Electrochemical Oxidation of Selected Micropollutants from Environment Matrices Using Boron-Doped Diamond Electrodes: Process Efficiency and Transformation Product Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Sample Source
2.2. Reagents and Solutions
2.3. Boron-Doped Diamond (BBD) Electrode
2.4. Electrochemical Oxidation (EO) Setup
2.5. Analysis of COD and N-NH4+
2.6. BPA and DCF Analysis Concentration and Transformation Product Determination
3. Results and Discussion
3.1. Electrochemical Removal of Ammonium and Organic Compounds
3.2. Removal Efficiency of BPA and DIC from Different Environmental Matrices
3.3. Detection of Transformation Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krzeminski, K.; Tomei, M.C.; Karaolia, P.; Langenhoff, L.; Almeida, C.M.A.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [PubMed]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef] [PubMed]
- Zorzo, C.F.; Inticher, J.J.; Borba, F.H.; Cabrera, L.C.; Dugatto, J.S.; Baroni, S.; Bergamasco, R. Oxidative degradation and mineralisation of the endocrine-disrupting chemical bisphenol A by an eco-friendly system based on UV-solar/H2O2 with reduction of genotoxicity and cytotoxicity levels. Sci. Total Environ. 2021, 770, 145296. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, M.H.; Ghazi-Khansari, M.; Farsi, Z.; Yazdanfar, N.; Jahanbakhsh, M.; Sadighara, P. Bisphenol A in dairy products: Amount, potential risks, and various analytical methods—A systematic review. Food Chem. X 2024, 21, 101142. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef]
- Ben-Jonathan, N.; Steinmetz, R. Xenoestrogens: The emerging story of bisphenol A. Trends Endocrinol. Metab. 1998, 9, 124–128. [Google Scholar] [CrossRef]
- Petrie, B.; Lopardo, L.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Assessment of bisphenol-A in the urban water cycle. Sci. Total Environ. 2019, 650, 900–907. [Google Scholar] [CrossRef]
- Chou, P.-H.; Lin, Y.-L.; Liu, T.-C.; Chen, K.-Y. Exploring potential contributors to endocrine disrupting activities in Taiwan’s surface waters using yeast assays and chemical analysis. Chemosphere 2015, 138, 814–820. [Google Scholar] [CrossRef]
- Presunto, M.; Mariana, M.; Lorigo, M.; Cairrao, E. The effects of bisphenol A on human male infertility: A review of current epidemiological studies. Int. J. Mol. Sci. 2023, 24, 12417. [Google Scholar] [CrossRef]
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plants—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Iovino, P.; Lavorgna, M.; Orlo, E.; Russo, C.; De Felice, B.; Campolattano, N.; Musmarra, D. An integrated approach for the assessment of the electrochemical oxidation of diclofenac: By-product identification, microbiological and eco-genotoxicological evaluation. Sci. Total Environ. 2024, 909, 168511. [Google Scholar] [CrossRef] [PubMed]
- Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment 2024. Available online: https://data.consilium.europa.eu/doc/document/ST-7108-2024-INIT/en/pdf (accessed on 21 November 2024).
