Landscape Changes in the Bavarian Foothills since the 1960s and the Effects on Predicted Erosion Processes and Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Use Changes between the 1960s and 2010s
2.2. Development of Parcel Structures and Flow Paths on Arable Land
2.3. Effects of Structural Landscape Alterations and Climatic Changes on Soil Erosion
3. Results
3.1. Land Use Changes between the 1960s and 2010s
3.2. Development of Parcel Structures and Flow Paths on Arable Land
- The median length of the fields increased by more than one-third (+35%). Figure 3 shows this increase in the median from 109 m in the 1960s to 147 m in the 2010s. The maximum (without outliers) was 280 m in the 1960s and increased to 404 m within five decades. The median field length decreased slightly from 108 m to 98 m in the Hornmühlbach catchment, with maximum values having increased all the same.
- Regarding the total area of the single fields, there was almost a fourfold increase (+370% related to the median) (see Figure 4). The median of the total area for all catchments increased from 0.43 ha in the 1960s to 2.01 ha in the current period. Similarly, the interquartile range (the middle 50% of values) increased from 0.22 ha to 0.83 ha in the 1960s to 0.98 ha to 3.37 ha in the 2010s.
- The median length of uninterrupted runoff paths on arable land shown in Figure 4 increased from 34 m to 58 m over the past 60 years. (+70%). The longest uninterrupted runoff path on arable land was found in the catchment area of the Moosbach. In 1968, it was 378 m long and extended to a current length of 515 m. What is more, the maximum values have experienced major increases as well.
3.3. Effects of Structural Landscape Alterations and Climatic Changes on Soil Erosion
4. Discussion
4.1. Land Use Changes between the 1960s and 2010s
4.2. Development of Parcel Structures and Flow Paths on Arable Land
4.3. Effects of Structural Landscape Alterations and Climatic Changes on Soil Erosion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dotterweich, M. The History of Soil Erosion and Fluvial Deposits in Small Catchments of Central Europe: Deciphering the Long-Term Interaction between Humans and the Environment—A Review. Geomorphology 2008, 101, 192–208. [Google Scholar] [CrossRef]
- Dreibrodt, S.; Lubos, C.; Terhorst, B.; Damm, B.; Bork, H.R. Historical Soil Erosion by Water in Germany: Scales and Archives, Chronology, Research Perspectives. Quat. Int. 2010, 222, 80–95. [Google Scholar] [CrossRef]
- Poschlod, P. Geschichte Der Kulturlandschaft 2. Aktualisierte Auflage; Ulmer: Stuttgart, Germany, 2015. [Google Scholar]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Luiz Mincato, R. Critical Success Factors of Small and Medium Wildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires in Greece. AgricultForest 2022, 68, 49–63. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Borrelli, P.; Jahanianfard, D.; Benali, A.; Scarpa, S.; Panagos, P. Wildfires in Europe: Burned Soils Require Attention. Environ. Res. 2023, 217, 114936. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Hancock, G.R. A Catchment Scale Assessment of Increased Rainfall and Storm Intensity on Erosion and Sediment Transport for Northern Australia. Geoderma 2009, 152, 350–360. [Google Scholar] [CrossRef]
- Elhaus, D.; Winterrath, T.; Auerswald, K.; Fischer, F. Klimawandel Und Bodenerosion—Neue Erkenntnisse Zur Regenerosivität Und Konsequenzen Für Die Abschätzung Der Erosionsgefährdung. Bodenschutz 2019, 24, 136–141. [Google Scholar]
