Bibliometric Analysis of Research Status, Hotspots, and Prospects of UV/PS for Environmental Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Statistical Analysis and Visualization
3. Results
3.1. Publication Characteristics
3.2. Analysis of Cooperation Network
3.2.1. Research Contributions from Different Countries and Regions
3.2.2. Research Contributions from Different Institutions
3.2.3. Research Contributions from Different Authors
3.2.4. Co-Citation Analysis
3.3. Research Hotspots and Evolution Path
3.3.1. Co-Occurrence Analysis of Keywords
3.3.2. Keywords Clustering and Bursting Analysis
4. Discussion
4.1. Current Application
Contaminants | Light Wavelength and Intensity | Concentration of Pollutant | Concentration of PS | Reaction Water Body | Active Species | Removal Rate | Reference | ||
---|---|---|---|---|---|---|---|---|---|
Type I Organic pollutant | anti- biotic | chloram- phenicol (CAP) | 253.6 nm 2.43 mW/cm2 | 31 μM | 0.25 mM | river water (RW) filtered (FWW) non-filtered (NFWW) | ·OH, SO4− | NFWW 86.9% FWW 87.3% RW 50% | [26] |
oxytetracycline (OTC) | 254 nm 0.1 mW/cm2 | 10 μM | 1 mM | simulative water | ·OH, SO4− | 97% | [14] | ||
florfenicol (FLO) | 254 nm 398 μW/cm2 | 20 μM | 2 mM | ultrapure water | ·OH, SO4− | UV 24.9% PS 0% UV/PS 98.4% | [81] | ||
dye | orange II | 254 nm 0.73 mW/cm2 | 20 mg/L | 1 mM | ultrapure water | ·OH, SO4−· | 56.3% | [82] | |
methylene blue (MB) | 185 nm 2.59 × 10−5 einstein m−2 s−1 254 nm 5.31 × 10−4 einstein m−2 s−1 | 10 μM | 0.5 mM | filtered water surface water secondary wastewater effluent | ·OH, SO4−· | Compared with UV/PS, the pseudo-first- order kinetic k of VUV/UV/PS increases | [65] | ||
natural organic matter | HA | 254 nm 0.25 mW/cm2 | 2 mg/L | 0.5 mM | DI water NaCl solution synthetic seawater | ·OH, SO4−· | DI water100% NaCl solution 78% synthetic seawater 58% | [83] | |
UV254/DOC | 254 nm 1.53 mW/cm2 | 5.41–7.55 mg/L 0.098–0.122 mg/L | 0.6 mM/0.6 mM | surface water | ·OH, SO4−· | UV254 91% DOC 58% | [72] | ||
Type I Inorganic pollutant (metal complexes) | Cu(II)-EDTA | 254 nm 0.25 mW/cm2 | 0.3 mM | [84]0/[Cu(II)-EDTA]0 = 60 mM | simulative water | ·OH, SO4−· | about 90% | [85] | |
Type II Micro- organism | bacteria | macrolides- resistant bacteria (MRB) sulfonamides-resistant bacteria (SRB) tetracyclines- resistant bacteria (TRB) quinolones- resistant bacteria (QRB) | 254 nm 400 μW/cm2 | 8, 512, 16, 32 mg/L | 1 mmol/L | secondary effluent | ·OH, SO4−· | MRB 96.6% SRB 94.7% TRB 98.0% QRB 99.9% | [86] |
virus | bacterio- phage (MS2) | 253.7 nm 160 μW/cm2 | 106 PFU/mL | 0.3 mmol/L | ultrapure water | ·OH, SO4−· | 4.39 lg can be removed in 4 min | [77] | |
fungal or spore | Penicillium Aspergillus niger Trichoderma harzianum | 265 nm, 280 nm, 265 & 280 nm 0.215, 0.214, 0.185 mW/cm2 | 2–4 × 106 CFU/mL | 1 mM | fungal spore suspensions | ·OH, SO4−· | The membrane damage and permeability of the three fungi were accelerated, and the level of photoactiva- tion was reduced | [87] |
4.2. Future Trend
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhao, F.; Sun, Y.; Zhang, J. Does industrial agglomeration and environmental pollution have a spatial spillover effect?: Taking panel data of resource-based cities in China as an example. Environ. Sci. Pollut. Res. 2023, 30, 76829–76841. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Chen, L.H.; Ye, M.L.; Su, W.S.; Lei, C.; Jin, X.J.; Lu, Y.S. U(VI) removal on polymer adsorbents: Recent development and future challenges. In Critical Reviews in Environmental Science and Technology; Taylor & Francis: Abingdon, UK, 2024. [Google Scholar]
