Increased Nutrient Levels Induce Different Allocation Strategies Between Canopy-Forming and Rosette-Like Submerged Macrophytes
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.1.1. Treatment 1: Growth Forms
2.1.2. Treatment 2: Nutrient Levels
2.2. Data Analysis
3. Results
3.1. Water Physical–Chemical Parameters
3.2. Response of Two Macrophytes Growth Forms to Increased Nutrient Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Mjelde, M.; Faafeng., B. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshw. Biol. 1997, 37, 355–365. [Google Scholar] [CrossRef]
- Phillips, G.L.; Eminson, D.; Moss, B. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 1978, 4, 103–126. [Google Scholar] [CrossRef]
- Gross, E.M.; Hilt, S.; Lombardo, P.; Mulderij, G. Searching for allelopathic effects of submerged macrophytes on phytoplankton—State of the art and open questions. Hydrobiologia 2007, 584, 77–88. [Google Scholar] [CrossRef]
- Lauridsen, T.; Pedersen, L.J.; Jeppesen, E.; Sønergaard, M. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 1996, 18, 2283–2294. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Borum, J. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 1991, 41, 137–175. [Google Scholar] [CrossRef]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Sayer, C.D.; Burgess, A.; Kari, K.; Davidson, T.A.; Peglar, S.; Yang, H.; Rose, N. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: Implications for the stability of macrophyte-dominance. Freshw. Biol. 2010, 55, 565–583. [Google Scholar] [CrossRef]
- Sayer, C.D.; Davidson, T.A.; Jones, J.I. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: A eutrophication-driven pathway from plants to plankton? Freshw. Biol. 2010, 55, 500–513. [Google Scholar] [CrossRef]
- Madgwick, G.; Emson, D.; Sayer, C.D.; Willby, N.J.; Rose, N.L.; Jackson, M.J.; Kelly, A. Centennial-scale changes to the aquatic vegetation structure of a shallow eutrophic lake and implications for restoration. Freshw. Biol. 2011, 56, 2620–2636. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, X.; Yang, X.; Odgaard, B.V.; Jeppesen, E. Hydrologic and anthropogenic influences on aquatic macrophyte development in a large, shallow lake in China. Freshw. Biol. 2019, 64, 799–812. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Jeppesen, E. The response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonia and nitrate at moderate phosphorus concentration: A mesocosm approach. Freshw. Biol. 2008, 53, 2321–2330. [Google Scholar] [CrossRef]
- Olsen, S.; Chan, F.; Li, W.; Zhao, S.; Søndergaard, M.; Jeppesen, E. Strong impact of nitrogen loading on submerged macrophytes and algae: A long-term mesocosm experiment in a shallow Chinese lake. Freshw. Biol. 2015, 60, 1525–1536. [Google Scholar] [CrossRef]
- Davidson, T.A.; Sayer, C.D.; Bennion, H.; David, C.; Rose, N.; Wade, M.P. A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshw. Biol. 2005, 50, 1671–1686. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, K.; Yang, X. Long-term succession of aquatic plants reconstructed from palynological records in a shallow freshwater lake. Sci. Total Environ. 2018, 643, 312–323. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, K.; Huang, S.; Lin, Q. Patterns and trajectories of macrophyte change in East China’s shallow lakes over the past one century. Sci. China Earth Sci. 2021, 64, 1735–1745. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, B.; Zhang, X.; Liu, Z. Nutrient addition delivers growth advantage to Hydrilla verticillata over Vallisneria natans: A mesocosm study. Knowl. Manag. Aquat. Ecosyst. 2019, 420, 12. [Google Scholar] [CrossRef]
