Enhanced Runoff Modeling by Incorporating Information from the GR4J Hydrological Model and Multiple Remotely Sensed Precipitation Datasets
Abstract
:1. Introduction
2. Study Watersheds and Runoff Data
2.1. Study Watersheds and Runoff Data
2.2. Multiple Remotely Sensed Precipitation Datasets (RSPDs)
2.3. Potential Evaporation Product
2.4. Data Pre-Processing and Experimental Period
3. Methodology
3.1. The GR4J Model and Its Parameter Determination
3.2. The EC Approach and Its Procedure
3.3. Performance Metrics
3.4. Experimental Procedures
4. Results
4.1. The Reproduced Runoff from GR4J and Different Precipitation Datasets
4.2. Superiorities Investigation of the EC Approach
4.3. Transferability Verification in Watersheds of Different Hydrometeorological Features
5. Discussion
6. Conclusions
- (1)
- The single precipitation dataset-based approaches reproduced the seasonal fluctuations well but tended to have a high uncertainty on high-value runoff events. Meanwhile, these approaches tended to underestimate runoff, and there were similar errors between the calibration and validation stages.
- (2)
- The EC method had a satisfactory performance with Nash–Sutcliffe values of 0.68 during calibration and validation. Meanwhile, the EC method performed better than all the benchmarks and exhibited a more stable performance than the ensemble averaging method under different incorporation scenarios.
- (3)
- Both the EC model and ensemble averaging have good transferability but the EC model has better performance across all test watersheds. However, the single precipitation dataset-based approaches exhibited significant regional variations and, therefore, had low transferability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Ji, C.; Wang, Y.; Zhang, Y.; Hou, X.; Ma, H. Consideration of streamflow forecast uncertainty in the development of short-term hydropower station optimal operation schemes: A novel approach based on mean-variance theory. J. Clean Prod. 2021, 304, 126929. [Google Scholar] [CrossRef]
- Letcher, R.A.; Croke, B.F.W.; Jakeman, A.J. Integrated assessment modelling for water resource allocation and management: A generalised conceptual framework. Environ. Modell. Softw. 2007, 22, 733–742. [Google Scholar] [CrossRef]
- Stergiadi, M.; Di Marco, N.; Avesani, D.; Righetti, M.; Borga, M. Impact of Geology on Seasonal Hydrological Predictability in Alpine Regions by a Sensitivity Analysis Framework. Water 2020, 12, 2255. [Google Scholar] [CrossRef]
- Niu, W.; Feng, Z. Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sust. Cities Soc. 2021, 64, 102562. [Google Scholar] [CrossRef]
- Kuichling, E. The relation between the rainfall and the discharge of sewers in populous districts. Trans. Am. Soc. Civil Eng. 1889, 20, 1–56. [Google Scholar] [CrossRef]
- Peel, M.C.; Mcmahon, T.A. Historical development of rainfall-runoff modeling. Wiley Interdiscip. Rev. Water 2020, 7, e1471. [Google Scholar] [CrossRef]
- Zuo, G.; Luo, J.; Wang, N.; Lian, Y.; He, X. Two-stage variational mode decomposition and support vector regression for streamflow forecasting. Hydrol. Earth Syst. Sci. 2020, 24, 5491–5518. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, J.; Yao, H.; Chen, X.; Cai, Y. Calibrating a hydrological model in ungauged small river basins of the northeastern Tibetan Plateau based on near-infrared images. J. Hydrol. 2023, 618, 129158. [Google Scholar] [CrossRef]
- Ghimire, U.; Agarwal, A.; Shrestha, N.K.; Daggupati, P.; Srinivasan, G.; Than, H.H. Applicability of Lumped Hydrological Models in a Data-Constrained River Basin of Asia. J. Hydrol. Eng. 2020, 25, 05020018. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Bai, Y.; Šraj, M. Hydrological modelling of karst catchment using lumped conceptual and data mining models. J. Hydrol. 2019, 576, 98–110. [Google Scholar] [CrossRef]