- Gong, H.; Hu, J.; Rui, X.; Wang, Y.; Zhu, N. Drivers of change behind the spatial distribution and fate of typical trace organic pollutants in fresh waste leachate across China. Water Res. 2024, 263, 122170. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Abou Khalil, Z.; Baalbaki, A.; Bejjani, A.; Ghauch, A. MIL88-A as a mediator for the degradation of sulfamethoxazole in PS systems: Implication of solar irradiation for process improvement. Environ. Sci. Adv. 2022, 1, 797–813. [Google Scholar] [CrossRef]
- Meng, X.; Li, F.; Yi, L.; Dieketseng, M.Y.; Wang, X.; Zhou, L.; Zheng, G. Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistant Pseudomonas Putida by UV/H2O2 and UV/peroxydisulfate disinfection processes. J. Hazard. Mater. 2022, 430, 128502. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Xiang, J.L.; Wang, J.J.; Du, H.S.; Wang, T.T.; Huo, Z.Y.; Wang, W.L.; Liu, M.; Du, Y. Ultraviolet-based synergistic processes for wastewater disinfection: A review. J. Hazard. Mater. 2023, 453, 131393. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liang, G.; Alex, J.; Zhang, T.; Ma, C. Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace. Sustainability 2020, 12, 812. [Google Scholar] [CrossRef]
- Ali, G.; Ahmed, S.; Mubushar, M.; Gulzar, A. Global Research on Ethical Leadership: A Bibliometric Investigation and Knowledge Mapping. J. Chin. Hum. Resour. Manag. 2023, 14, 51–65. [Google Scholar] [CrossRef]
- Li, Z.; Song, L. Interpretation of the Guidelines for drinking-water quality (fourth edition) issued by World Health Organization. Water Wastewater Eng. 2012, 38, 9–13. [Google Scholar]
- Pandian, A.M.K.; Rajamehala, M.; Singh, M.V.P.; Sarojini, G.; Rajamohan, N. Potential risks and approaches to reduce the toxicity of disinfection by-product—A review. Sci. Total Environ. 2022, 822, 153323. [Google Scholar] [CrossRef]
- Guan, Y.H.; Ma, J.; Li, X.C.; Fang, J.Y.; Chen, L.W. Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 2011, 45, 9308–9314. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Gunten, U.v.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; He, X.X.; Fu, Y.S.; Dionysiou, D.D. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. J. Hazard. Mater. 2016, 305, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.A.; He, X.; Shah, N.S.; Khan, H.M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D.D. Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5−. Chem. Eng. J. 2014, 252, 393–403. [Google Scholar] [CrossRef]
- Zhang, R.C.; Sun, P.Z.; Boyer, T.H.; Zhao, L.; Huang, C.H. Degradation of Pharmaceuticals and Metabolite in Synthetic Human Urine by UV, UV/H2O2, and UV/PDS. Environ. Sci. Technol. 2015, 49, 3056–3066. [Google Scholar] [CrossRef]
- Ao, X.W.; Liu, W.J. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chem. Eng. J. 2017, 313, 629–637. [Google Scholar] [CrossRef]
- Lutze, H.V.; Bircher, S.; Rapp, I.; Kerlin, N.; Bakkour, R.; Geisler, M.; Von Sonntag, C.; Schmidt, T.C. Degradation of Chlorotriazine Pesticides by Sulfate Radicals and the Influence of Organic Matter. Environ. Sci. Technol. 2015, 49, 1673–1680. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chem. Eng. J. 2015, 276, 193–204. [Google Scholar] [CrossRef]
- Xiao, Y.J.; Zhang, L.F.; Zhang, W.; Lim, K.Y.; Webster, R.D.; Lim, T.T. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Res. 2016, 102, 629–639. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.Y.; Deng, Y.; Zhang, Y.J.; Sui, M.H.; Deng, J.; Zhou, S.Q. Degradation of antipyrine by UV, UV/H2O2 and UV/PS. J. Hazard. Mater. 2013, 260, 1008–1016. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Gao, N.Y.; Deng, Y.; Yang, Y.Q.; Ma, Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J. 2012, 195, 248–253. [Google Scholar] [CrossRef]
- Luo, C.W.; Ma, J.; Jiang, J.; Liu, Y.Z.; Song, Y.; Yang, Y.; Guan, Y.H.; Wu, D.J. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O82-. Water Res. 2015, 80, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, X.L.; Jiang, J.; Ma, J.; Liu, G.Q.; Cao, Y.; Liu, W.L.; Li, J.; Pang, S.Y.; Kong, X.J.; et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate. Water Res. 2017, 118, 196–207. [Google Scholar] [CrossRef]