- Cordone, A.J.; Kelley, D.W. The Influence of Inorganic Sediment on the Aquatic Life of Streams; Conservation of Wildlife through Education; California Department of Fish and Game: Sacramento, CA, USA, 1961; Volume 47, pp. 189–228. [Google Scholar]
- Waters, T.F. Sediment in Streams: Sources, Biological Effects, and Control; American Fisheries Society: Bethesda, MA, USA, 1995. [Google Scholar]
- Hauer, C.; Leitner, P.; Unfer, G.; Pulg, U.; Habersack, H.; Graf, W. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystem Management; Springer International Publishing: Cham, Switzerland, 2018; pp. 151–169. [Google Scholar]
- Kemp, P.; Sear, D.A.; Collins, A.L.; Naden, P.; Jones, J.I. The Impacts of Fine Sediment on Riverine Fish. Hydrol. Process. 2011, 25, 1800–1821. [Google Scholar] [CrossRef]
- Jensen, D.W.; Steel, E.A.; Fullerton, A.H.; Pess, G.R. Impact of Fine Sediment on Egg-to-Fry Survival of Pacific Salmon: A Meta-Analysis of Published Studies. Rev. Fish. Sci. 2009, 17, 348–359. [Google Scholar] [CrossRef]
- Scheder, C.; Lerchegger, B.; Flödl, P.; Csar, D.; Gumpinger, C.; Hauer, C. River Bed Stability versus Clogged Interstitial: Depth-Dependent Accumulation of Substances in Freshwater Pearl Mussel (Margaritifera Margaritifera L.) Habitats in Austrian Streams as a Function of Hydromorphological Parameters. Limnologica 2015, 50, 29–39. [Google Scholar] [CrossRef]
- Mathers, K.L.; Rice, S.P.; Wood, P.J. Temporal Effects of Enhanced Fine Sediment Loading on Macroinvertebrate Community Structure and Functional Traits. Sci. Total Environ. 2017, 599–600, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Wagenhoff, A.; Townsend, C.R.; Matthaei, C.D. Macroinvertebrate Responses along Broad Stressor Gradients of Deposited Fine Sediment and Dissolved Nutrients: A Stream Mesocosm Experiment. J. Appl. Ecol. 2012, 49, 892–902. [Google Scholar] [CrossRef]
- Mueller, M.; Pander, J.; Wild, R.; Lueders, T.; Geist, J. The Effects of Stream Substratum Texture on Interstitial Conditions and Bacterial Biofilms: Methodological Strategies. Limnologica 2013, 43, 106–113. [Google Scholar] [CrossRef]
- Bierschenk, A.M.; Mueller, M.; Pander, J.; Geist, J. Science of the Total Environment Impact of Catchment Land Use on Fi Sh Community Composition in the Headwater Areas of Elbe, Danube and Main. Sci. Total Environ. 2019, 652, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Townsend, C.R.; Uhlmann, S.S.; Matthaei, C.D. Individual and Combined Responses of Stream Ecosystems to Multiple Stressors. Journal of Applied Ecology. J. Appl. Ecol. 2008, 45, 1810–1819. [Google Scholar] [CrossRef]
- Lemm, J.U.; Feld, C.K. Identification and Interaction of Multiple Stressors in Central European Lowland Rivers. Sci. Total Environ. 2017, 603–604, 148–154. [Google Scholar] [CrossRef]
- Schinegger, R.; Trautwein, C.; Melcher, A.; Schmutz, S. Multiple Human Pressures and Their Spatial Patterns in European Running Waters. Water Environ. J. 2012, 26, 261–273. [Google Scholar] [CrossRef]
- Haun, S. Advanced Methods for a Sustainable Sediment Management in Reservoirs; Mitteilung: Stuttgart, Germany, 2022. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses; Science and Education Administration, United States Department of Agriculture in cooperation with Purdue Agricultural Experiment Station: Washington, DC, USA, 1978. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Rivised Univeral Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997; ISBN 0-16-048938-5. [Google Scholar]
- McCool, D.K.; Foster, G.R.; Renard, K.G.; Yoder, D.C.
