Effect and Mechanism of Bicarbonate Ion on Lead Absorption in Pontederia crassipes from Karst Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Data Analysis
3. Results and Discussion
3.1. Effect of HCO3− Molarity on Pb Removal in Karst Water
3.2. Effect of HCO3− Molarity on Pb Accumulation in Pontederia crassipes
3.3. Ion Exchange Analysis
3.4. Morphology Analysis
3.5. Functional Group Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Zhang, H.; Long, J.; Fan, J.; Wu, P.; Chen, M.; Liu, P.; Li, T. Migration mechanism of pollutants in karst groundwater system of tailings impoundment and management control effect analysis: Gold mine tailing impoundment case. J. Clean. Prod. 2022, 350, 131434. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Jiang, Z.-C.; Xu, G.-L.; Qin, X.-Q.; Huang, Q.-B.; Zhang, L.-K. Major Ionic Characteristics and Controlling Factors of Karst Groundwater at Xiangshui, Chongzuo. Environ. Sci. 2019, 40, 2143–2151. [Google Scholar]
- Zhan, Z.-J.; Chen, F.; Yang, P.-H.; Ren, J.; Zhang, H.-Y.; Liu, D.-W.; Lan, J.-C.; Zhang, Y. Comparison on the Hydrogeochemical Characteristics of Typical Karst Groundwater System in Southwest China, a Case of Qingmuguan and Laolongdong in Chongqing. Environ. Sci. 2016, 37, 3365–3374. [Google Scholar]
- Ji, M.C.; Zhang, J.Q.; Peng, Y.; Ma, Q.Y. Research on the resistances of several kinds of hydrophyte to Lead in hydroponic condition. Biotechnol. Bull. 2017, 33, 120–125. [Google Scholar]
- Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Sun, Z.G.; Mou, X.J.; Tong, C.; Wang, C.Y.; Xie, Z.L.; Song, H.L.; Sun, W.G.; Lv, Y.C. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary, China. CATENA 2015, 126, 43–52. [Google Scholar] [CrossRef]
- Saxena, G.; Bharagava, R.N. Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In Environmental Pollutants and Their Bioremediation Approaches, 1st ed.; Bharagava, R.N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 23–56. [Google Scholar]
- Han, L.H.; Zhang, Y.P.; Di, X.M.; Huang, A.L.; Liu, C. Anatomical characteristics and ecological adaptability of vegetative organs of three invasive plants. Jiangsu Agric. Sci. 2018, 46, 92–95. [Google Scholar]
- Gui, Z.; Shan, Y.; Liu, C. Flow velocity evolution through a floating rigid cylinder array under unidirectional flow. J. Hydrol. 2023, 617, 128915–128929. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Li, B.-K. Removal of pharmaceuticals and personal care products by Eichhornia crassipe and Pistia stratiotes. J. Taiwan Inst. Chem. Eng. 2016, 58, 318–323. [Google Scholar] [CrossRef]
- Yi, Z.J.; Yao, J.; Chen, H.L.; Wang, F.; Yuan, Z.M.; Liu, X. Uranium biosorption from aqueous solution onto Pontederia crassipes. J. Environ. Radioact. 2016, 154, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Mahamadi, C.; Nharingo, T. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Pontederia crassipes in binary and ternary systems. Bioresour. Technol. 2010, 101, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Tel-Or, E.; Forni, C. Phytoremediation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosyst.-Int. J. Deal. Asp. Plant Biol. 2011, 145, 224–235. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, K.; Zhou, W.B.; Zhu, D.W.; Zhou, Y.Y.; Yuan, Y.N.; Xiao, N.D.; Wan, A.Q.; Hua, Y.M.; Zhao, J.W. Analysis of utilization technologies for Pontederia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 2017, 223, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Suryandari, M.K.; Hariati, A.M.; Mahmudi, M. Removal of Lead from water by Pontederia crassipes (Mart.) Solms. Imp. J. Interdiscip. Res. 2017, 3, 2387–2392. [Google Scholar]
