Hydrogeochemical Behavior of Shallow Groundwater around Hancheng Mining Area, Guanzhong Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Testing and Analysis
3. Results and Discussion
3.1. Chemical Characteristics of Groundwater
3.2. Hydrogeochemical Facies and Types
3.3. Effect of Natural Factors on the Chemical Composition of Groundwater
3.3.1. Rock Weathering
3.3.2. Mineral Dissolution or Precipitation
3.3.3. Cation Exchange
3.4. Effects of Human Activities on the Chemical Composition of Groundwater
4. Conclusions
- (1)
- The main cation components in the groundwater in the Hancheng mining area were Mg2+, Ca2+, Na+, and K+, and the anion components were HCO3−, Cl−, and SO42−. An amount of 89% of the groundwater samples in this area were freshwater (TDS < 1000 mg/L). The chemical type of the groundwater was mainly of the SO4·Cl-Ca·Mg type, accounting for 61.1%, followed by the HCO3− Ca·Mg type, amounting to 38.9%.
- (2)
- The chemical components of the groundwater in the Hancheng mining area are mainly affected by rock weathering, and there is a cation exchange. Na++Cl− originates from the dissolved halogen, Ca+ comes from the dissolved gypsum, and the SO42− concentration is affected by pyrite oxidation. Not only are the Cl− and SO42− regulated by natural factors, but they are also influenced by human activities. According to the analysis of the saturation index, gypsum and salt rock in the groundwater in the Hancheng mining area are in an unsaturated state and will be dissolved continuously. Dolomite and calcite are generally in a saturated or quasi-equilibrium state, with a precipitation trend.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Li, W. Zoning and management of phreatic water resource conservation impacted by underground coal mining: A case study in arid and semiarid areas. J. Clean. Prod. 2019, 224, 677–685. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States—An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Mardonova, M.; Han, Y.-S. Environmental, hydrological, and social impacts of coal and nonmetal minerals mining operations. J. Environ. Manag. 2023, 332, 117387. [Google Scholar] [CrossRef]
- Hu, Z.; Li, G.; Xia, J.; Feng, Z.; Han, J.; Chen, Z.; Wang, W.; Li, G. Coupling of underground coal mining and mine reclamation for farmland protection and sustainable mining. Resour. Policy 2023, 84, 103756. [Google Scholar] [CrossRef]
- Nasher, N.R.; Ahmed, H. Groundwater geochemistry and hydrogeochemical processes in the Lower Ganges-Brahmaputra-Meghna River Basin areas, Bangladesh. J. Asian Earth Sci. X 2021, 6, 100062. [Google Scholar] [CrossRef]
- Dhaoui, O.; Antunes, I.; Boente, C.; Agoubi, B.; Kharroubi, A. Hydrogeochemical processes on inland aquifer systems: A combined multivariate statistical technique and isotopic approach. Groundw. Sustain. Dev. 2023, 20, 100887. [Google Scholar] [CrossRef]
- Parisi, A.; Alfio, M.R.; Balacco, G.; Güler, C.; Fidelibus, M.D. Analyzing spatial and temporal evolution of groundwater salinization through Multivariate Statistical Analysis and Hydrogeochemical Facies Evolution-Diagram. Sci. Total Environ. 2023, 862, 160697. [Google Scholar] [CrossRef] [PubMed]
- Turunen, K.; Lukkarinen, V.; Korkka-Niemi, K. Chemical and isotopic evidence to clarify the salinity of the bedrock groundwater at Finnish mining site. J. Hydrol. Reg. Stud. 2024, 51, 101665. [Google Scholar] [CrossRef]
- Cortes, J.; Castro, A.; Arboleda, G.; Sepulveda, V.; Piragauta, N.; Higuera, O. Hydrogeological and hydrogeochemical evaluation of groundwaters and surface waters in potential coalbed methane areas in Colombia. Int. J. Coal Geol. 2022, 253, 103937. [Google Scholar] [CrossRef]