- Bakker, E.S.; Nolet, B.A. Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment. Oecologia 2014, 176, 825–836. [Google Scholar] [CrossRef]
- Chambers, P.A.; Kalff, J. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J. Ecol. 1987, 75, 611–619. [Google Scholar] [CrossRef]
- Rao, Q.; Deng, X.; Su, H.; Xia, W.; Wu, Y.; Zhang, X.; Xie, P. Effects of high ammonium enrichment in water column on the clonal growth of submerged macrophyte Vallisneria natans. Environ. Sci. Pollut. Res. 2018, 25, 32735–32746. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, S.; Chen, D.; Liu, K.; Lu, J. Response of biofilms-leaves of two submerged macrophytes to high ammonium. Chemosphere 2018, 192, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, W.; Jeppesen, E. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: A microcosm approach. Hydrobiologia 2014, 738, 49–59. [Google Scholar] [CrossRef]
- Landkildehus, F.; Søndergaard, M.; Beklioglu, M.; Adrian, R.; Angeler, D.G.; Hejzlar, J.; Papastergiadou, E.; Zingel, P.; Çakiroglu, A.I.; Scharfenberger, U.; et al. Climate change effects on shallow lakes: Design and preliminary results of a cross-European climate gradient mesocosm experiment. Est. J. Ecol. 2014, 63, 71–89. [Google Scholar] [CrossRef]
- Pacheco, J.P.; Aznarez, C.; Meerhoff, M.; Liu, Y.; Li, W.; Baattrup-Pedersen, A.; Cao, Y.; Jeppesen, E. Small-sized omnivorous fish induce stronger effects on food webs than warming and eutrophication in experimental shallow lakes. Sci. Total Environ. 2021, 797, 148998. [Google Scholar] [CrossRef]
- Liu, Y.; Ndirangu, L.; Li, W.; Pan, J.; Cao, Y.; Jeppesen, E. Response of functional traits of aquatic plants to water depth changes under short-term eutrophic clear-water conditions: A mesocosm study. Plants 2024, 13, 1310. [Google Scholar] [CrossRef]
- Huang, X.F.; Chen, W.M.; Cai, Q.M. Survey, observation and analysis of lake ecology. In Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network, Series V; Standards Press of China: Beijing, China, 1999. [Google Scholar]
- Poorter, L. Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol. 1999, 13, 396–410. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, L.; Chang, F.; Olsen, S.; Søndergaard, M.; Jeppesen, E.; Li, W. Response of Vallisneria spinulosa (Hydrocharitaceae) to contrasting nitrogen loadings in controlled lake mesocosms. Hydrobiologia 2016, 766, 215–223. [Google Scholar] [CrossRef]
- Arisz, W.H. Translocation of salts in Vallisneria leaves. Bull. Res. Coune. Isr. D 1960, 8, 247–257. [Google Scholar]
- Denny, P. Sites of nutrient absorption in aquatic macrophytes. J. Ecol. 1972, 60, 819–829. [Google Scholar] [CrossRef]
- Wolfer, S.R.; Straile, D. Spatio-temporal dynamics and plasticity of clonal architecture in Potamogeton perfoliatus. Aquat. Bot. 2004, 78, 307–318. [Google Scholar] [CrossRef]
- Li, W.; Zhong, Y. Theory and Method for Researching Aquatic Macrophytes; Central China Normal University Press: Wuhan, China, 1992. (In Chinese) [Google Scholar]
- Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 2015, 112, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Baattrup-Pedersen, A.; Göthe, E.; Larsen, S.E.; O’Hare, M.; Birk, S.; Riis, T.; Friberg, N. Plant trait characteristics vary with size and eutrophication in European lowland streams. J. Appl. Ecol. 2015, 52, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, X.; Zhao, Y.; Zhou, W.; Li, L.; Wang, B.; Cui, X.; Chen, J.; Song, Z. Divergences in reproductive strategy explain the distribution ranges of Vallisneria species in China. Aquat. Bot. 2016, 132, 41–48. [Google Scholar] [CrossRef]
- Caraco, T.; Kelly, C.K. On the adaptive value of physiological integration in clonal plants. Ecology 1991, 72, 81–93. [Google Scholar] [CrossRef]
- Alpert, P. Clonal integration in Fragaria chiloensis differs between populations: Ramets from grassland are selfish. Oecologia 1999, 120, 69–76. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Smith, D.H.; Madsen, J.D.; Dickson, K.L.; Beitinger, T.L. Nutrient effects on autofragmentation of Myriophyllum spicatum. Aquat. Bot. 2002, 74, 1–17. [Google Scholar] [CrossRef]
Variables | Total Nitrogen | Total Phosphorus | Phytoplankton Chla | Dissolved Oxygen | Temperature | ||
---|---|---|---|---|---|---|---|
Repeated measures ANOVA | Treatment | GF | 0.005; NS | 0.965; NS | 30.830; *** | 15.263; ** | 1.438; NS |
NL | 269.819; *** | 178.160; *** | 14.857; ** | 1.033; NS | 0.042; NS | ||
GF × NL | 0.754; NS | 1.905; NS | 8.629; * | 1.845; NS | 0.008; NS | ||
Time | 43.660; *** | 24.849; *** | 0.480; NS | 240.496; *** | 2532.632; *** | ||
Treatment × Time | GF × Time | 1.216; NS | 0.414; NS | 0.669; NS | 4.626; * | 0.569; NS | |
NL × Time | 12.084; *** | 17.797; *** | 0.164; NS | 5.247; * | 0.233; NS | ||
GF × NL × Time | 3.261; NS | 0.328; NS | 2.537; NS | 0.401; NS | 0.331; NS | ||
Student’s t-test | GF | LN | 2.118; * | ||||
HN | 8.836; *** | ||||||
NL | VAs | 1.038; NS | |||||
POs | 5.260; *** |
Trait Group | Indicator | Two-Way Anova | ||
---|---|---|---|---|
Treatment | ||||
SP | NL | SP × NL | ||
Biological interaction | Epiphyton biomass | 3.777; NS | 0.174; NS | 0.005; NS |
Plant size | Ramet number | 7.709; * (Pl < Pw) | 12.373; ** (HN > LN) | 2.321; NS |
Total plant mass | 11.434; ** (Pl > Pw) | 0.327; NS | 0.117; NS | |
Leaf mass | 21.655; *** (Pl > Pw) | 0.003; NS | 0.363; NS | |
Root mass | 8.253; * (Pl > Pw) | 0.019; NS | 0.434; NS | |
Stolon mass | 0.560; NS | 4.109; NS | 1.341; NS | |
Plant spatial architecture | Maximum plant height | 0.166; NS | 0.932; NS | 0.001; NS |
Stolon length | 15.876; ** | 6.83; * | 6.304; * | |
Biomass allocation | Leaf mass ratio | 60.724; *** (Pl > Pw) | 2.308; NS | 1.306; NS |
Root mass ratio | 0.406; NS | 1.717; NS | 1.662; NS | |
Stolon mass ratio | 63.412; *** (Pl < Pw) | 4.008; NS | 0.336; NS | |
The trade-off between roots and leaves | Root/leaf ratio | 3.257; NS | 0.410; NS | 0.314; NS |
Leaf area root mass ratio | 5.035; * (Pl > Pw) | 0.447; NS | 1.057; NS | |
Leaf photosynthesis | Fv/Fm | 0.214; NS | 1.659; NS | 0.235; NS |
Yield | 4.016; NS | 7.066; * (HN > LN) | 2.135; NS | |
Leaf morphology | Leaf number | 11.505; ** (Pl > Pw) | 0.147; NS | 2.549; NS |
Leaf area | 23.905; *** (Pl > Pw) | 0.118; NS | 0.538; NS | |
Mean leaf size | 17.436; ** (Pl > Pw) | 0.068; NS | 0.485; NS | |