- Lian, L.S.; Yao, B.L.; Hou, S.D.; Fang, J.Y.; Yan, S.W.; Song, W.H. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. Environ. Sci. Technol. 2017, 51, 2954–2962. [Google Scholar] [CrossRef]
- Ghauch, A.; Baalbaki, A.; Amasha, M.; El Asmar, R.; Tantawi, O. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chem. Eng. J. 2017, 317, 1012–1025. [Google Scholar] [CrossRef]
- He, X.X.; de la Cruz, A.A.; Dionysiou, D.D. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J. Photochem. Photobiol. A-Chem. 2013, 251, 160–166. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Huebner, U. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Oh, W.D.; Dong, Z.; Lim, T.T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B-Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Deng, J.; Shao, Y.S.; Gao, N.Y.; Xia, S.J.; Tan, C.Q.; Zhou, S.Q.; Hu, X.H. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem. Eng. J. 2013, 222, 150–158. [Google Scholar] [CrossRef]
- Khan, J.A.; He, X.X.; Khan, H.M.; Shah, N.S.; Dionysiou, D.D. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82−/Fe2+ and UV/HSO5−/Fe2+ processes: A comparative study. Chem. Eng. J. 2013, 218, 376–383. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhang, J.F.; Xiao, Y.J.; Chang, V.W.C.; Lim, T.T. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate. Chem. Eng. J. 2016, 302, 526–534. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.H.; Chen, F.; Yao, F.B.; Sun, J.; Wang, S.N.; Yi, K.X.; Hou, L.H.; Li, X.M.; Wang, D.B. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Lin, Y.T.; Liang, C.J.; Chen, J.H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 2011, 82, 1168–1172. [Google Scholar] [CrossRef]
- Rehman, F.; Sayed, M.; Khan, J.A.; Shah, N.S.; Khan, H.M.; Dionysiou, D.D. Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: A comparative study. J. Hazard. Mater. 2018, 357, 506–514. [Google Scholar] [CrossRef]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs). Environ. Sci. Technol. 2014, 48, 2344–2351. [Google Scholar] [CrossRef]
- Luo, C.W.; Jiang, J.; Ma, J.; Pang, S.Y.; Liu, Y.Z.; Song, Y.; Guan, C.T.; Li, J.; Jin, Y.X.; Wu, D.J. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Res. 2016, 96, 12–21. [Google Scholar] [CrossRef]
- He, X.X.; de la Cruz, A.A.; O’Shea, K.E.; Dionysiou, D.D. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes. Water Res. 2014, 63, 168–178. [Google Scholar] [CrossRef]
- Lutze, H.V.; Kerlin, N.; Schmidt, T.C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Res. 2015, 72, 349–360. [Google Scholar] [CrossRef]
- Olmez-Hanci, T.; Arslan-Alaton, I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J. 2013, 224, 10–16. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, Y.; Lu, S.Y.; Wang, Z.; Wang, Y.Q.; Zhang, G.D.; Guo, X.C.; Guo, W.; Zhang, T.T.; Xi, B.D. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism. Chem. Eng. J. 2020, 385, 13. [Google Scholar] [CrossRef]
- Tan, C.Q.; Fu, D.F.; Gao, N.Y.; Qin, Q.D.; Xu, Y.; Xiang, H.M. Kinetic degradation of chloramphenicol in water by UV/persulfate system. J. Photochem. Photobiol. A-Chem. 2017, 332, 406–412. [Google Scholar] [CrossRef]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res. 2016, 89, 192–200. [Google Scholar] [CrossRef]