- Benmarce, K.; Hadji, R.; Hamed, Y.; Zahri, F.; Zighmi, K.; Hamad, A.; Gentilucci, M.; Ncibi, K.; Besser, H. Hydrogeological and water quality analysis of thermal springs in the Guelma region of North-Eastern Algeria: A study using hydrochemical, statistical, and isotopic approaches. J. Afr. Earth Sci. 2023, 205, 105011. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Meng, Y.; Jiang, F. Reveal the threat of water quality risks in Yellow River Delta based on evidences from isotopic and hydrochemical analyses. Mar. Pollut. Bull. 2022, 177, 113532. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Chipthamlong, P.; Pawana, V.; Chomchaewchan, P.; Kamdee, K.; Tomun, N.; Kimmany, B. Hydrochemical characteristics and salt intrusion in groundwater of the lower Chao Phraya river basin: Insights from stable isotopes and hydrochemical analysis. Groundw. Sustain. Dev. 2023, 23, 101044. [Google Scholar] [CrossRef]
- Jin, J.; Liu, T.; Wang, M.; Liao, Z.; Zhang, J. Hydrochemical and Isotopic Explanations of the Interaction between Surface Water and Groundwater in a Typical-Desertified Steppe of Northern China. Sustainability 2023, 15, 11034. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Kwong, H.T.; Williams-Jones, A.E.; Zhou, M.-F. The thermodynamics of rare earth element liberation, mobilization and supergene enrichment during groundwater-regolith interaction. Geochim. Et Cosmochim. Acta 2021, 330, 258–277. [Google Scholar] [CrossRef]
- Yang, F.; Liu, S.; Jia, C.; Gao, M.; Chang, W.; Wang, Y. Hydrochemical characteristics and functions of groundwater in southern Laizhou Bay based on the multivariate statistical analysis approach. Estuar. Coast. Shelf Sci. 2020, 250, 107153. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, L.; Li, C.; Zheng, L. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area. Ecotoxicol. Environ. Saf. 2022, 248, 114286. [Google Scholar] [CrossRef]
- Abu, M.; Zango, M.S.; Nunoo, S.; Anim-Gyampo, M. Groundwater characterization including prediction of the quality, fluoride, and nitrate occurrence in a typical artisanal mining area in Ghana: A hydrochemical and multivariate statistical approach. Groundw. Sustain. Dev. 2023, 23, 101041. [Google Scholar] [CrossRef]
- Sahoo, S.; Khaoash, S. Impact assessment of coal mining on groundwater chemistry and its quality from Brajrajnagar coal mining area using indexing models. J. Geochem. Explor. 2020, 215, 106559. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G.; Zhan, H.; Chen, X.; Liu, M.; Wang, M. Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions. J. Hydrol. 2020, 589, 125344. [Google Scholar] [CrossRef]
- Ewusi, A.; Sunkari, E.D.; Seidu, J.; Coffie-Anum, E. Hydrogeochemical characteristics, sources and human health risk assessment of heavy metal dispersion in the mine pit water–surface water–groundwater system in the largest manganese mine in Ghana. Environ. Technol. Innov. 2022, 26, 102312. [Google Scholar] [CrossRef]
- Xue, W.; Gao, Y.; Feng, H. Karst water chemical characteristics in Xiangshan. Mine Coal Technol. 2014, 33, 273–274. (In Chinese) [Google Scholar] [CrossRef]
- Duan, L.; Sun, Y.; Mao, M.; Xiao, K.; Wang, X.; Tong, X. Hydrochemical Characteristics and Influence Mechanism of River in Hancheng Mining Area. Water Technol. 2020, 51, 154–161. (In Chinese) [Google Scholar] [CrossRef]
- Tang, Y.; Ju, T.; Deng, N. Chemical characteristics of the groundwater and the transformation from coal mine discharge to water resources in Hancheng coal field. J. Xi’an Univ. Sci. Technol. 2000, 20, 39–42. (In Chinese) [Google Scholar] [CrossRef]
- Piper, A.M. A graphical procedure in the geochemical interpretation of water analysis. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Lu, G.L.; Cai, D.; Chen, L.; He, B.; Gao, J. Probe into Chemical Properties and Forming Mechanism of Karst Water in Ordovician Limestone of Hancheng Mining Area. Coal Geol. China 2003, 15, 27–30. (In Chinese) [Google Scholar]
- GB 5749-2022; Standards for Drinking Water Quality. China Standards Press: Beijing, China, 2022.