Specific leaf area | 2.447; NS | 4.038; NS | 0.084; NS |
Trait Group | Indicator | Student’s t-Test | |||
---|---|---|---|---|---|
SP | NL | ||||
LN | HN | Pl | Pw | ||
Plant spatial architecture | Stolon length | −4.246; ** (Pw > Pl) | −1.175; NS | 3.202; * (HN > LN) | −0.008; NS |
Trait Group | Indicator | Two-Way Anova | ||
---|---|---|---|---|
Treatment | ||||
SP | NL | SP × NL | ||
Biological interaction | Epiphyton biomass | 0.807; NS | 1.670; NS | 0.313; NS |
Plant size | Ramet number | 4.061; NS | 0.477; NS | 1.966; NS |
Total plant mass | 0.057; NS | 4.407; NS | 0.130; NS | |
Leaf mass | 2.307; NS | 7.301; * (HN > LN) | 1.916; NS | |
Root mass | 1.256; NS | 0.200; NS | 3.195; NS | |
Stolon mass | 2.039; NS | 2.558; NS | 2.558; NS | |
Plant spatial architecture | Maximum plant height | 0.901; NS | 2.218; NS | 0.091; NS |
Stolon length | 12.551; ** (Vd > Vs) | 0.273; NS | 0.010; NS | |
Biomass allocation | Leaf mass ratio | 65.348; *** | 19.781; *** | 37.403; *** |
Root mass ratio | 20.485; *** | 25.774; *** | 29.463; *** | |
Stolon mass ratio | 53.941; *** | 9.666; ** | 19.391; *** | |
The trade-off between roots and leaves | Root/leaf ratio | 74.289; *** | 69.282; *** | 75.747; *** |
Leaf area root mass ratio | 19.568; *** | 15.023; ** | 23.041; *** | |
Leaf photosynthesis | Fv/Fm | 10.879; ** (Vd > Vs) | 0.211; NS | 0.002; NS |
Yield | 7.929; * (Vd > Vs) | 0.005; NS | 0.603; NS | |
Leaf morphology | Leaf number | 8.006; * (Vd > Vs) | 11.825; ** (HN > LN) | 3.483; NS |
Leaf area | 3.926; NS | 9.220; * (HN > LN) | 3.510; NS | |
Mean leaf size | 0.147; NS | 2.160; NS | 2.065; NS | |
Specific leaf area | 0.298; NS | 0.000; NS | 0.004; NS |
Trait Group | Indicator | Student’s t-Test | |||
---|---|---|---|---|---|
SP | NL | ||||
LN | HN | Vd | Vs | ||
Biomass allocation | Leaf mass ratio | 13.272; *** (Vd > Vs) | 1.165; NS | −1.247; NS | 7.106; *** (HN > LN) |
Root mass ratio | −5.802; ** (Vd < Vs) | 0.877; NS | 0.222; NS | −8.583; *** (HN < LN) | |
Stolon mass ratio | −10.981; *** (Vd < Vs) | −1.740; NS | 1.073; NS | −4.710; ** (HN < LN) | |
The trade-off between roots and leaves | Root/leaf ratio | −9.142; *** (Vd < Vs) | 0.132; NS | 0.470; NS | −9.308; *** (HN < LN) |
Leaf area root mass ratio | 6.093; *** (Vd > Vs) | 0.010; NS | −0.500; NS | 11.420; *** (HN > LN) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, Y.; Wang, W.; Li, W.; Cao, Y.; Xia, M. Increased Nutrient Levels Induce Different Allocation Strategies Between Canopy-Forming and Rosette-Like Submerged Macrophytes. Water 2024, 16, 3196. https://doi.org/10.3390/w16223196
Zhi Y, Wang W, Li W, Cao Y, Xia M. Increased Nutrient Levels Induce Different Allocation Strategies Between Canopy-Forming and Rosette-Like Submerged Macrophytes. Water. 2024; 16(22):3196. https://doi.org/10.3390/w16223196
Chicago/Turabian StyleZhi, Yongwei, Wei Wang, Wei Li, Yu Cao, and Manli Xia. 2024. "Increased Nutrient Levels Induce Different Allocation Strategies Between Canopy-Forming and Rosette-Like Submerged Macrophytes" Water 16, no. 22: 3196. https://doi.org/10.3390/w16223196
APA StyleZhi, Y., Wang, W., Li, W., Cao, Y., & Xia, M. (2024). Increased Nutrient Levels Induce Different Allocation Strategies Between Canopy-Forming and Rosette-Like Submerged Macrophytes. Water, 16(22), 3196. https://doi.org/10.3390/w16223196