- Jiang, H.S.; Liao, Z.Y.; Li, W. Photosynthetic inorganic carbon utilization strategies and their ecological adaptability in aquatic plants. Plant Sci. J. 2023, 41, 847–856. [Google Scholar]
- Maberly, S.C.; Gontero, B. Ecological imperatives for aquatic CO2-concentrating mechanisms. J. Exp. Bot. 2017, 68, 3797–3814. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A. Exogenous Inorganic Carbon Sources in Plant Photosynthesis. Biol. Rev. 1970, 45, 167–220. [Google Scholar] [CrossRef]
- Raven, J.A.; Beardall, J. CO2 concentrating mechanisms and environmental change. Aquat. Bot. 2014, 118, 24–37. [Google Scholar] [CrossRef]
- Hu, G.; Wang, P.; Cao, J.H.; Zhang, C.L.; Mo, B.Q. Utilization of dissolved inorganic carbon by Hydrilla verticillate in karst water and its growth of the response. Environ. Sci. Technol. 2016, 35, 349–356. [Google Scholar]
- Liu, Z.; Dreybrodt, W.; Wang, H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci. Rev. 2010, 99, 162–172. [Google Scholar] [CrossRef]
- Sun, H.L.; Han, C.H.; Liu, Z.H.; Wei, Y.; Ma, S.; Bao, Q.; Zhang, Y.; Yan, H. Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control. J. Hydrol. 2022, 607, 127480. [Google Scholar] [CrossRef]
- Zeng, Z.Y.; Yan, H.; Sun, H.L.; Liu, Z.H. Theoretical calculation of aquatic photosynthesis contribution ratio and the controlling factors of diurnal vatiations of hydrochemistry and δ~(13) C_(DIC) in the outlets and inlets of travertine pools at Baishuitai, Yunnan, China. Carsologica Sin. 2016, 35, 605–613. [Google Scholar]
- Xue, P.Y.; Yan, C.Z.; Cao, Y.L.; Wei, Q.S. Toxic effects of copper and arsenic and their compound pollution on Hydrilla verticillate (L.f.) Royle. Res. Environ. Sci. 2011, 24, 1052–1058. [Google Scholar]
- Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediat. 2017, 19, 87–96. [Google Scholar] [CrossRef]
- Zhang, L.K.; Qin, X.Q.; Huang, Q.B.; Liu, P.Y.; Shan, X.J. Aquatic plants bioremediation to groundwater contaminated by mines in karst areas. Carsologica Sin. 2017, 36, 743–750. [Google Scholar]
- Li, Q. Research on Removal Mechanisms of Four Kinds of Heavy Metals in Water by Long-Root Pontederia crassipes and Its Recycling; Kunming University Science and Technology: Kunming, China, 2015. [Google Scholar]
- Wang, P. Effects of Typical Aquatic Plants on the Stability of Inorganic Carbon in Karst Aquatic Ecosystem; China University of Geosciences: Beijing, China, 2016. [Google Scholar]
- GB/T 5750.6-2023; The National Standard of the People’s Republic of China: Standard Examination Methods for Drinking Water, Part 6, Metal and Metalloid Indices. State Administration for Market Regulation, Standardization Administration of China: Beijing, China, 2023.
- GB/T 5009.268-2016; The National Standard of the People’s Republic of China: National Food Safety Standard, Determination of Multiple Elements in Foods. National Health and Family Planning Commission, People’s Republic of China, State Food and Drug Administration: Beijing, China, 2016.