- Aminiyan, M.M.; Aminiyan, F.M. Comprehensive integrated index–based geochemistry and hydrochemical analyses of groundwater resources for multiple consumptions under coastal conditions. Environ. Sci. Pollut. Res. 2020, 27, 21386–21406. [Google Scholar] [CrossRef]
- Rao, N.S.; Das, R.; Gugulothu, S. Understanding the factors contributing to groundwater salinity in the coastal region of Andhra Pradesh, India. J. Contam. Hydrol. 2022, 250, 104053. [Google Scholar] [CrossRef]
- Sahu, M.; Sar, S.K.; Baghel, T.; Dewangan, R. Seasonal and geochemical variation of uranium and major ions in groundwater at Kanker district of Chhattisgarh, central India. Groundw. Sustain. Dev. 2020, 10, 100330. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Merchán, D.; Rosner, M.; Meixner, A.; Ledesma-Ruiz, R. Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci. Total. Environ. 2017, 587–588, 282–295. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Chapter 11 Rock–Water Interaction and Its Control on Chemical Composition of Groundwater, in Developments in Environmental Science; Sarkar, D., Datta, R., Hannigan, R., Sarkar, D., Datta, R., Hannigan, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 229–243. [Google Scholar] [CrossRef]
- Samtio, M.S.; Hakro, A.A.A.D.; Jahangir, T.M.; Mastoi, A.S.; Lanjwani, M.F.; Rajper, R.H.; Lashari, R.A.; Agheem, M.H.; Noonari, M.W. Impact of rock-water interaction on hydrogeochemical characteristics of groundwater: Using multivariate statistical, water quality index and irrigation indices of chachro sub-district, thar desert, sindh, Pakistan. Groundw. Sustain. Dev. 2023, 20, 100878. [Google Scholar] [CrossRef]
- Eang, K.E.; Igarashi, T.; Kondo, M.; Nakatani, T.; Tabelin, C.B.; Fujinaga, R. Groundwater monitoring of an open-pit limestone quarry: Water-rock interaction and mixing estimation within the rock layers by geochemical and statistical analyses. Int. J. Min. Sci. Technol. 2018, 28, 849–857. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, H.-X.; Wu, Y.-Z.; Cao, F.-L.; Jia, F.-J.; Qu, P.-C. The evolution of hydrogeochemical characteristics of a typical piedmont karst groundwater system in a coal-mining area, Northern China. Environ. Earth Sci. 2019, 78, 557. [Google Scholar] [CrossRef]
- Priyadarshanee, K.; Pang, Z.; Edirisinghe, E.; Dharmagunawardhane, H.; Pitawala, H.; Gunasekara, J.; Tilakarathna, I. Deep groundwater recharge mechanism in the sedimentary and crystalline terrains of Sri Lanka: A study based on environmental isotope and chemical signatures. Appl. Geochem. 2021, 136, 105174. [Google Scholar] [CrossRef]
- Dedzo, M.G.; Asaah, A.N.E.; Fozing, E.M.; Tchamabé, B.C.; Zangmo, G.T.; Dagwai, N.; Seuwui, D.T.; Kamgang, P.; Aka, F.T.; Ohba, T. Petrology and geochemistry of lavas from Gawar, Minawao and Zamay volcanoes of the northern segment of the Cameroon volcanic line (Central Africa): Constraints on mantle source and geochemical evolution. J. Afr. Earth Sci. 2019, 153, 31–41. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Singh, D.S.; Singh, A.K. Water quality of the Chhoti Gandak River using principal component analysis, Ganga Plain, India. J. Earth Syst. Sci. 2010, 119, 117–127. [Google Scholar] [CrossRef]