- Yin, Y.; Shi, M.; Ren, Y.; Wang, S.; Hua, M.; Lu, J.; Zhang, W.; Lv, L. Wrinkle structure on multifunctional MOFs to facilitate PPCPs adsorption in wastewater. Chem. Eng. J. 2020, 387, 124196. [Google Scholar] [CrossRef]
- Huang, Z.; Gong, B.; Huang, C.-P.; Pan, S.-Y.; Wu, P.; Dang, Z.; Chiang, P.-C. Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac, and octylphenol. J. Environ. Manag. 2019, 231, 121–128. [Google Scholar] [CrossRef]
- Hong, M.; Wang, Y.; Lu, G. UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole, and sulfisomidine: Degradation mechanisms, transformation products, toxicity evolution, and effect of real water matrix. Chemosphere 2020, 258, 127351. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibañez, M.; Hernández, F.; Torres-Palma, R.A. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res. 2019, 154, 349–360. [Google Scholar] [CrossRef]
- Sigcha-Pallo, C.; Peralta-Hernández, J.M.; Alulema-Pullupaxi, P.; Carrera, P.; Fernández, L.; Pozo, P.; Espinoza-Montero, P.J. Photoelectrocatalytic degradation of diclofenac with a boron-doped diamond electrode modified with titanium dioxide as a photoanode. Environ. Res. 2022, 212, 113362. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Szopińska, M.; Wilk, B.K.; Sobaszek, M.; Łuczkiewicz, A.; Bogdanowicz, R.; Fudala-Książek, S. Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes. J. Hazard. Mater. 2021, 403, 123606. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Dettlaff, A.; Szopińska, M.; Karpienko, K.; Wróbel, M.; Łuczkiewicz, A.; Bogdanowicz, R. Simultaneous opto-electrochemical monitoring of carbamazepine and its electro-oxidation by-products in wastewater. J. Hazard. Mater. 2021, 419, 126509. [Google Scholar] [CrossRef]
- Brocenschi, R.F.; Rocha-Filho, R.C.; Duran, B.; Swain, G.M. The analysis of estrogenic compounds by flow injection analysis with amperometric detection using a boron-doped diamond electrode. Talanta 2014, 126, 12–19. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Rycewicz, M.; Łuczkiewicz, A.; Fudala-Książek, S.; Bogdanowicz, R.; Ruello, M.L. Electrodes criticality: The impact of CRMs in the leachate electrochemical oxidation. Manuf. Rev. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Swain, G.M. The Use of CVD Diamond Thin Films in Electrochemical Systems. Adv. Mater. 1994, 6, 388–392. [Google Scholar] [CrossRef]
- Swain, G.M.; Ramesham, R. The Electrochemical Activity of Boron-Doped Polycrystalline Diamond Thin Film Electrodes. Anal. Chem. 1993, 65, 345–351. [Google Scholar] [CrossRef]
- Martin, H.B.; Argoitia, A.; Landau, U.; Anderson, A.B.; Angus, J.C. Hydrogen and Oxygen Evolution on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 1996, 143, L133–L136. [Google Scholar] [CrossRef]
- Wilk, B.K.; Szopińska, M.; Sobaszek, M.; Pierpaoli, M.; Błaszczyk, A.; Luczkiewicz, A.; Fudala-Ksiazek, S. Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: Pollution degradation rate, energy efficiency and toxicity assessment. Environ. Sci. Pollut. Res. 2022, 29, 65625–65641. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Water Works Association (AWWA) & Water Environment Federation (WEF): Washington, DC, USA, 2005. [Google Scholar]
- Panizza, M.; Delucchi, M.; Sirés, I. Electrochemical process for the treatment of landfill leachate. J. Appl. Electrochem. 2010, 40, 1721–1727. [Google Scholar] [CrossRef]
