Bibliometric Insights into Microplastic Pollution in Freshwater Ecosystems
Abstract
:1. Introduction
1.1. Understanding Microplastics
1.2. A Growing Threat to Freshwater Ecosystems
1.3. An Alarming Escalation
2. Materials and Methods
3. Results
3.1. Key Sources and Highly Cited Publications
3.2. Author Statistics
3.3. Contribution of Countries
3.4. Keyword Statistics
4. Discussion
5. Conclusions
- An exponential growth is found in the number publications dealing with microplastic pollutions in freshwater ecosystems, with an annual growth rate of 73.13% in publications and an average citation rate of 30.17 per document.
- The leading publication venues are Science of the Total Environment and Environmental Pollution, which have played pivotal roles in disseminating high-impact research in this domain.
- It is observed that the contributions of China, Germany, and the USA are more dominant, and the network visualization maps and co-authorship analyses reveal a dynamic landscape of international collaborations, forming robust partnerships among several countries: China–USA, England–France, and Australia–China.
- The author statistics reveal a highly collaborative and productive scholarly community, with a small cohort of researchers significantly shaping the field. Notably, Koelmans AA (Wageningen University and Research, Netherlands) emerges as a key figure, with a substantial body of work that includes 15 publications and an h-index of 12, reflecting his considerable impact and leadership in microplastic research since 2016. Similarly, Rochman CM’s (University of Toronto, Canada) notable contributions, highlighted by her h-index of 9 and the highest M-index despite her more recent entry into the field, underscore the dynamic and influential nature of individual scholarly contributions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Besseling, E.; Shim, W.J. Nanoplastics in the Aquatic Environment. Critical Review.pdf. Mar. Anthropog. Litter 2015, 325–340. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Cozar, A.; Echevarria, F.; Gonzalez-Gordillo, J.I.; Irigoien, X.; Ubeda, B.; Hernandez-Leon, S.; Palma, A.T.; Navarro, S.; Garcia-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal. Chem. 2015, 65, 47–53. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef]
- Yonkos, L.T.; Friedel, E.A.; Perez-Reyes, A.C.; Ghosal, S.; Arthur, C.D. Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A. Environ. Sci. Technol. 2014, 48, 14195–14202. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Moriceau, B.; Gallinari, M.; Lambert, C.; Huvet, A.; Raffray, J.; Soudant, P. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Chem. 2015, 175, 39–46. [Google Scholar] [CrossRef]
- Desforges, J.P.; Galbraith, M.; Ross, P.S. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 2015, 69, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. [Google Scholar] [CrossRef]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- Brennecke, D.; Ferreira, E.C.; Costa, T.M.; Appel, D.; da Gama, B.A.; Lenz, M. Ingested microplastics (>100 mum) are translocated to organs of the tropical fiddler crab Uca rapax. Pollut. Mar. Pollut. Bull. 2015, 96, 491–495. [Google Scholar] [CrossRef]