- Wang, S.Z.; Liu, Y.; Wang, J.L. Iron and sulfur co-doped graphite carbon nitride (FeOy/S-g-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation. Chem. Eng. J. 2020, 382, 122836. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Liu, T.C.; Wang, J.L. Photocatalytic selective oxidation of ammonium to dinitrogen by FeOx-MgO activated persulfate under solar-light irradiation. Chem. Eng. J. 2023, 454, 140499. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Xie, P.; Ma, J.; Liu, W.; Zou, J.; Yue, S.; Li, X.; Wiesner, M.R.; Fang, J. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals. Water Res. 2015, 69, 223–233. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, P.; Wang, Z.; Ding, J.; Wang, J.; Wang, S.; Wiesner, M.R. Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling. Water Res. 2019, 158, 213–226. [Google Scholar] [CrossRef]
- Waclawek, S.; Lutze, H.V.; Grubel, K.; Padil, V.V.T.; Cernik, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, M.; Dionysiou, D.D. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. 2021, 189, 116627. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.N.; Xu, D.Y.; Dong, Y.L.; Zhnag, L.; Wang, P.F.; Ren, Z.J. Kinetic Model and Influencing Factors of UV Disinfection. Water Purif. Technol. 2020, 39, 83–89. [Google Scholar]
- Derbalah, A.; Sakugawa, H. Sulfate Radical-Based Advanced Oxidation Technology to Remove Pesticides From Water A Review of the Most Recent Technologies. Int. J. Environ. Res. 2024, 18, 11. [Google Scholar] [CrossRef]
- Zhou, M.Z.; Cang, L. Progress of Chemical Oxidation Mechanism of Peroxymonosulfate and Its Application in Remediation of Organic Contaminated Soil. Soil 2022, 54, 653–666. [Google Scholar]
- Liu, Z.; Ren, X.; Duan, X.; Sarmah, A.K.; Zhao, X. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review. Sci. Total Environ. 2023, 863, 160818. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Divyapriya, G.; Titchou, F.E.; Hamdani, M. Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Sep. Purif. Technol. 2022, 293, 121115. [Google Scholar] [CrossRef]
- Heidarpour, H.; Padervand, M.; Soltanieh, M.; Vossoughi, M. Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst. Chem. Eng. Res. Des. 2020, 153, 709–720. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.Y.; Feng, M.B.; Yu, X.; Wang, L. Degradation mechanisms of antibiotics in UV222/H2O2 and UV222/ persulfate systems: Dual roles of inorganic anions. Chem. Eng. J. 2024, 489, 151371. [Google Scholar] [CrossRef]
- Yin, R.; Zhang, Y.; Wang, Y.; Zhao, J.; Shang, C. Far-UVC Photolysis of Peroxydisulfate for Micropollutant Degradation in Water. Environ. Sci. Technol. 2024, 58, 6030–6038. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Nakamura, S.; Sillanpaa, M. Application of UV-C LED activated PMS for the degradation of anatoxin-a. Chem. Eng. J. 2016, 284, 122–129. [Google Scholar] [CrossRef]
- Sun, X.; Shi, L.-X.; Zhang, Y.; Yang, L.; Tang, X. Removal of Odorants in Drinking Water Using VUV/Persulfate. Huan Jing Ke Xue = Huanjing Kexue 2018, 39, 2195–2201. [Google Scholar] [PubMed]
- Wen, D.; Li, W.T.; Lv, J.R.; Qiang, Z.M.; Li, M.K. Methylene blue degradation by the VUV/UV/persulfate process: Effect of pH on the roles of photolysis and oxidation. J. Hazard. Mater. 2020, 391, 121855. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Lei, Y.; Zhang, X.R.; Yang, X. Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review. J. Hazard. Mater. 2021, 408, 17. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yang, W.; Chen, C.; Li, J.; He, R.; Liu, S. Insights into the radical and nonradical oxidation degradation of ciprofloxacin in peroxodisulfate activation by ultraviolet light. J. Water Process Eng. 2022, 49, 103184. [Google Scholar] [CrossRef]
- Liu, J.; Song, Z.; Liu, B.; Zhang, X.; Huang, Y.; Han, D. Bimetallic Ni/Fe Atom Cluster Catalysts Enhance Non-free Radical Degradation of Organic Pollutant Phenol. Catal. Lett. 2024, 154, 2182–2196. [Google Scholar] [CrossRef]
- Lu, J.; Ding, P.; Lyu, Z.; Xu, G.; Peng, M.; Du, E.; Zheng, L. Degradation kinetics and mechanism of SDM by UV/PS process in water. Environ. Pollut. Control 2022, 44, 183. [Google Scholar]
