Impact of Metal Ions, Peroxymonosulfate (PMS), and pH on Sulfolane Degradation by Pressurized Ozonation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sulfolane Degradation with Different Initial Concentrations
3.2. Different Homogeneous Metal Ions Impact on Sulfolane Degradation
Different Zn2+ Catalyst Dosages
3.3. Effects of O3/PMS on Sulfolane Degradation
3.3.1. Effects of O3/PMS Activated with (Zn2+)
3.3.2. Effects of O3/PMS Activated with NaOH
Effect of NaOH Dosage
Effect of Different PMS Concentrations
3.4. Effect of Initial pH on Sulfolane Degradation with Different Water Matrices
3.4.1. Sulfolane Degradation in Reverse Osmosis (RO) Water Matrix
3.4.2. Sulfolane Degradation in Tap Water Matrix
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.F.; Yu, L.; Achari, G. Field evaluation of a pressurized ozone treatment system to degrade sulfolane in contaminated groundwaters. J. Environ. Chem. Eng. 2020, 8, 104037. [Google Scholar] [CrossRef]
- Adams, C.D.; Cozzens, R.A.; Kim, B.J. Effects of ozonation on the biodegradability of substituted phenols. Water Res. 1997, 31, 2655–2663. [Google Scholar] [CrossRef]
- Böhme, A. Ozone technology of German industrial enterprises. Ozone Sci. Eng. 1999, 21, 163–176. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, F.; Hu, Y.; Feng, C.; Wu, H. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017, 33, 49–89. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Ma, L.; Huang, Y.; Wang, H. Characteristics and mechanisms of catalytic ozonation with Fe-shaving-based catalyst in industrial wastewater advanced treatment. J. Clean. Prod. 2019, 222, 174–181. [Google Scholar] [CrossRef]
- De los Santos Ramos, W.; Poznyak, T.; Chairez, I. Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. J. Hazard. Mater. 2009, 169, 428–434. [Google Scholar] [CrossRef]
- Joseph, C.G.; Farm, Y.Y.; Taufiq-Yap, Y.H.; Pang, C.K.; Nga, J.L.; Puma, G.L. Ozonation treatment processes for the remediation of detergent wastewater: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 106099. [Google Scholar] [CrossRef]
- Prada-Vásquez, M.A.; Simarro-Gimeno, C.; Vidal-Barreiro, I.; Cardona-Gallo, S.A.; Pitarch, E.; Hernández, F.; Torres-Palma, R.A.; Chica, A.; Navarro-Laboulais, J. Application of catalytic ozonation using Y zeolite in the elimination of pharmaceuticals in effluents from municipal wastewater treatment plants. Sci. Total Environ. 2024, 925, 171625. [Google Scholar] [CrossRef]
- Phan, H.N.; Leu, H.J.; Nguyen, V.N. Enhancing pharmaceutical wastewater treatment: Ozone-assisted electrooxidation and precision optimization via response surface methodology. J. Water Process Eng. 2024, 58, 104782. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Ikehata, K.; El-Din, M.G. Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2004, 26, 327–343. [Google Scholar] [CrossRef]
- Munter, R. Advanced oxidation processes–current status and prospects. Proc. Estonian Acad. Sci. Chem. 2001, 50, 59–80. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Lu, X.; Ma, J.; Liu, Y. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environ. Sci. Technol. 2015, 49, 7330–7339. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Yang, Z.; Shih, K.; Ying, G.G.; Feng, Y. Activation of ozone by peroxymonosulfate for selective degradation of 1, 4-dioxane: Limited water matrices effects. J. Hazard. Mater. 2022, 436, 129223. [Google Scholar] [CrossRef]