- Renard, K.G.; Yoder, D.C.; Lightle, D.T.; Dabney, S.M. Universal Soil Loss Equation and Revised Universal Soil Loss Equation, Handbook of Erosion Modelling, 1st ed.; Morgan, R.P.C., Nearing, M.A., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2010; pp. 137–167. [Google Scholar]
- Graf, W.; Leitner, P.; Hanetseder, I.; Ittner, L.D.; Dossi, F.; Hauer, C. Ecological Degradation of a Meandering River by Local Channelization Effects: A Case Study in an Austrian Lowland River. Hydrobiologia 2016, 772, 145–160. [Google Scholar] [CrossRef]
- Höfler, S.; Gumpinger, C.; Hauer, C. Ecologically Oriented Measures for Small and Medium-Sized Rivers: Impacts on the Quality Elements of the European Water Framework Directive and the Limits of Efficacy—With Particular Consideration of Siltation. Osterreichische Wasser Abfallwirtsch. 2016, 11, 519–533. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable Sediment Management in Reservoirs and Regulated Rivers: Experiences from Five Continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Owens, P.N.; Batalla, R.J.; Collins, A.J.; Gomez, B.; Hicks, D.M.; Horowitz, A.J.; Kondolf, G.M.; Marden, M.; Page, M.J.; Peacock, D.H.; et al. Fine-Grained Sediment in River Systems: Environmental Significance and Management Issues. River Res. Appl. 2005, 21, 693–717. [Google Scholar] [CrossRef]
- Wood, P.J.; Armitage, P.D. Biological Effects of Fine Sediment in the Lotic Environment. Environ. Manag. 1997, 21, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Höfler, S.; Piberhofer, B.; Gumpinger, C.; Hauer, C. Status, Sources, and Composition of Fine Sediments in Upper Austrian Streams. J. Appl. Water Eng. Res. 2018, 6, 283–297. [Google Scholar] [CrossRef]
- Schönenberger, U.; Stamm, C. Hydraulic Shortcuts Increase the Connectivity of Arable Land Areas to Surface Waters. Hydrol. Earth Syst. Sci. 2021, 25, 1727–1746. [Google Scholar] [CrossRef]
- Hauer, C.; Habersack, H. “Nature-Based Solutions” Im Integrativen Wasserbau. Osterr. Wasser Abfallwirtsch. 2023, 75, 19–23. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Boulange, J.; Do, H.X.; Gosling, S.N.; Grillakis, M.G.; Koutroulis, A.G.; Leonard, M.; Liu, J.; Schmied, H.M.; Papadimitriou, L.; et al. Globally Observed Trends in Mean and Extreme River Flow Attributed to Climate Change. Science 2021, 371, 1159–1162. [Google Scholar] [CrossRef]
- Zessner, M.; Höfler, S.; Weinberger, C.; Gabriel, O.; Kuderna, M.; Strenge, E.; Gumpinger, C. Feinsediment- Und Phosphorproblematik in Oberösterreichischen Fließgewässern Und Ansätze Zur Lösung; Office of the State Government of Upper Austria: Linz, Austria, 2019. [Google Scholar]
- Ssymank, A. Neue Anforderungen Im Europäischen Naturschutz. Das Schutzgebietssystem Natura 2000 Und Die FFH-Richtlinie Der EU. Nat. Landsch. 1994, 69, 395–406. [Google Scholar]
- Bayerisches Landesamt für Statistik. Bodennutzung Der Landwirtschaftlichen Betriebe in Bayern 2017; Bayerisches Landesamt für Statistik: München, Germany, 2018; p. 20. [Google Scholar]
- Bayerische Landesanstalt für Landwirtschaft (LfL). Agrarstrukturentwicklung in Bayern IBA-Agrarstrukturbericht 2014; Bayerische Landesanstalt für Landwirtschaft (LfL): Freising, Germany, 2015; p. 21. [Google Scholar]
- Bayerische Landesanstalt für Landwirtschaft (LfL). Biogas in Numbers—Statistics on Bavarian Biogas Production. Available online: https://www.lfl.bayern.de/iba/energie/031607/ (accessed on 20 November 2023).
- Bayerische Landesanstalt für Landwirtschaft (LfL). Erosionsatlas Bayern. Available online: https://www.lfl.bayern.de/iab/boden/029288/ (accessed on 20 November 2023).