- Zhou, J.M.; Jiang, Z.C.; Xu, G.L.; Qin, X.Q.; Huang, Q.B.; Zhang, L.K. Effects and Mechanisms of Calcium Ion Addition on Lead Removal from Water by Pontederia crassipes. Int. J. Environ. Res. Public Health 2020, 17, 928. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, B.; Lin, P.; Zhou, J.L.; Zhan, J.H.; Shen, Q.Y.; Pan, X.J. Adsorption of heavy metal from aqueous solution by dehydrated root powder of Long-root Pontederia crassipes. Int. J. Phytorem. 2014, 18, 103–109. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.G.; Li, F.M.; Zhong, Y.X.; Hu, H.Y.; Gao, S.Q.; Zhou, W.D.; Sun, Z.S. Review on water purification ability of aquatic ecological restoration plants. Environ. Pollut. Control 2022, 44, 1079–1084. [Google Scholar]
- Cheng, B.B.; Chen, S.Y.; Yue, L.R. Effects of NaHCO3 stress on morphological indices and photosynthetic parameters of purple root Eichhornia crassipes. Guihaia 2020, 40, 1781–1789. [Google Scholar]
- Chen, J.S.; Deng, B.S.; Tao, S.; Cheng, Y.Q. Environmental Geochemistry; The Ocean Publishing Company: Beijing, China, 1990. [Google Scholar]
- Guan, B.T.H.; Mohamat-Yusuff, F.; Halimoon, N.; Yong, C.S.Y. Uptake of Mn and Cd by wild Water Spinach and their bioaccumulation and translocation factors. Environ. Asia 2017, 10, 44–51. [Google Scholar]
- Baker, A.J.M. Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Landberg, T.; Greger, T. Difference in uptake and tolerance to heavy metal in Salix from unpolluted and polluted areas. Appl. Geochem. 1996, 11, 175–180. [Google Scholar] [CrossRef]
- Sarital, S.; Rohit, S.; Shraddha, S. Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: Its toxic effects. Environ. Monit. Assess. 2002, 80, 17–31. [Google Scholar]
- Woldemichael, D.; Zewge, F.; Leta, S. Potential of water Hyacinth (Eichhornia crassipes (Mart.) Solms) for the removal of chromium from tannery effluent in constructed pond system. SINET: Ethiop. J. Sci. 2011, 34, 49–62. [Google Scholar]
- Li, X.S.; Liu, S.L.; Na, Z.Y.; Lu, D.N.; Liu, Z. Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Pontederia crassipes. Ecol. Eng. 2013, 60, 160–166. [Google Scholar] [CrossRef]
- Zheng, J.C. The Performance and Mechanism of Removal of Heavy Metals from Water by Water Hyacinth Roots as a Biosorbent Material; University of Science and Technology of China: Hefei, China, 2010. [Google Scholar]
- Brunet, J.; Repellin, A.; Varrault, G.; Terryn, N.; Zuily-Fodil, Y. Lead accumulation in the roots of grass pea (Lathyrus sativus L.): A novel plant for phytoremediation systems? Comptes Rendus Biol. 2008, 331, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Malar, S.; Vikram, S.S.; Favas, P.J.C.; Perumal, V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Pontederia crassipes (Mart.)]. Bot. Stud. 2014, 55, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-J.; Wang, B.; Guo, X.-J.; Zou, C.-W.; Tan, X.-D. Investigating adsorption performance of heavy metals onto humic acid from sludge using Fourier-transform infrared combined with two-dimensional correlation spectroscopy. Environ. Sci. Pollut. Res. 2019, 26, 9842–9850. [Google Scholar] [CrossRef]
- Lim, S.F.; Zheng, Y.M.; Zou, S.W.; Chen, J.P. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT IR, XPS and mathematical modeling study. Environ. Sci. Technol. 2008, 42, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, C.; Zhu, Q.; Huang, T.; Cai, Y.; Li, N.; Liu, J.; Tan, X. Characterization of dissolved organic matter from biogas residue composting using spectroscopic techniques. Waste Manag. 2018, 78, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.B.; Xin, C.H.; Zhao, H.; Zhang, Q.; Chi, J.L.; Guo, J.B. The role of DNA methylation in plant response to heavy metal stress. Seed 2016, 25, 43–46. [Google Scholar]