- Diepens, N.J.; Koelmans, A.A. Accumulation of Plastic Debris and Associated Contaminants in Aquatic Food Webs. Environ. Sci. Technol. 2018, 52, 8510–8520. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Cassio, F.; Batista, D.; Pradhan, A. Plastic Interactions with Pollutants and Consequences to Aquatic Ecosystems: What We Know and What We Do Not Know. Biomolecules 2022, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Siddiqui, J.A.; Liu, S.; Lan, R.; Abbas, Z.; Chen, G.; Wang, J. Adverse multigeneration combined impacts of micro(nano)plastics and emerging pollutants in the aquatic environment. Sci. Total Environ. 2023, 882, 163679. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Li, Y.; Rob, M.M.; Cheng, H. Microplastic pollution in Bangladesh: Research and management needs. Environ. Pollut. 2022, 308, 119697. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, J.; Mishra, P.P. Microplastics in freshwater ecosystem: A serious threat for freshwater environment. Int. J. Environ. Sci. Technol. 2022, 20, 9189–9204. [Google Scholar] [CrossRef]
- Ding, R.; Tong, L.; Zhang, W. Microplastics in Freshwater Environments: Sources, Fates and Toxicity. Water Air Soil Pollut. 2021, 232, 181. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef]
- Nguyen, M.-K.; Rakib, M.R.J.; Lin, C.; Hung, N.T.Q.; Le, V.-G.; Nguyen, H.-L.; Malafaia, G.; Idris, A.M. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives. TrAC Trends Anal. Chem. 2023, 168, 117294. [Google Scholar] [CrossRef]
- Sarijan, S.; Azman, S.; Said, M.I.M.; Jamal, M.H. Microplastics in freshwater ecosystems: A recent review of occurrence, analysis, potential impacts, and research needs. Environ. Sci. Pollut. Res. Int. 2021, 28, 1341–1356. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Molinari, J.-F.; Molinari, A. A new methodology for ranking scientific institutions. Scientometrics 2008, 75, 163–174. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Wang, B. A bibliometric analysis of climate change adaptation based on massive research literature data. J. Clean. Prod. 2018, 199, 1072–1082. [Google Scholar] [CrossRef]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2006, 69, 131–152. [Google Scholar] [CrossRef]
- Costas, R.; Bordons, M. Is g-index better than h-index? An exploratory study at the individual level. Scientometrics 2008, 77, 267–288. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Jin, Y.; Lu, L.; Tu, W.; Luo, T.; Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2019, 649, 308–317. [Google Scholar] [CrossRef]
- Padervand, M.; Lichtfouse, E.; Robert, D.; Wang, C. Removal of microplastics from the environment. A review. Environ. Chem. Lett. 2020, 18, 807–828. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef] [PubMed]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef] [PubMed]
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Environ. Sci. Technol. Lett. 2017, 4, 258–267. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, M.; Ma, X.; Song, Y.; Zuo, S.; Li, H.; Deng, W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Sci. Total Environ. 2021, 788, 147620. [Google Scholar] [CrossRef]
- Primpke, S.; Christiansen, S.H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E.B.; Meyns, M.; O’Donnell, B.A.; Ossmann, B.E.; et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Appl. Spectrosc. 2020, 74, 1012–1047. [Google Scholar] [CrossRef]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef]