- Brandhuber, R.; Auerswald, K.; Lang, R.; Müller, A.; Treisch, M. ABAG Interaktiv. Available online: https://abag.lfl.bayern.de/ (accessed on 20 November 2023).
- Moore, I.D.; Wilson, J. Length-Slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation. J. Soil Water Conserv. 1992, 47, 423–428. [Google Scholar]
- Bork, H.-R.; Bork, H.; Dalchow, C.; Faust, B.; Piorr, H.-P.; Schatz, T. Landschaftsentwicklung in Mitteleuropa—Wirkung Des Menschen Auf Landschaften; Klett-Perthes: Gotha, Germany, 1998. [Google Scholar]
- Poesen, J. Soil Erosion in the Anthropocene: Research Needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.J.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s Soils Are under Threat. Soil Discuss. 2015, 2, 1263–1272. [Google Scholar] [CrossRef]
- Johannsen, L.L.; Schmaltz, E.M.; Mitrovits, O.; Klik, A.; Smoliner, W.; Wang, S.; Strauss, P. An Update of the Spatial and Temporal Variability of Rainfall Erosivity (R-Factor) for the Main Agricultural Production Zones of Austria. Catena 2022, 215, 106305. [Google Scholar] [CrossRef]
- Strauss, P.; Schmaltz, E.; Krammer, C.; Zeiser, A.; Weinberger, C.; Kuderna, M.; Dersch, G. Bodenerosion in Österreich—Eine Nationale Berechnung Mit Regionalen Daten Und Lokaler Aussagekraft Für ÖPUL; Federal Agency for Water Management: Petzenkirchen, Austria, 2020; p. 149. [Google Scholar]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A Review of the (Revised) Universal Soil Loss Equation (R/USLE): With a View to Increasing Its Global Applicability and Improving Soil Loss Estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Van Oost, K.; Govers, G. Evaluating the Effects of Changes in Landscape Structure on Soil Erosion by Water and Tillage. Landsc. Ecol. 2000, 15, 577–589. [Google Scholar] [CrossRef]
- Hauer, C.; Höfler, S. Interreg Malšemuschel—Final Report 2017-2020; Office of the State Government of Upper Austria: Linz, Austria, 2021. [Google Scholar]
- Schmaltz, E.M.; Krammer, C.; Dersch, G.; Weinberger, C.; Kuderna, M.; Strauss, P. The Effectiveness of Soil Erosion Measures for Cropland in the Austrian Agri-Environmental Programme: A National Approach Using Local Data. Agric. Ecosyst. Environ. 2023, 355, 108590. [Google Scholar] [CrossRef]
- van der Sluis, T.; Pedroli, B.; Kristensen, S.B.P.; Lavinia Cosor, G.; Pavlis, E. Changing Land Use Intensity in Europe—Recent Processes in Selected Case Studies. Land Use Policy 2016, 57, 777–785. [Google Scholar] [CrossRef]
- Statista GmbH Anzahl Der Landwirtschaftlichen Betriebe Und Bauernhöfe in Deutschland Bis 2020. Available online: https://de.statista.com/statistik/daten/studie/36094/umfrage/landwirtschaft---anzahl-der-betriebe-in-deutschland/ (accessed on 15 November 2023).
- Lee, L.K. The Impact of Landownership Factors on Soil Conservation. Am. J. Agric. Econ. 1980, 62, 1070–1076. [Google Scholar] [CrossRef]
- Ervin, D.E. Soil Erosion Control on Owner-Operated and Rented Cropland. J. Soil Water Conserv. 1982, 37, 285–288. [Google Scholar]
- Vogel, E.; Deumlich, D.; Kaupenjohann, M. Bioenergy Maize and Soil Erosion—Risk Assessment and Erosion Control Concepts. Geoderma 2016, 261, 80–92. [Google Scholar] [CrossRef]
- Rath, J. Deutsches Maiskomitee e. V. (DMK). Available online: https://www.maiskomitee.de/ (accessed on 15 November 2023).