- Moosavi, V.; Gheisoori Fard, Z.; Vafakhah, M. Which one is more important in daily runoff forecasting using data driven models: Input data, model type, preprocessing or data length? J. Hydrol. 2022, 606, 127429. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Amer. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Lewis, E.; Fowler, H.; Alexander, L.; Dunn, R.; Mcclean, F.; Barbero, R.; Guerreiro, S.; Li, X.; Blenkinsop, S. GSDR: A Global Sub-Daily Rainfall Dataset. J. Clim. 2019, 32, 4715–4729. [Google Scholar] [CrossRef]
- Sujud, L.H.; Jaafar, H.H. A global dynamic runoff application and dataset based on the assimilation of GPM, SMAP, and GCN250 curve number datasets. Sci. Data 2022, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; Mcvicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Amer. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement: Volume 1; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 343–353. ISBN 978-3-030-24568-9. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Mega, T.; Ushio, T.; Takahiro, M.; Kubota, T.; Kachi, M.; Oki, R. Gauge-Adjusted Global Satellite Mapping of Precipitation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1928–1935. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Amer. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Larraondo, P.R.; Mcvicar, T.R.; Pan, M.; Dutra, E.; Miralles, D.G. MSWX Global 3-Hourly 0.1° Bias-Corrected Meteorological Data Including Near-Real-Time Updates and Forecast Ensembles. Bull. Amer. Meteorol. Soc. 2022, 103, 710–732. [Google Scholar] [CrossRef]
- Liao, M.; Barros, A.P. Toward optimal rainfall—Hydrologic QPE correction in headwater basins. Remote Sens. Environ. 2022, 279, 113107. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Zhao, L.; Lin, P. The impact of multi-sensor land data assimilation on river discharge estimation. Remote Sens. Environ. 2022, 279, 113138. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating Satellite Precipitation Error Propagation in Runoff Simulations of Mountainous Basins. J. Hydrometeorol. 2016, 17, 1407–1423. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Knoben, W.J.M.; Liu, H.; Gharari, S.; Arnal, L.; Beck, H.E.; Wood, A.W.; Newman, A.J.; Papalexiou, S.M. The Impact of Meteorological Forcing Uncertainty on Hydrological Modeling: A Global Analysis of Cryosphere Basins. Water Resour. Res. 2023, 59, e2022WR033767. [Google Scholar] [CrossRef]
- Ehsan Bhuiyan, M.A.; Nikolopoulos, E.I.; Anagnostou, E.N.; Polcher, J.; Albergel, C.; Dutra, E.; Fink, G.; Martínez-De La Torre, A.; Munier, S. Assessment of precipitation error propagation in multi-model global water resource reanalysis. Hydrol. Earth Syst. Sci. 2019, 23, 1973–1994. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Zeng, J.; Jiao, Y.; Li, Y.; Zhong, L.; Yao, L. Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 265–278. [Google Scholar] [CrossRef]
- Zhu, S.; Wei, J.; Zhang, H.; Xu, Y.; Qin, H. Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing precipitation products in large scale basins. J. Hydrol. 2023, 616, 128727. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Hong, Y.; Yong, B.; Yang, X.; Yuan, F.; Ma, M. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 2012, 452, 213–225. [Google Scholar] [CrossRef]
- Koster, T.; El-Serafy, G.; van den Boogaard, H.; Heemink, A.W.; Mynett, A. Input correction in rainfall runoff models using the Ensemble Kalman filter. In Proceedings of the 4th International Symposium on Environmental Hydraulics, Hong Kong, China, 15–18 December 2004. [Google Scholar]
- Hazra, A.; Maggioni, V.; Houser, P.; Antil, H.; Noonan, M. A Monte Carlo-based multi-objective optimization approach to merge different precipitation estimates for land surface modeling. J. Hydrol. 2019, 570, 454–462. [Google Scholar] [CrossRef]
- Lei, H.; Zhao, H.; Ao, T. A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China. Hydrol. Earth Syst. Sci. 2022, 26, 2969–2995. [Google Scholar] [CrossRef]