- Wu, X.; Pan, J.; Li, M.; Li, Y.; Bartlam, M.; Wang, Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019, 165, 114979. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D.L. Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single and Mixture Exposures. Environ. Sci. Technol. 2017, 51, 13397–13406. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ye, M.; Jiao, W.; Feng, Y.; Yu, P.; Liu, M.; Jiao, J.; He, X.; Liu, K.; Zhao, Y.; et al. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid. J. Hazard. Mater. 2018, 345, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Drapper, D.; Hornbuckle, A.; Rintoul, L.; Leusch, F.D.L. Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Sci. Total Environ. 2020, 713, 136356. [Google Scholar] [CrossRef]
- Liu, P.; Qian, L.; Wang, H.; Zhan, X.; Lu, K.; Gu, C.; Gao, S. New Insights into the Aging Behavior of Microplastics Accelerated by Advanced Oxidation Processes. Environ. Sci. Technol. 2019, 53, 3579–3588. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Scherer, C.; Brennholt, N.; Reifferscheid, G.; Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 2017, 7, 17006. [Google Scholar] [CrossRef]
- Liu, F.; Vianello, A.; Vollertsen, J. Retention of microplastics in sediments of urban and highway stormwater retention ponds. Environ. Pollut. 2019, 255, 113335. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Scott, J.; Zheng, W.; McNeish, R.E.; Holm, N.; Hoellein, T.J.; Baranski, E.L. Microplastic Contamination in Karst Groundwater Systems. Groundwater 2019, 57, 189–196. [Google Scholar] [CrossRef]
- Iqbal, U.; Riaz, M.Z.B.; Barthelemy, J.; Perez, P.; Idrees, M.B. The last two decades of computer vision technologies in water resource management: A bibliometric analysis. Water Environ. J. 2023, 37, 373–389. [Google Scholar] [CrossRef]
- Glänzel, W. National characteristics in international scientific co-authorship relations. Scientometrics 2001, 51, 69–115. [Google Scholar] [CrossRef]
- Adams, J.D.; Black, G.C.; Clemmons, J.R.; Stephan, P.E. Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981–1999. Res. Policy 2005, 34, 259–285. [Google Scholar] [CrossRef]
- Yildirim, G.; Rahman, A.; Singh, V. A Bibliometric Analysis of Drought Indices, Risk, and Forecast as Components of Drought Early Warning Systems. Water 2022, 14, 253. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Su, H.-N.; Lee, P.-C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Garfield, E. KeyWords Plus-ISI’s breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Curr. Contents 1990, 32, 5–9. [Google Scholar]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Mao, N.; Wang, M.-H.; Ho, Y.-S. A Bibliometric Study of the Trend in Articles Related to Risk Assessment Published in Science Citation Index. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 801–824. [Google Scholar] [CrossRef]
- Yildirim, G.; Alim, M.A.; Rahman, A. Review of Rainwater Harvesting Research by a Bibliometric Analysis. Water 2022, 14, 3200. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.-H.; Ho, Y.-S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- OECD. Towards Eliminating Plastic Pollution by 2040—A Policy Scenario Analysis; OECD: Paris, France, 2023. [Google Scholar]
- UNEP. End Plastic Pollution: Towards an International Legally Binding Instrument; UNEP: Nairobi, Kenya, 2022. [Google Scholar]