- Poeppl, R.E.; Fryirs, K.A.; Tunnicliffe, J.; Brierley, G.J. Managing Sediment (Dis)Connectivity in Fluvial Systems. Sci. Total Environ. 2020, 736, 139627. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Ballabio, C.; Meusburger, K.; Spinoni, J.; Alewell, C.; Borrelli, P. Towards Estimates of Future Rainfall Erosivity in Europe Based on REDES and WorldClim Datasets. J. Hydrol. 2017, 548, 251–262. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Liakos, L.; Panagos, P. An In-Depth Statistical Analysis of the Rainstorms Erosivity in Europe. Catena 2021, 206, 105577. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Risse, L.M.; Nearing, M.A.; Laflen, J.M.; Nicks, A.D. Error Assessment in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1993, 57, 825–833. [Google Scholar] [CrossRef]
- Khosh Bin Ghomash, S.; Caviedes-Voullieme, D.; Hinz, C. Effects of Erosion-Induced Changes to Topography on Runoff Dynamics. J. Hydrol. 2019, 573, 811–828. [Google Scholar] [CrossRef]
- Bettoni, M.; Maerker, M.; Bosino, A.; Conedera, M.; Simoncelli, L.; Vogel, S. Land Use Effects on Surface Runoff and Soil Erosion in a Southern Alpine Valley. Geoderma 2023, 435, 116505. [Google Scholar] [CrossRef]
- Zessner, M.; Strenge, E.; Hepp, G.; Kuderna, M.; Weinberger, C.; Gabriel, O. Prognose Der Nährstoffbelastung in Oberösterreichischen Gewässern Für Den Zeitraum 2015—2020, Ableitung von Handlungsoptionen Sowie Quantifizierung Ihrer Wirksamkeit; Im Auftrag des Amtes der Oberösterreichischen Landesregierung AUWR-2015-231931/41-StU; Office of the State Government of Upper Austria: Linz, Austria, 2018; p. 80. [Google Scholar]
- Fiener, P.; Auerswald, K. Effectiveness of Grassed Waterways in Reducing Runoff and Sediment Delivery from Agricultural Watersheds. J. Environ. Qual. 2003, 32, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.; de Baets, S.; Rickson, J.; Simmons, R.W. Selecting Plant Traits for Soil Erosion Control in Grassed Waterways under a Changing Climate: A Growth Room Study. Eur. J. Soil Sci. 2021, 72, 2381–2397. [Google Scholar] [CrossRef]
- Davies, B.; Biggs, J.; Williams, P.; Thompson, S. Making Agricultural Landscapes More Sustainable for Freshwater Biodiversity: A Case Study from Southern England. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 439–447. [Google Scholar] [CrossRef]
- Dürregger, A.; Pander, J.; Palt, M.; Mueller, M.; Nagel, C.; Geist, J. The Importance of Stream Interstitial Conditions for the Early-Life-Stage Development of the European Nase (Chondrostoma Nasus L.). Ecol. Freshw. Fish 2018, 27, 920–932. [Google Scholar] [CrossRef]
- Masouras, A.; Karaouzas, I.; Dimitriou, E.; Tsirtsis, G.; Smeti, E. Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water 2021, 13, 478. [Google Scholar] [CrossRef]
- Law, R.J. A Review of the Function and Uses of, and Factors Affecting, Stream Phytobenthos. Freshw. Rev. 2011, 4, 135–166. [Google Scholar] [CrossRef]