- Panizza, M.; Kapalka, A.; Comninellis, C. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis. Electrochim. Acta 2008, 53, 2289–2295. [Google Scholar] [CrossRef]
- Urtiaga, A.; Ortiz, I.; Anglada, A.; Mantzavinos, D.; Diamadopoulos, E. Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. J. Appl. Electrochem. 2012, 42, 779–786. [Google Scholar] [CrossRef]
- Serrano, K.; Michaud, P.A.; Comninellis, C.; Savall, A. Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 2002, 48, 431–436. [Google Scholar] [CrossRef]
- Ding, J.; Bu, L.; Zhao, Q.; Kabutey, F.T.; Wei, L.; Dionysiou, D.D. Electrochemical activation of persulfate on BDD and DSA anodes: Electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A. J. Hazard. Mater. 2020, 388, 121789. [Google Scholar] [CrossRef]
- Lacasa, E.; Llanos, J.; Cañizares, P.; Rodrigo, M.A. Electrochemical denitrification with chlorides using DSA and BDD anodes. Chem. Eng. J. 2012, 184, 66–71. [Google Scholar] [CrossRef]
- Yao, J.; Mei, Y.; Xia, G.; Lu, Y.; Xu, D.; Sun, N.; Wang, J.; Chen, J. Process optimization of electrochemical oxidation of ammonia to nitrogen for actual dyeing wastewater treatment. Int. J. Environ. Res. Public Health 2019, 16, 2931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, Y.; Li, Y.; Hu, Z.; Zhou, L.; Zhou, M. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 2013, 228, 455–467. [Google Scholar] [CrossRef]
- Ghazouani, M.; Akrout, H.; Bousselmi, L. Nitrate and carbon matter removals from real effluents using Si/BDD electrode. Environ. Sci. Pollut. Res. 2017, 24, 9895–9906. [Google Scholar] [CrossRef]
- Zhou, B.; Yu, Z.; Wei, Q.; Long, H.Y.; Xie, Y.; Wang, Y. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron-doped diamond anode. Appl. Surf. Sci. 2016, 377, 406–415. [Google Scholar] [CrossRef]
- Fudala-Ksiazek, S.; Sobaszek, M.; Łuczkiewicz, A.; Pieczynska, A.; Ofiarska, A.; Fiszka-Borzyszkowska, A.; Sawczak, M.; Ficek, M.; Bogdanowicz, R.; Siedlecka, E.M. Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: Advanced pre-treatment prior to the biological nitrogen removal. Chem. Eng. J. 2018, 334, 1074–1084. [Google Scholar] [CrossRef]
- del Rosario Salas-Sandoval, E.; Pérez-Segura, T.; Garcia-Segura, S.; Dos Santos, A.J. Innovative approaches to electrochemical oxidation of bisphenol B in synthetic and complex water environments. Sci. Total Environ. 2024, 955, 176762. [Google Scholar] [CrossRef]
- Marselli, B.; Garcia-Gomez, J.; Michaud, P.-A.; Rodrigo, M.A.; Comninellis, C. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 2003, 150, D79. [Google Scholar] [CrossRef]
- Herraiz-Carboné, M.; Santos, A.; Hayat, A.; Domínguez, C.M.; Cotillas, S. Remediation of groundwater polluted with lindane production wastes by conductive-diamond electrochemical oxidation. Sci. Total Environ. 2024, 926, 171848. [Google Scholar] [CrossRef]
- Zhi, D.; Lin, Y.; Jiang, L.; Zhou, Y.; Huang, A.; Yang, J.; Luo, L. Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review. J. Environ. Manag. 2020, 260, 110125. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Kumar, V. Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems. J. Environ. Manag. 2015, 156, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, G.; Pourakbar, M.; Shekoohiyan, S.; Satari, M. The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process: Degradation, mineralization, and cytotoxicity assessment. Chem. Eng. J. 2018, 331, 755–764. [Google Scholar] [CrossRef]