- Ivar Do Sul, J.A.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, X.; Tong, J.; Xiong, W.; Zhu, Z.; Gao, X.; Li, S.; Jia, M.; Yang, Z.; Liang, J. Effects of Environmental and Anthropogenic Factors on the Distribution and Abundance of Microplastics in Freshwater Ecosystems. Sci. Total Environ. 2023, 856, 159030. [Google Scholar] [CrossRef]
- Sharma, S.; Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 2017, 24, 21530–21547. [Google Scholar] [CrossRef]
- Tsang, Y.Y.; Mak, C.W.; Liebich, C.; Lam, S.W.; Sze, E.T.P.; Chan, K.M. Microplastic pollution in the marine waters and sediments of Hong Kong. Mar. Pollut. Bull. 2017, 115, 20–28. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, C.J.; Serpa, D.; Soares, A.M.; Gravato, C.; Silva, A.L.P. Mechanisms Influencing the Impact of Microplastics on Freshwater Benthic Invertebrates: Uptake Dynamics and Adverse Effects on Chironomus Riparius. Sci. Total Environ. 2023, 859, 160426. [Google Scholar] [CrossRef]
- Alessandra, C.; Cesarini, G.; Scalici, M. Microplastics in Freshwater: What Is the News from the World? Diversity 2020, 12, 276. [Google Scholar] [CrossRef]
- Wu, W.-M.; Yang, J.; Criddle, C.S. Criddle. Microplastics Pollution and Reduction Strategies. Front. Environ. Sci. Eng. 2016, 11, 6. [Google Scholar]
Rank | Journal | h-Index | g-Index | m-Index | TC | NP | PY-Start |
---|---|---|---|---|---|---|---|
1 | Science of the Total Environment | 39 | 74 | 6.5 | 5780 | 152 | 2018 |
2 | Environmental Pollution | 29 | 60 | 3.625 | 3621 | 76 | 2016 |
3 | Journal of Hazardous Materials | 22 | 36 | 3.667 | 1351 | 55 | 2018 |
4 | Water Research | 21 | 44 | 3.5 | 2884 | 44 | 2018 |
5 | Chemosphere | 18 | 35 | 3 | 1290 | 41 | 2018 |
6 | Environmental Science and Pollution Research | 16 | 23 | 2.667 | 568 | 33 | 2018 |
7 | Environmental Science and Technology | 19 | 29 | 2.714 | 1572 | 29 | 2017 |
8 | Water | 10 | 15 | 2 | 259 | 23 | 2019 |
9 | Environmental Toxicology and Chemistry | 8 | 14 | 1 | 451 | 14 | 2016 |
10 | Environmental Research | 6 | 10 | 2 | 117 | 13 | 2021 |
Rank | Author | Country | TC | TCPY | NTC | Journal |
---|---|---|---|---|---|---|
1 | Koelmans et al. [1] | Netherlands | 974 | 194.80 | 7.96 | Water Research |
2 | Rummel et al. [44] | Germany | 631 | 90.14 | 2.54 | Environmental Science and Technology Letters |
3 | Zhang et al. [48] | China | 554 | 92.33 | 2.84 | Science of the Total Environment |
4 | Pivokonsky et al. [36] | Czech Republic | 471 | 78.50 | 2.41 | Science of the Total Environment |
5 | Jin et al. [39] | China | 407 | 81.40 | 3.33 | Science of the Total Environment |
6 | Mason et al. [47] | United States | 389 | 64.83 | 1.99 | Frontiers in Chemistry |
7 | Huang et al. [41] | China | 383 | 95.75 | 6.94 | Environmental Pollution |
8 | Liu et al. [56] | China | 361 | 72.20 | 2.95 | Environmental Science and Technology |
9 | Wagner et al. [54] | Germany | 351 | 58.50 | 1.80 | Water Research |
10 | Huerta Lwanga et al. [57] | Mexico | 349 | 49.86 | 1.41 | Environmental Pollution |
Rank | Author | Country | LC | GC | LC/GC Ratio (%) | NLC |
---|---|---|---|---|---|---|
1 | Koelmans et al. [1] | Netherlands | 99 | 974 | 10.16 | 8.49 |
2 | Scherer et al. [58] | Germany | 57 | 230 | 24.78 | 1.94 |
3 | Rummel et al. [44] | Germany | 53 | 631 | 8.40 | 1.81 |
4 | Zhang et al. [48] | China | 45 | 554 | 8.12 | 2.81 |