- Sillanpaa, M.; Ncibi, M.C.; Matilainen, A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manag. 2018, 208, 56–76. [Google Scholar] [CrossRef]
- Alayande, A.B.; Yun, E.T.; Silva, F.; Hong, S. Mechanistic insights into the potential applicability of a sulfate-based advanced oxidation process for the control of transparent exopolymer particles in membrane-based desalination. Desalination 2022, 522, 9. [Google Scholar] [CrossRef]
- Tian, J.Y.; Wu, C.W.; Yu, H.R.; Gao, S.S.; Li, G.B.; Cui, F.Y.; Qu, F.S. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Effect of Bromine Ion on Kinetics of Degradation of Organic Micropollutants in Ultraviolet/Persulfate Oxidation System. Master Thesis, Kunming University of Science and Technology, Kunming, China, 2023. [Google Scholar]
- Zhang, Y.; Zhao, Y.G.; Maqbool, F.; Hu, Y. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. J. Water Process Eng. 2022, 45. [Google Scholar] [CrossRef]
- Ao, X.W.; Sun, W.J.; Li, S.M.; Yang, C.; Li, C.; Lu, Z.D. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chem. Eng. J. 2019, 361, 1053–1062. [Google Scholar] [CrossRef]
- Bu, L.J.; Zhou, S.Q.; Shi, Z.; Deng, L.; Li, G.C.; Yi, Q.H.; Gao, N.Y. Degradation of oxcarbazepine by UV-activated persulfate oxidation: Kinetics, mechanisms, and pathways. Environ. Sci. Pollut. Res. 2016, 23, 2848–2855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.M.; Yang, H.M.; Wang, Z. Characteristics and Mechanisms of Bacteriophage MS2 Inactivation in Water by UV Activated Sodium Persulfate. Huan Jing Ke Xue Huanjing Kexue 2021, 42, 4807–4814. [Google Scholar]
- Guerra-Rodriguez, S.; Rodriguez, E.; Moreno-Andres, J.; Rodriguez-Chueca, J. Effect of the water matrix and reactor configuration on Enterococcus sp. inactivation by UV-A activated PMS or H2O2. J. Water Process Eng. 2022, 47, 102740. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, K.; Bai, L.; Minakata, D.; Seo, Y.; Goktas, R.K.; Dionysiou, D.D.; Tang, C.J.; Wei, Z.; Spinney, R. Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chem. Eng. J. 2019, 371, 222–232. [Google Scholar] [CrossRef]
- Berruti, I.; Oller, I.; Inmaculada Polo-Lopez, M. Direct oxidation of peroxymonosulfate under natural solar radiation: Accelerating the simultaneous removal of organic contaminants and pathogens from water. Chemosphere 2021, 279, 130555. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Ferraro, F.; Silva-Agredo, J.; Torres-Palma, R.A. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res. 2017, 122, 128–138. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tong, Y.; Liu, Z.Z.; Huang, L.Z.; Yuan, J.P.; Xue, Y.W.; Fang, Z. Enhanced degradation of Orange II using a novel UV/persulfate/sulfite system. Environ. Chem. Lett. 2019, 17, 1435–1439. [Google Scholar] [CrossRef]
- Alayande, A.B.; Hong, S. Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination*. Environ. Pollut. 2022, 307, 119513. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B-Environ. 2004, 54, 155–163. [Google Scholar] [CrossRef]
- Xu, Z.; Shan, C.; Xie, B.H.; Liu, Y.; Pan, B.C. Decomplexation of Cu(II)-EDTA by UV/persulfate and UV/H2O2: Efficiency and mechanism. Appl. Catal. B-Environ. 2017, 200, 439–447. [Google Scholar] [CrossRef]
- Zhou, C.S.; Wu, J.W.; Dong, L.L.; Liu, B.F.; Xing, D.F.; Yang, S.S.; Wu, X.K.; Wang, Q.; Fan, J.N.; Feng, L.P.; et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 2020, 388, 122070. [Google Scholar] [CrossRef]
- Wan, Q.Q.; Cao, R.H.; Wen, G.; Xu, X.Q.; Xia, Y.C.; Wu, G.H.; Li, Y.F.; Wang, J.Y.; Xu, H.N.; Lin, Y.Z.; et al. Efficacy of UV-LED based advanced disinfection processes in the inactivation of waterborne fungal spores: Kinetics, photoreactivation, mechanism and energy requirements. Sci. Total Environ. 2022, 803, 150107. [Google Scholar] [CrossRef]