Molarities of HCO3− in Karst Water (mmol/L) | Parts of Plant | Ca | Mg | K | Na | Fe | Pb | Zn | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|---|
Root | 13,401 ± 53 ij | 1157 ± 10 g | 3021 ± 25 i | 690 ± 5.2 h | 15,036 ± 102 a | 1771 ± 11 a | 212 ± 1.1 a | 0.45 ± 0.0025 a | 2320 ± 15 a | |
3 | Leaf and stem | 17,800 ± 70 e | 1251 ± 9.0 e | 15,301 ± 60 d | 663 ± 7.5 i | 2895 ± 21 f | 177 ± 1.0 g | 78 ± 0.52 g | 0.093 ± 0.00053 h | 302 ± 2.1 i |
Whole plant | 16,700 ± 65 f | 1228 ± 9.2 ef | 12,231 ± 51 e | 670 ± 6.9 i | 5930 ± 41 e | 576 ± 3.5 d | 111 ± 0.66 d | 0.18 ± 0.0010 e | 806 ± 5.3 e | |
Root | 13,514 ± 62 i | 793 ± 8.0 j | 1849 ± 23 j | 996 ± 6.3 f | 8158 ± 76 c | 1536 ± 8.6 b | 180 ± 1.5 b | 0.29 ± 0.0012 c | 1965 ± 12 b | |
4 | Leaf and stem | 21,000 ± 75 a | 1024 ± 7.0 h | 8137 ± 25 g | 1051 ± 6.8 e | 476 ± 3 j | 159 ± 1.2 h | 50 ± 0.43 j | 0.07 ± 0.0062 i | 250 ± 1.3 j |
Whole plant | 19,128 ± 72 c | 966 ± 7.2 i | 6565 ± 24 h | 1037 ± 6.7 e | 2396 ± 21 h | 503 ± 3.0 e | 82.4 ± 0.70 f | 0.13 ± 0.00076 f | 679 ± 4.0 f | |
Root | 14,633 ± 58 h | 710 ± 9.0 k | 1577 ± 20 k | 1319 ± 5.7 c | 7474 ± 56 d | 843 ± 6.4 c | 152 ± 1.3 c | 0.25 ± 0.0011 d | 1231 ± 12 d | |
5 | Leaf and stem | 19,400 ± 73 b | 1390 ± 8.0 d | 15,488 ± 86 d | 2285 ± 6.2 a | 493 ± 3.2 j | 123 ± 1.1 i | 43 ± 0.36 k | 0.07 ± 0.0065 i | 287 ± 1.8 i |
Whole plant | 18,208 ± 69 d | 1220 ± 8.2 f | 12,010 ± 69 f | 2044 ± 6.1 b | 2238 ± 16.4 i | 303 ± 2.4 f | 70 ± 0.60 h | 0.12 ± 0.00076 g | 523 ± 4.3 h | |
Root | 6600 ± 69 k | 4200 ± 10 a | 17,400 ± 28 c | 2300 ± 5.4 a | 9442 ± 78 b | 7.7 ± 0.051 j | 98 ± 0.83 e | 0.36 ± 0.0025 b | 1817 ± 16 c | |
Unloaded | Leaf and stem | 15,500 ± 65 g | 1700 ± 8.0 c | 32,800 ± 131 a | 830 ± 6.1 g | 279 ± 1.6 k | 0.73 ± 0.0062 j | 39 ± 0.22 l | 0.037 ± 0.00012 j | 192 ± 1.2 k |
Whole plant | 13,275 ± 66 ij | 2325 ± 8.5 b | 28,950 ± 105 b | 1198 ± 5.9 d | 2570 ± 21 g | 2.5 ± 0.017 j | 54 ± 0.37 i | 0.12 ± 0.00063 g | 598 ± 4.9 g |
Molarities of HCO3− in Karst Water (mmol/L) | Parts of Plant | Bioconcentration Amount (BCA) (mg/kg) | Bioconcentration Factor (BCF) | Translocation Factor (TF) |
---|---|---|---|---|
3 | Root | 1763 ± 15 a | 30,360 ± 226 c | \ |
Leaf and stem | 177 ± 1.2 g | 3039 ± 24 i | \ | |
Whole plant | 573 ± 4.6 d | 9866 ± 74 f | 0.100 ± 0.00076 c | |
4 | Root | 1528 ± 15 b | 47,497 ± 276 a | \ |
Leaf and stem | 158 ± 1.4 g | 4922 ± 32 h | \ | |
Whole plant | 501 ± 4.8 e | 15,564 ± 93 d | 0.104 ± 0.00053 b | |
5 | Root | 835 ± 7.5 c | 41,438 ± 246 b | \ |
Leaf and stem | 122 ± 1.1 h | 6031 ± 38 g | \ | |
Whole plant | 301 ± 2.7 f | 14,901 ± 90 e | 0.146 ± 0.00056 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Jiang, Z.; Qin, X.; Zhang, L. Effect and Mechanism of Bicarbonate Ion on Lead Absorption in Pontederia crassipes from Karst Water. Water 2024, 16, 529. https://doi.org/10.3390/w16040529
Zhou J, Jiang Z, Qin X, Zhang L. Effect and Mechanism of Bicarbonate Ion on Lead Absorption in Pontederia crassipes from Karst Water. Water. 2024; 16(4):529. https://doi.org/10.3390/w16040529
Chicago/Turabian StyleZhou, Jinmei, Zhongcheng Jiang, Xiaoqun Qin, and Liankai Zhang. 2024. "Effect and Mechanism of Bicarbonate Ion on Lead Absorption in Pontederia crassipes from Karst Water" Water 16, no. 4: 529. https://doi.org/10.3390/w16040529
APA StyleZhou, J., Jiang, Z., Qin, X., & Zhang, L. (2024). Effect and Mechanism of Bicarbonate Ion on Lead Absorption in Pontederia crassipes from Karst Water. Water, 16(4), 529. https://doi.org/10.3390/w16040529