- Särkkä, H.; Bhatnagar, A.; Sillanpää, M. Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 2015, 754, 46–56. [Google Scholar] [CrossRef]
- Liu, Y.J.; Hu, C.Y.; Lo, S.L. Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. J. Hazard. Mater. 2019, 366, 592–605. [Google Scholar] [CrossRef]
- Iovino, P.; Chianese, S.; Fenti, A.; Blotevogel, J.; Musmarra, D. An innovative approach for atrazine electrochemical oxidation modelling: Process parameter effect, intermediate formation and kinetic constant assessment. Chem. Eng. J. 2023, 474, 146022. [Google Scholar] [CrossRef]
- Iovino, P.; Fenti, A.; Galoppo, S.; Najafinejad, M.S.; Chianese, S.; Musmarra, D. Electrochemical removal of nitrogen compounds from a simulated saline wastewater. Molecules 2023, 28, 1306. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Arts, A.; de Groot, M.T.; van der Schaaf, J. Current efficiency and mass transfer effects in electrochemical oxidation of C1 and C2 carboxylic acids on boron-doped diamond electrodes. Chem. Eng. J. Adv. 2021, 6, 100093. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Zaviska, F.; Drogui, P.; Blais, J.F.; Mercier, G.; Lafrance, P. Experimental design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/IrO2 and Ti/SnO2 circular anode electrodes. J. Hazard. Mater. 2011, 185, 1499–1507. [Google Scholar] [CrossRef]
- Heim, C.; Rajab, M.; Greco, G.; Grosse, S.; Drewes, J.E.; Letzel, T.; Helmreich, B. Fate of diclofenac and its transformation and inorganic by-products in different water matrices during electrochemical advanced oxidation process using a boron-doped diamond electrode. Water 2020, 12, 1686. [Google Scholar] [CrossRef]
- Brillas, E.; Garcia-Segura, S.; Skoumal, M.; Arias, C. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere 2010, 79, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, B.; Guan, X. Oxidative removal of bisphenol A by permanganate: Kinetics, pathways and influences of co-existing chemicals. Sep. Purif. Technol. 2013, 107, 48–53. [Google Scholar] [CrossRef]
- Watanabe, I.; Harada, K.; Matsui, T.; Miyasaka, H.; Okuhata, H.; Tanaka, S.; Nakayama, H.; Kato, K.; Bamba, T.; Hirata, K. Characterization of bisphenol A metabolites produced by Portulaca oleracea cv. by liquid chromatography coupled with tandem mass spectrometry. Biosci. Biotechnol. Biochem. 2012, 76, 1015–1017. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, X.; Needham, L.L.; Calafat, A.M. In-vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A? Anal. Bioanal. Chem. 2011, 399, 1071–1079. [Google Scholar] [CrossRef]
- Bakr, A.R.; Rahaman, M.S. Removal of bisphenol A by electrochemical carbon-nanotube filter: Influential factors and degradation pathway. Chemosphere 2017, 185, 879–887. [Google Scholar] [CrossRef]
- Kondrakov, A.O.; Ignatev, A.N.; Frimmel, F.H.; Bräse, S.; Horn, H.; Revelsky, A.I. Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: A comparative study. Appl. Catal. B Environ. 2014, 160, 106–114. [Google Scholar] [CrossRef]
- Jewell, K.S.; Falås, P.; Wick, A.; Joss, A.; Ternes, T.A. Transformation of diclofenac in hybrid biofilm–activated sludge processes. Water Res. 2016, 105, 559–567. [Google Scholar] [CrossRef]
- Calza, P.; Sakkas, V.A.; Medana, C.; Baiocchi, C.; Dimou, A.; Pelizzetti, E.; Albanis, T. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B Environ. 2006, 67, 197–205. [Google Scholar] [CrossRef]