- Deniere, E.; Van Langenhove, H.; Van Hulle, S.; Demeestere, K. The ozone-activated peroxymonosulfate process for the removal of a mixture of TrOCs with different ozone reactivity at environmentally relevant conditions: Technical performance, radical exposure and online monitoring by spectral surrogate parameters. Chem. Eng. J. 2023, 454, 140128. [Google Scholar] [CrossRef]
- Izadifard, M.; Achari, G.; Langford, C.H. Degradation of sulfolane using activated persulfate with UV and UV-Ozone. Water Res. 2017, 125, 325–331. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, S.; Wang, B.; Huang, J.; Deng, S.; Yu, G.; Wang, Y. Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches. J. Hazard. Mater. 2019, 380, 120888. [Google Scholar] [CrossRef]
- Fu, P.; Lin, X.; Wang, L.; Ma, Y. Catalytic ozonation of refractory O-isopropyl-N-ethylthionocarbamate collector with coexisted kaolinite in sulfide flotation wastewaters. Appl. Clay Sci. 2020, 198, 105834. [Google Scholar] [CrossRef]
- Ghuge, S.P.; Saroha, A.K. Catalytic ozonation for the treatment of synthetic and industrial effluents-Application of mesoporous materials: A review. J. Environ. Manag. 2018, 211, 83–102. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, Y.; Xu, Z.; Luo, M.; Zhu, C.; Li, L. Removal of aqueous oxalic acid by heterogeneous catalytic ozonation with MnOx/sewage sludge-derived activated carbon as catalysts. Sci. Total Environ. 2017, 575, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, S.; Dai, X.; Dong, B. Application, mechanism and prospects of Fe-based/Fe-biochar catalysts in heterogenous ozonation process: A review. Chemosphere 2023, 319, 138018. [Google Scholar] [CrossRef]
- Beltrán, F.J.; Rivas, F.J.; Montero-de-Espinosa, R. Iron type catalysts for the ozonation of oxalic acid in water. Water Res. 2005, 39, 3553–3564. [Google Scholar] [CrossRef]
- Yang, Z.W.; Wang, W.L.; Lee, M.Y.; Wu, Q.Y.; Guan, Y.T. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. Environ. Pollut. 2022, 294, 118626. [Google Scholar] [CrossRef] [PubMed]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Guan, Y.H.; Ma, J.; Ren, Y.M.; Liu, Y.L.; Xiao, J.Y.; Lin, L.Q.; Zhang, C. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res. 2013, 47, 5431–5438. [Google Scholar] [CrossRef]
- Shad, A.; Chen, J.; Qu, R.; Dar, A.A.; Bin-Jumah, M.; Allam, A.A.; Wang, Z. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. Chem. Eng. J. 2020, 398, 125357. [Google Scholar] [CrossRef]
- Von Sonntag, C.; Von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment; IWA Publishing: London, UK, 2012. [Google Scholar] [CrossRef]
- Cong, J.; Wen, G.; Huang, T.; Deng, L.; Ma, J. Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution. Chem. Eng. J. 2015, 264, 399–403. [Google Scholar] [CrossRef]
- Yuan, Z.; Sui, M.; Yuan, B.; Li, P.; Wang, J.; Qin, J.; Xu, G. Degradation of ibuprofen using ozone combined with peroxymonosulfate. Environ. Sci. Water Res. Technol. 2017, 3, 960–969. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Yang, Z.W.; Du, Y.; Ouyang, W.Y.; Wang, W.L. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review. J. Hazard. Mater. 2021, 418, 126327. [Google Scholar] [CrossRef]
- Stewart, O.; Minnear, L. Sulfolane Technical Assistance and Evaluation Report; Alaska Department of Environmental Conservation: Anchorage, AK, USA, 2010. [Google Scholar]
