.A.; Ma, X.B.; Teng, J.W.; Kong, X.R.; Sun, Y.; Sun, J.; Wang, L.F.; Jiang, C.S.; et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci. 2010, 3, 358–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, B.; Zhou, X.; Qiu, D.; Du, J.; He, M.; Tian, J.; Zeng, Z.; Wang, Y.; Yan, Y.; Xing, G.; et al. Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone. Water 2024, 16, 680. https://doi.org/10.3390/w16050680
Yao B, Zhou X, Qiu D, Du J, He M, Tian J, Zeng Z, Wang Y, Yan Y, Xing G, et al. Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone. Water. 2024; 16(5):680. https://doi.org/10.3390/w16050680
Chicago/Turabian StyleYao, Bingyu, Xiaocheng Zhou, Daqiong Qiu, Jianguo Du, Miao He, Jiao Tian, Zhaojun Zeng, Yuwen Wang, Yucong Yan, Gaoyuan Xing, and et al. 2024. "Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone" Water 16, no. 5: 680. https://doi.org/10.3390/w16050680
APA StyleYao, B., Zhou, X., Qiu, D., Du, J., He, M., Tian, J., Zeng, Z., Wang, Y., Yan, Y., Xing, G., Cui, S., Li, J., Dong, J., Li, Y., & Zhang, F. (2024). Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone. Water, 16(5), 680. https://doi.org/10.3390/w16050680