- Sharma, N.; Zakaullah, M.; Tiwari, H.; Kumar, D. Runoff and sediment yield modeling using ANN and support vector machines: A case study from Nepal watershed. Model. Earth Syst. Environ. 2015, 1, 23. [Google Scholar] [CrossRef]
- Jia, Y.; Song, S.; Ge, L. Trimmed L-Moments of the Pearson Type III Distribution for Flood Frequency Analysis. Water Resour. Manag. 2023, 37, 1321–1340. [Google Scholar] [CrossRef]
- Qi, L.; Yu, H.; Chen, P. Selective ensemble-mean technique for tropical cyclone track forecast by using ensemble prediction systems. Q. J. R. Meteorol. Soc. 2014, 140, 805–813. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Van Huijgevoort, M.H.J.; Van Lanen, H.A.J. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models. Hydrol. Earth Syst. Sci. 2012, 16, 4057–4078. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; Cibin, R.; Sudheer, K.P.; Chaubey, I. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J. Hydrol. 2013, 499, 275–288. [Google Scholar] [CrossRef]
- Mo, C.; Liu, G.; Lei, X.; Zhang, M.; Ruan, Y.; Lai, S.; Xing, Z. Study on the Optimization and Stability of Machine Learning Runoff Prediction Models in the Karst Area. Appl. Sci. 2022, 12, 4979. [Google Scholar] [CrossRef]
- Strauch, M.; Bernhofer, C.; Koide, S.; Volk, M.; Lorz, C.; Makeschin, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 2012, 414, 413–424. [Google Scholar] [CrossRef]
- Mo, C.; Cen, W.; Lei, X.; Ban, H.; Ruan, Y.; Lai, S.; Shen, Y.; Xing, Z. Simulation of dam-break flood and risk assessment: A case study of Chengbi River Dam in Baise, China. J. Hydroinform. 2023, 25, 1276–1294. [Google Scholar] [CrossRef]
- Zhang, X. Evaluation of design flood estimates in karst areas–a case study of Chengbi river. J. China Hydrol. 1994, 2, 30–33. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, Z.; Mo, C. Ensemble Method for Reservoir Flood Season Segmentation. J. Water Resour. Plan. Manag.-Asce 2017, 143, 04016079. [Google Scholar] [CrossRef]
- Mo, C.; Lai, S.; Yang, Q.; Huang, K.; Lei, X.; Yang, L.; Yan, Z.; Jiang, C. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical karst watershed, southwest China. J. Environ. Manag. 2023, 332, 117380. [Google Scholar] [CrossRef]
- Araghi, A.; Martinez, C.J.; Olesen, J.E. Evaluation of MSWX gridded data for modeling of wheat performance across Iran. Eur. J. Agron. 2023, 144, 126769. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Edijatno; DE Oliveira Nascimento, N.; Yang, X.; Makhlouf, Z.; Michel, C. GR3J: A daily watershed model with three free parameters. Hydrol. Sci. J. 1999, 44, 263–277. [Google Scholar] [CrossRef]
- Dou, Y.; Ye, L.; Gupta, H.V.; Zhang, H.; Behrangi, A.; Zhou, H. Improved Flood Forecasting in Basins With No Precipitation Stations: Constrained Runoff Correction Using Multiple Satellite Precipitation Products. Water Resour. Res. 2021, 57, e2021WR029682. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, T. Predictive performance of ensemble hydroclimatic forecasts: Verification metrics, diagnostic plots and forecast attributes. Wiley Interdiscip. Rev. Water 2022, 9, e1580. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Getirana, A.; Kirschbaum, D.; Mandarino, F.; Ottoni, M.; Khan, S.; Arsenault, K. Potential of GPM IMERG Precipitation Estimates to Monitor Natural Disaster Triggers in Urban Areas: The Case of Rio de Janeiro, Brazil. Remote Sens. 2020, 12, 4095. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Chen, H.; Wen, D.; Du, Y.; Xiong, L.; Wang, L. Errors of five satellite precipitation products for different rainfall intensities. Atmos. Res. 2023, 285, 106622. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N. Evaluation of Eight High-Resolution Gridded Precipitation Products in the Heihe River Basin, Northwest China. Remote Sens. 2022, 14, 1458. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Yang, D.; Wang, Z.; Ruan, F.; Mcvicar, T.R.; Zhang, S.; Beck, H.E. Streamflow stationarity in a changing world. Environ. Res. Lett. 2021, 16, 64096. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