- CCME (Canadian Council of Minister of the Environment). Canadian Environmental Quality Guidelines for Sulfolane: Water and Soil (Scientific Supporting Document. [Online]); CCME (Canadian Council of Minister of the Environment): Winnipeg, MB, Canada, 2006. [Google Scholar]
- Yu, L.; Khan, M.F.; Achari, G. A review on physiochemical treatment of sulfolane in aqueous media. J. Environ. Chem. Eng. 2021, 9, 105691. [Google Scholar] [CrossRef]
- Dharwadkar, S.; Yu, L.; Achari, G. Enhancement of LED based photocatalytic degradation of sulfolane by integration with oxidants and nanomaterials. Chemosphere 2021, 263, 128124. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Mehrabani-Zeinabad, M.; Achari, G.; Langford, C.H. Application of UV based advanced oxidation to treat sulfolane in an aqueous medium. Chemosphere 2016, 160, 155–161. [Google Scholar] [CrossRef]
- Mehrabani-Zeinabad, M.; Yu, L.; Achari, G.; Langford, C.H. Mineralisation of sulfolane by UV/O3/H2O2 in a tubular reactor. J. Environ. Eng. Sci. 2016, 11, 44–51. [Google Scholar] [CrossRef]
- Khan, M.F.; Yu, L.; Achari, G.; Tay, J.H. Degradation of sulfolane in aqueous media by integrating activated sludge and advanced oxidation process. Chemosphere 2019, 222, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Izadifard, M.; Achari, G.; Langford, C.H. Mineralization of sulfolane in aqueous solutions by Ozone/CaO2 and Ozone/CaO with potential for field application. Chemosphere 2018, 197, 535–540. [Google Scholar] [CrossRef]
- Tanatti, N.P. Treatability and kinetic analysis of BPA-containing wastewater by catalytic ozone processes using ZnSO4 and ZnO catalysts. Ozone Sci. Eng. 2022, 44, 227–233. [Google Scholar] [CrossRef]
- Bandala, E.R.; DomÍnguez, Z.; Rivas, F.; Gelover, S. Degradation of atrazine using solar driven fenton-like advanced oxidation processes. J. Environ. Sci. Health Part B 2007, 42, 21–26. [Google Scholar] [CrossRef]
- Elovitz, M.S.; von Gunten, U.; Kaiser, H.P. Hydroxyl radical/ozone ratios during ozonation processes, I.I. The effect of temperature, pH, alkalinity, and DOM properties. Ozone Sci. Eng. 2000, 22, 123–150. [Google Scholar] [CrossRef]
- Kunz, A.; Mansilla, H.; Duran, N. A degradation and toxicity study of three textile reactive dyes by ozone. Environ. Technol. 2002, 23, 911–918. [Google Scholar] [CrossRef]
Initial Concentration (mg L−1) | Degradation Rate Constant ((mg L−1)−1·min−1) | R2 |
---|---|---|
1 | 0.0230 | 0.941 |
20 | 0.0003 | 0.984 |
100 | 0.2 × 10−4 | 0.923 |
NaOH Concentration (mg L−1) | pH Value |
---|---|
0 | 8 |
10 | 9 |
25 | 9.55 |
50 | 9.74 |
100 | 10.56 |
NaOH Concentration (mg L−1) | pH Value |
---|---|
0 | 8 |
10 | 8.16 |
50 | 9.1 |
200 | 11.21 |
400 | 11.87 |
800 | 12.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, N.; Achari, G. Impact of Metal Ions, Peroxymonosulfate (PMS), and pH on Sulfolane Degradation by Pressurized Ozonation. Water 2024, 16, 3162. https://doi.org/10.3390/w16223162
Zare N, Achari G. Impact of Metal Ions, Peroxymonosulfate (PMS), and pH on Sulfolane Degradation by Pressurized Ozonation. Water. 2024; 16(22):3162. https://doi.org/10.3390/w16223162
Chicago/Turabian StyleZare, Nasim, and Gopal Achari. 2024. "Impact of Metal Ions, Peroxymonosulfate (PMS), and pH on Sulfolane Degradation by Pressurized Ozonation" Water 16, no. 22: 3162. https://doi.org/10.3390/w16223162
APA StyleZare, N., & Achari, G. (2024). Impact of Metal Ions, Peroxymonosulfate (PMS), and pH on Sulfolane Degradation by Pressurized Ozonation. Water, 16(22), 3162. https://doi.org/10.3390/w16223162