- Gieswein, A.; Hering, D.; Lorenz, A.W. Development and Validation of a Macroinvertebrate-Based Biomonitoring Tool to Assess Fine Sediment Impact in Small Mountain Streams. Sci. Total Environ. 2019, 652, 1290–1301. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.T.; Norris, R.; Wilkinson, S. The Impact of Fine Sediment Accumulation on Benthic Macroinvertebrates: Implications for River Managemen. In Proceedings of the 5th Australian Stream Management Conference, Albury, Australia, 21–25 May 2007; Australian Rivers: Making a Difference; Charles Sturt University Thurgoona: New South Wales, Australia, 2007; pp. 139–144. [Google Scholar]
1960 | 2010 | Increase | ||
---|---|---|---|---|
Otterbach | Himmelmühlbach | 65 | 100 | 55% |
Ascha | Hornmühlbach | 70 | 95 | 36% |
Schwarzach | Kadenzhofen | 60 | 100 | 67% |
Große Vils | Moosbach | 75 | 110 | 47% |
Zenn | Wimmelbach | 50 | 80 | 60% |
Scenarios for the C-Factor | 1960 | 2010 | 2020+ | 2020++ |
---|---|---|---|---|
Cultivation system | potato–grain rotation | maize–grain rotation (also mixture of row crops) | ||
Soil cover during winter before row crop/potatoes | no | no | yes | yes |
Intercropping | no | no | yes | yes |
Tillage before row crop/potatoes | yes | yes | yes | no-tillage |
Potato dam plantation | spring | - | - | - |
Seed conditioning before row crop | - | areal | areal | areal |
Tillage/Ploughing before grain | yes | - | - | - |
Soil cover with straw or intercrop cover after sowing row crop | - | <5% | <10% | <10% |
Share of row crop | 25% | 75% | 75% | 50% |
Resulting management factor (C-factor) | 0.14 | 0.43 | 0.34 | 0.16 |
Other factors of the RUSLE | ||||
R Moosbach (MJ mm ha−1 h−1 year−1) [42] | 75 | 106 | 106 | 106 |
R Hornmühlbach (MJ mm ha−1 h−1 year−1) [42] | 70 | 107 | 107 | 107 |
K Moosbach [42] | 0.4 | 0.4 | 0.4 | 0.4 |
K Hornmühlbach [42] | 0.25 | 0.25 | 0.25 | 0.25 |
LS factor | individual cell value | |||
P-factor | 1 | 1 | 1 | 1 |
Share of Total Area | 1960s | 2010s |
---|---|---|
Agriculture | 57.8% | 54.7% |
of which is arable land | 40.9% | 65.1% |
of which is grassland | 49.4% | 34.9% |
of which is other agricultural land | 9.7% | 0.0% |
Forestry | 35.3% | 36.9% |
Sealed areas | 1.9% | 3.5% |
Settlement area | 1.0% | 2.1% |
Infrastructure | 1.8% | 2.0% |
of which are asphalted roads | 50.8% | 68.0% |
of which are farm tracks | 49.2% | 32.0% |
Structural elements | 3.5% | 3.7% |
of which are roadside areas | 16.9% | 27.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höfler, S.; Ringler, G.; Gumpinger, C.; Reebs, F.; Schnell, J.; Hauer, C. Landscape Changes in the Bavarian Foothills since the 1960s and the Effects on Predicted Erosion Processes and Control. Water 2024, 16, 417. https://doi.org/10.3390/w16030417
Höfler S, Ringler G, Gumpinger C, Reebs F, Schnell J, Hauer C. Landscape Changes in the Bavarian Foothills since the 1960s and the Effects on Predicted Erosion Processes and Control. Water. 2024; 16(3):417. https://doi.org/10.3390/w16030417
Chicago/Turabian StyleHöfler, Sarah, Gerald Ringler, Clemens Gumpinger, Felix Reebs, Johannes Schnell, and Christoph Hauer. 2024. "Landscape Changes in the Bavarian Foothills since the 1960s and the Effects on Predicted Erosion Processes and Control" Water 16, no. 3: 417. https://doi.org/10.3390/w16030417
APA StyleHöfler, S., Ringler, G., Gumpinger, C., Reebs, F., Schnell, J., & Hauer, C. (2024). Landscape Changes in the Bavarian Foothills since the 1960s and the Effects on Predicted Erosion Processes and Control. Water, 16(3), 417. https://doi.org/10.3390/w16030417