- Vogna, D.; Marotta, R.; Napolitano, A.; Andreozzi, R.; d’Ischia, M. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res. 2004, 38, 414–422. [Google Scholar] [CrossRef]
- Coelho, A.D.; Sans, C.; Agüera, A.; Gómez, M.J.; Esplugas, S.; Dezotti, M. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ. 2009, 407, 3572–3578. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Estrada, L.A.; Malato, S.; Gernjak, W.; Agüera, A.; Thurman, E.M.; Ferrer, I.; Fernández-Alba, A.R. Photo-Fenton degradation of diclofenac: Identification of main intermediates and degradation pathway. Environ. Sci. Technol. 2005, 39, 8300–8306. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Shao, Y.; Gao, N.; Chen, J.; Zhang, Y.; Xiang, H.; Guo, Y. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments. Ecotoxicol. Environ. Safety 2017, 141, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Faber, H.; Melles, D.; Brauckmann, C.; Wehe, C.A.; Wentker, K.; Karst, U. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/) mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 345–354. [Google Scholar] [CrossRef]
- Agüera, A.P.E.L.A.; Pérez Estrada, L.A.; Ferrer, I.; Thurman, E.M.; Malato, S.; Fernández-Alba, A.R. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005, 40, 908–915. [Google Scholar] [CrossRef]
- Cheng, H.; Song, D.; Liu, H.; Qu, J. Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism. Chemosphere 2015, 136, 297–304. [Google Scholar] [CrossRef]
Group of Parameters to be Determined | Parameters | LL | TWW-W | TWW-D |
---|---|---|---|---|
Organic substance content | COD [mg/L] | 3608 ± 123 | 312 ± 25 | 34 ± 2.1 |
BOD5 [mg/L] | 403 ± 54 | 78.9 ± 7.2 | <LOD | |
BOD20/COD | 0.12 ± 0.01 | - | - | |
TSSs [mg/L] | 70.8 ± 10.0 | 44 ± 4.1 | 3.2 ± 0.1 | |
MSSs [mg/L] | 37.9 ± 12.2 | 5 ± 0.3 | 1.6 ± 0.1 | |
VSSs [mg/L] | 32.9 ± 10.4 | 39 ± 5.8 | 1.6 ± 0.1 | |
Nitrogen form | N-NH4+ [mg/L] | 2069 ± 93 | 74.1 ± 0.9 | 0.103 ± 0.015 |
N-NO3− [mg/L] | 9.4 ± 7.1 | 0.869 ± 0.02 | 4.69 ± 0.50 | |
N-NO3− [mg/L] | 0.4 ± 0.1 | 0.087 ± 0.004 | 6.11 ± 0.61 | |
TN [mg/L] | 2148 ± 108 | 75.2 ± 1.4 | 10.1 ± 0.81 | |
N-NH4+/TN | 0.97 ± 0.02 | 0.99 ± 0.01 | 0.01 ± 0.01 | |
Phosphorus form | P-PO43− [mg/L] | 10.7 ± 1.2 | 7.67 ± 0.89 | 0.619 ± 0.25 |
TP [mg/L] | 15.3 ± 1.0 | 8.22 ± 0.7 | 0.768 ± 0.016 | |
P-PO43− [mg/L] | 0.7 ± 0.1 | 0.93 ± 0.11 | 0.81 ± 0.11 | |
Selected ions | Cl−[mg/L] | 2690 ± 70 | 86.6 ± 1.2 | 86.64 ± 2.1 |
SO42− [mg/L] | 1353 ± 70 | 39.6 ± 2.2 | 37.89 ± 1.8 | |
S2− [mg/L] | 8.7 ± 0.8 | 0.094 ± 0.009 | <0.1 | |
Physicochemical parameters | pH | 7.8 ± 0.1 | 7.76 ± 0.1 | 8.37 ± 0.1 |
redox [mV] | −414 ± 7.6 | 44 ± 1.8 | 187.8 ± 9.8 | |
conductivity [mS/cm] | 24.0 ± 2.8 | 1629 ± 3.4 | 1164 ± 2.2 | |
Micropollutants | BPA [µg/L] | 164.5 ± 16.5 | 2.1 ± 0.3 | 0.57 ± 0.11 |
DCF [µg/L] | 3.5 ± 0.7 | 2.4 ± 0.5 | 16.3 ± 0.8 |
Parameter | Type of Electrode | LL | TWW-W | TWW-D |
---|---|---|---|---|
Current Density | 100 mA/cm2 | 25 mA/cm2 | 25 mA/cm2 | |
Time | 8 h | 6 h | 6 h | |
COD | 0.5 k BDD | 94.07% | 75.06% | 78.69% |
10 k BDD | 94.24% | 65.70% | 85.58% | |
N-NH4+ | 0.5 k BDD | 73.26% | 46.69% | −24.53% |
10 k BDD | 78.25% | 35.82% | −11.81% |
MP Type | EO Time | LL | TWW-W | TWW-D |
---|---|---|---|---|
Current density | 100 mA/cm2 | 25 mA/cm2 | 25 mA/cm2 | |
Initial concentration | 25 mg/L | 0.25 mg/L | 0.01 mg/L | |
0.5 k BDD | ||||
BPA | 2 h | - | 49.13% | >96.64% |
4 h | >99.85% | - | - | |