Watershed | Hydrology Station (GRDC-No) | Area (Km2) | Climate Zone | Altitude Range (m) | Country | Data Source |
---|---|---|---|---|---|---|
Pingtang (Pi) | Pingtang (/) | 1392 | Dry climates | 216–1686 | China | Chengbi River Reservoir Bureau |
Soca (So) | Solkan I (6559100) | 1573 | Temperate and Continental climates | 72–2487 | Slovenia | GRDC |
Klein-berg (Kl) | Nieuwkloof (1160265) | 395 | Dry climates | 157–1728 | South Africa | GRDC |
North Platte (NP) | Wyoming–Nebraska state line (4122152) | 57,545 | Temperate and Continental climates | 1179–3948 | United States | GRDC |
Russel (Ru) | Bucklands (5101116) | 315 | Tropical climates | 3–1586 | Australia | GRDC |
Precipitation Dataset | Version | Spatial Range/Resolution | Temporal Range/Resolution | Key Algorithm | Data Source |
---|---|---|---|---|---|
CHIRPS | V2.0 | 50° N/S, 0.05 | 1981-NRT; Daily | Kalman filter model | https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/ (accessed on 15 March 2023) |
IMERG | Final run V6.0 | 60° N/S, 0.1 | 2000-NRT; 30 min | Goddard profiling algorithm | https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.06/ (accessed on 15 March 2023) |
CMORPH | V1.0, gauge blended | 60° N/S, 0.25 | 1998-NRT; Daily | Morphing technique | ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/ (accessed on 15 March 2023) |
GSMaP | V6.0, gauge-adjusted | 60° N/S, 0.1° | 2000-NRT; Hourly | Kalman filter model | https://sharaku.eorc.jaxa.jp/GSMaP/index.htm (accessed on 15 March 2023) |
PERSIANN | CDR | 60° N/S, 0.25 | 1983-NRT; 3-hourly | Artificial Neural Networks | https://www.ncei.noaa.gov/data/precipitation-persiann/access/ (accessed on 15 March 2023) |
MSWX | PAST | Global, 0.1 | 1979-NRT; 3-hourly | Statistical bias correction | http://www.gloh2o.org/mswx/ (accessed on 15 March 2023) |
Parameter | Hydrological Meaning | Calibration Interval |
---|---|---|
X1 (mm) | maximum capacity of the production store | [100, 1200] |
X2 (mm) | groundwater exchange coefficient | [−5, 3] |
X3 (mm) | one day ahead maximum capacity of the routing store | [20, 300] |
X4 (days) | the time base of unit hydrograph | [1.1, 2.9] |
Stage | Performance Metrics | CMORPH | CHIRPS | GSMaP | IMERG | PERSIANN | MSWX | Ensemble Average | EC |
---|---|---|---|---|---|---|---|---|---|
Calibration | NSE | 0.38 | 0.62 | 0.55 | 0.69 | 0.60 | 0.59 | 0.68 | 0.68 |
MAE (mm) | 2.05 | 1.15 | 1.16 | 1.08 | 1.19 | 1.24 | 1.18 | 0.97 | |
RMSE (mm) | 2.90 | 2.28 | 2.46 | 2.03 | 2.33 | 2.36 | 2.09 | 2.08 | |
Validation | NSE | 0.34 | 0.60 | 0.59 | 0.67 | 0.54 | 0.55 | 0.64 | 0.68 |
MAE (mm) | 2.14 | 1.50 | 1.39 | 1.36 | 1.60 | 1.45 | 1.42 | 1.32 | |
RMSE (mm) | 3.48 | 2.73 | 2.75 | 2.47 | 2.90 | 2.90 | 2.57 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, C.; Su, Q.; Lei, X.; Ma, R.; Huang, Y.; Feng, C.; Sun, G. Enhanced Runoff Modeling by Incorporating Information from the GR4J Hydrological Model and Multiple Remotely Sensed Precipitation Datasets. Water 2024, 16, 530. https://doi.org/10.3390/w16040530
Mo C, Su Q, Lei X, Ma R, Huang Y, Feng C, Sun G. Enhanced Runoff Modeling by Incorporating Information from the GR4J Hydrological Model and Multiple Remotely Sensed Precipitation Datasets. Water. 2024; 16(4):530. https://doi.org/10.3390/w16040530
Chicago/Turabian StyleMo, Chongxun, Qihua Su, Xingbi Lei, Rongyong Ma, Yi Huang, Chengxin Feng, and Guikai Sun. 2024. "Enhanced Runoff Modeling by Incorporating Information from the GR4J Hydrological Model and Multiple Remotely Sensed Precipitation Datasets" Water 16, no. 4: 530. https://doi.org/10.3390/w16040530
APA StyleMo, C., Su, Q., Lei, X., Ma, R., Huang, Y., Feng, C., & Sun, G. (2024). Enhanced Runoff Modeling by Incorporating Information from the GR4J Hydrological Model and Multiple Remotely Sensed Precipitation Datasets. Water, 16(4), 530. https://doi.org/10.3390/w16040530