5 | Jemec et al. [42] | Slovenia | 43 | 342 | 12.57 | 2.01 |
6 | Liu et al. [59] | Denmark | 39 | 203 | 19.21 | 3.34 |
7 | Lagarde et al. [49] | France | 38 | 346 | 10.98 | 1.78 |
8 | Pivokonsky et al. [36] | Czech Republic | 36 | 471 | 7.64 | 2.25 |
9 | Panno et al. [60] | United States | 35 | 191 | 18.32 | 3.00 |
10 | Wu et al. [50] | China | 34 | 297 | 11.45 | 2.91 |
Rank | Author | h-Index | g-Index | m-Index | TC | LC | NP | PY-Start |
---|---|---|---|---|---|---|---|---|
1 | Koelmans AA | 12 | 15 | 1.50 | 1957 | 200 | 15 | 2016 |
2 | Rochman CM | 9 | 12 | 2.25 | 406 | 64 | 12 | 2020 |
3 | Horton AA | 7 | 7 | 1.17 | 733 | 93 | 7 | 2018 |
4 | Wu CX | 7 | 10 | 1.75 | 224 | 41 | 10 | 2020 |
5 | Xiong X | 7 | 8 | 1.75 | 176 | 37 | 8 | 2020 |
6 | Gasperi J | 6 | 6 | 1.50 | 95 | 9 | 6 | 2020 |
7 | Li YM | 6 | 8 | 1.50 | 305 | 37 | 8 | 2020 |
8 | Liu ZQ | 6 | 8 | 1.50 | 337 | 37 | 8 | 2020 |
9 | Redondo-H. PE | 6 | 7 | 1.00 | 410 | 52 | 7 | 2018 |
10 | Zhao YL | 6 | 8 | 1.50 | 305 | 37 | 8 | 2020 |
Rank | Country | Articles | TC | SCP | MCP | MCP Ratio |
---|---|---|---|---|---|---|
1 | China | 278 | 8645 | 221 | 57 | 0.205 |
2 | Germany | 57 | 2865 | 44 | 13 | 0.228 |
3 | USA | 56 | 1802 | 49 | 7 | 0.125 |
4 | United Kingdom | 50 | 1678 | 30 | 20 | 0.400 |
5 | Canada | 39 | 994 | 32 | 7 | 0.179 |
6 | Korea | 32 | 695 | 26 | 6 | 0.188 |
7 | Italy | 29 | 479 | 20 | 9 | 0.310 |
8 | Australia | 25 | 764 | 19 | 6 | 0.240 |
9 | France | 25 | 1805 | 13 | 12 | 0.480 |
10 | India | 24 | 372 | 18 | 6 | 0.250 |
Rank | Keyword Plus | TF | 2016–2018 | 2019–2021 | 2022–2023 |
1 | Pollution | 220 | 10 | 82 | 128 |
2 | Freshwater | 166 | 7 | 68 | 91 |
3 | Particles | 149 | 12 | 57 | 80 |
4 | Sediments | 118 | 6 | 46 | 66 |
5 | Microplastics | 105 | 3 | 39 | 63 |
6 | Ingestion | 98 | 4 | 41 | 53 |
7 | Water | 90 | 1 | 30 | 59 |
8 | River | 87 | 1 | 35 | 51 |
9 | Toxicity | 84 | 3 | 37 | 44 |
10 | Accumulation | 81 | 5 | 36 | 40 |
Rank | Authors’ Keywords | TF | 2016–2018 | 2019–2021 | 2022–2023 |
1 | Microplastics | 301 | 6 | 96 | 199 |
2 | Microplastic | 164 | 10 | 59 | 95 |
3 | Freshwater | 51 | 0 | 20 | 31 |
4 | Nano-plastics | 40 | 1 | 19 | 20 |
5 | Plastic Pollution | 39 | 4 | 17 | 18 |
6 | Sediment | 38 | 0 | 12 | 26 |
7 | Pollution | 30 | 0 | 11 | 19 |
8 | Nano-plastic | 28 | 3 | 8 | 17 |
9 | Toxicity | 21 | 1 | 10 | 10 |
10 | Wastewater | 21 | 2 | 10 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildirim, G.; Anindita, M.; Pan, X.; Rahman, S.; Alim, M.A.; Shaik, R.; Rahman, A. Bibliometric Insights into Microplastic Pollution in Freshwater Ecosystems. Water 2024, 16, 3237. https://doi.org/10.3390/w16223237
Yildirim G, Anindita M, Pan X, Rahman S, Alim MA, Shaik R, Rahman A. Bibliometric Insights into Microplastic Pollution in Freshwater Ecosystems. Water. 2024; 16(22):3237. https://doi.org/10.3390/w16223237
Chicago/Turabian StyleYildirim, Gokhan, Monisha Anindita, Xiao Pan, Sumya Rahman, Mohammad A. Alim, Rehana Shaik, and Ataur Rahman. 2024. "Bibliometric Insights into Microplastic Pollution in Freshwater Ecosystems" Water 16, no. 22: 3237. https://doi.org/10.3390/w16223237
APA StyleYildirim, G., Anindita, M., Pan, X., Rahman, S., Alim, M. A., Shaik, R., & Rahman, A. (2024). Bibliometric Insights into Microplastic Pollution in Freshwater Ecosystems. Water, 16(22), 3237. https://doi.org/10.3390/w16223237