6 h | - | 76.96% | >96.64% | |
8 h | >99.85% | - | - | |
10 k BDD | ||||
BPA | 2 h | - | 31.30% | >96.64% |
4 h | 99.80% | |||
6 h | - | 57.39% | >96.64% | |
8 h | >99.85% | - | - |
MP Type | EO Time | LL | TWW-W | TWW-D |
---|---|---|---|---|
Current density | 100 mA/cm2 | 25 mA/cm2 | 25 mA/cm2 | |
Initial concentration | 0.1 mg/L | 0.01 mg/L | 0.01 mg/L | |
0.5 k BDD/Nb | ||||
DCF | 2 h | - | 61.47% | >96.64% |
4 h | >99.23% | - | - | |
6 h | - | 75.98% | >96.64% | |
8 h | >99.23% | - | - | |
10 k BDD/Nb | ||||
DCF | 2 h | - | 45.09% | >96.64% |
4 h | >99.23% | - | - | |
6 h | - | 78.00% | >96.64% | |
8 h | >99.23% | - | - |
UPLC-MS Analysis Details/Peak Area [×106] | ||||
---|---|---|---|---|
m/z of a degradation product, negative ionisation | 195 | 241 | 243 | 245 |
Molecular mass | 196 | 242 | 244 | 246 |
Suggested structural formula for the molecule | ||||
Abbreviation | BPA_1 | BPA_2 | BPA_3 | BPA_4 |
0.5 k BDD (j = 25 mA/cm2) | ||||
0 h_PB | — | — | — | — |
2 h_PB | — | 79,190 | 170,310 | 15,309 |
6 h_PB | 1,400,277 | 148,102 | 725,279 | 50,897 |
10k BDD (j = 25 mA/cm2) | ||||
0 h_PB | — | — | — | — |
2 h_PB | 39,877,662 | 54,074 | 199,027 | 17,274 |
6 h_PB | 9,022,250 | 160,605 | 433,484 | 47,736 |
UPLC-MS Analysis Details/Peak Area [×106] | ||||
---|---|---|---|---|
m/z of a degradation product, negative ionisation | 267 | 309 | 327 | 341 |
Molecular mass | 268 | 310 | 328 | 342 |
Suggested structural formula of the molecule | ||||
Abbreviation | DCF_1 | DCF_2 | DCF_3 | DCF_4 |
0.5k BDD (j = 25 mA/cm2) | ||||
0 h_PB | — | — | — | — |
2 h_PB | 132,400 | 1,484,755 | 59,935 | 5,827,328 |
6 h_PB | 130,955 | 1,507,788 | 28,263 | 7,323,796 |
10k BDD (j = 25 mA/cm2) | ||||
0 h_PB | — | — | — | — |
2 h_PB | 103,847 | 1,251,925 | 50,378 | 5,413,242 |
6 h_PB | 119,066 | 1,387,827 | 42,380 | 7,856,422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamoń, F.; Żabczyński, S.; Szopińska, M.; Pierpaoli, M.; Zych, D.; Bogdanowicz, R.; Artichowicz, W.; Łuczkiewicz, A.; Fudala-Książek, S. Electrochemical Oxidation of Selected Micropollutants from Environment Matrices Using Boron-Doped Diamond Electrodes: Process Efficiency and Transformation Product Detection. Water 2024, 16, 3567. https://doi.org/10.3390/w16243567
Gamoń F, Żabczyński S, Szopińska M, Pierpaoli M, Zych D, Bogdanowicz R, Artichowicz W, Łuczkiewicz A, Fudala-Książek S. Electrochemical Oxidation of Selected Micropollutants from Environment Matrices Using Boron-Doped Diamond Electrodes: Process Efficiency and Transformation Product Detection. Water. 2024; 16(24):3567. https://doi.org/10.3390/w16243567
Chicago/Turabian StyleGamoń, Filip, Sebastian Żabczyński, Małgorzata Szopińska, Mattia Pierpaoli, Dawid Zych, Robert Bogdanowicz, Wojciech Artichowicz, Aneta Łuczkiewicz, and Sylwia Fudala-Książek. 2024. "Electrochemical Oxidation of Selected Micropollutants from Environment Matrices Using Boron-Doped Diamond Electrodes: Process Efficiency and Transformation Product Detection" Water 16, no. 24: 3567. https://doi.org/10.3390/w16243567
APA StyleGamoń, F., Żabczyński, S., Szopińska, M., Pierpaoli, M., Zych, D., Bogdanowicz, R., Artichowicz, W., Łuczkiewicz, A., & Fudala-Książek, S. (2024). Electrochemical Oxidation of Selected Micropollutants from Environment Matrices Using Boron-Doped Diamond Electrodes: Process Efficiency and Transformation Product Detection. Water, 16(24), 3567. https://doi.org/10.3390/w16243567