- Singh, A.K.; Mondal, G.C.; Singh, T.B.; Singh, S.; Tewary, B.K.; Sinha, A. Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environ. Earth Sci. 2012, 67, 2175–2191. [Google Scholar] [CrossRef]
- Schoeller, H. Qualitative evaluation of groundwater resources. In Methods and Techniques of Groundwater Investigation and Development; Water Res Series-33; UNESCO: Delft, The Netherlands, 1965; pp. 54–83. [Google Scholar]
- Zakaria, N.; Anornu, G.; Adomako, D.; Owusu-Nimo, F.; Gibrilla, A. Evolution of groundwater hydrogeochemistry and assessment of groundwater quality in the Anayari catchment. Groundw. Sustain. Dev. 2021, 12, 100489. [Google Scholar] [CrossRef]
- Sun, L.; Gui, H.; Chen, L.; Chen, S. Groundwater quality and evolution in a deep limestone aquifer, northern Anhui province, China: Evidence from hydrochemistry. Fresenius Environ. Bull. 2013, 22, 1126–1131. [Google Scholar]
- Sami, K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J. Hydrol. 1992, 139, 27–48. [Google Scholar] [CrossRef]
- Sun, Y.-Q.; Shen, Y.-Y.; Duan, L.; Dou, L. Effects of Weathering on the Release of Heavy Metals from Coal Gangue. Asian J. Chem. 2014, 26, 7532–7538. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Duan, L.; Yao, M.; Li, W.P. The hydrogeochemical characteristic of different sulfide-containing gangue during leaching. IOP Conf. 2016, 39, 012032. [Google Scholar] [CrossRef]
pH | TDS | TH | K+ | Na+ | Ca2+ | Mg2+ | HCO3− | CO32− | SO42− | Cl− | F− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 7.38 | 613.67 | 1287.70 | 0.98 | 64.55 | 83.81 | 263.09 | 277.78 | 0.00 | 244.58 | 251.06 | 0.32 |
Maximum | 7.99 | 1090.00 | 2719.90 | 6.40 | 130.50 | 201.29 | 540.88 | 506.25 | 0.00 | 553.20 | 944.09 | 0.81 |
Minimum | 6.60 | 242.00 | 576.90 | 0.27 | 5.97 | 42.60 | 43.22 | 176.91 | 0.00 | 24.90 | 29.48 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, X.; Zhao, Z.; Duan, L.; Sun, Y. Hydrogeochemical Behavior of Shallow Groundwater around Hancheng Mining Area, Guanzhong Basin, China. Water 2024, 16, 660. https://doi.org/10.3390/w16050660
Kou X, Zhao Z, Duan L, Sun Y. Hydrogeochemical Behavior of Shallow Groundwater around Hancheng Mining Area, Guanzhong Basin, China. Water. 2024; 16(5):660. https://doi.org/10.3390/w16050660
Chicago/Turabian StyleKou, Xiaomei, Zhengzheng Zhao, Lei Duan, and Yaqiao Sun. 2024. "Hydrogeochemical Behavior of Shallow Groundwater around Hancheng Mining Area, Guanzhong Basin, China" Water 16, no. 5: 660. https://doi.org/10.3390/w16050660
APA StyleKou, X., Zhao, Z., Duan, L., & Sun, Y. (2024). Hydrogeochemical Behavior of Shallow Groundwater around Hancheng Mining Area, Guanzhong Basin, China. Water, 16(5), 660. https://doi.org/10.3390/w16050660