- Gao, Z.C.; Lin, Y.L.; Xu, B.; Xia, Y.C.; Hu, C.Y.; Zhang, T.Y.; Cao, T.C.; Pan, Y.; Gao, N.Y. A comparison of dissolved organic matter transformation in low pressure ultraviolet (LPUV) and ultraviolet light-emitting diode (UV-LED)/chlorine processes. Sci. Total Environ. 2020, 702, 134942. [Google Scholar] [CrossRef]
- Eskandarian, M.R.; Ganjkhanloo, M.; Rasoulifard, M.H.; Hosseini, S.A. Energy-efficient removal of acid red 14 by UV-LED/persulfate advanced oxidation process: Pulsed irradiation, duty cycle, reaction kinetics, and energy consumption. J. Taiwan Inst. Chem. Eng. 2021, 127, 129–139. [Google Scholar] [CrossRef]
- Hajimiri, I.; Rasoulifard, M.H.; Dorraji, M.S.S.; Eskandarian, M.R. Study of controlled pulsed illumination (CPI) efficiency in the homogeneous UV-LED/S2O82- process for the removal of organic dye from contaminated water. Results Eng. 2024, 21, 101792. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Zhang, Y.; Cheng, X.; Zhou, P.; Zhang, G.; Wang, J.; Tang, P.; Ke, T.; Li, W. Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation. Sep. Purif. Technol. 2018, 192, 88–98. [Google Scholar] [CrossRef]
- Yang, L.; Bai, X.; Shi, J.; Du, X.; Xu, L.; Jin, P. Quasi-full-visible-light absorption by D35-TiO2g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Appl. Catal. B-Environ. 2019, 256, 117759. [Google Scholar] [CrossRef]
- Ou, H.S.; Ye, J.S.; Ma, S.L.; Wei, C.H.; Gao, N.Y.; He, J.Z. Degradation of ciprofloxacin by UV and UV/H2O2 via multiple-wavelength ultraviolet light-emitting diodes: Effectiveness, intermediates and antibacterial activity. Chem. Eng. J. 2016, 289, 391–401. [Google Scholar] [CrossRef]
- Chen, S.; Sheng, X.; Zhao, Z.; Cui, F. Chemical-free vacuum ultraviolet irradiation as ultrafiltration membrane pretreatment technique: Performance, mechanisms and DBPs formation. J. Environ. Manag. 2024, 351, 119785. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Westerhoff, P.; Zheng, M.X.; Wu, M.Y.; Yang, Y.; Chiu, C.A. UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon. Water Res. 2015, 73, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, J.; Zhang, G.; Ye, Q.; Zhou, G.; Yang, F. Kinetics research on bimetallic CoMnO_x/UV catalyzed persulfate for the degradation of AO7. Ind. Water Treat. 2018, 38, 42–45. [Google Scholar]
- Eskandarian, M.R.; Rasoulifard, M.H.; Fazli, M.; Ghalamchi, L.; Choi, H. Synergistic decomposition of imidacloprid by TiO2-Fe3O4 nanocomposite conjugated with persulfate in a photovoltaic-powered UV-LED photoreactor. Korean J. Chem. Eng. 2019, 36, 965–974. [Google Scholar] [CrossRef]
- Song, T.; Gao, Y.; Hu, R.; Li, G.; Yu, X. Degradation of Methyl Orange in Aqueous Solution via Magnetic TiO2/Fe3O4 Conjugated with Persulfate. Water Air Soil Pollut. 2023, 234, 508. [Google Scholar] [CrossRef]
- Zhong, Q.F.; Lin, Q.T.; He, W.J.; Fu, H.Y.; Huang, Z.F.; Wang, Y.P.; Wu, L.B. Study on the nonradical pathways of nitrogen-doped biochar activating persulfate for tetracycline degradation. Sep. Purif. Technol. 2021, 276, 119354. [Google Scholar] [CrossRef]
- Li, Y.T.; Jin, X.L. Research Progress of Bismuth-Based Bimetallic Oxides in Advanced Oxidation of Persulfate; Journal of Tianjin Polytechnic University: Tianjin, China, 2023; pp. 483–495. [Google Scholar]
- Lee, M.Y.; Wang, W.L.; Du, Y.; Hu, H.Y.; Huang, N.; Xu, Z.B.; Wu, Q.Y.; Ye, B. Enhancement effect among a UV, persulfate, and copper (UV/PS/Cu2+) system on the degradation of nonoxidizing biocide: The kinetics, radical species, and degradation pathway. Chem. Eng. J. 2020, 382, 122312. [Google Scholar] [CrossRef]
- Wang, Q.; Rao, P.; Li, G.; Dong, L.; Zhang, X.; Shao, Y.; Gao, N.; Chu, W.; Xu, B.; An, N.; et al. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: Kinetics, impact of key factors and degradation pathway. Ecotoxicol. Environ. Saf. 2020, 187, 109779. [Google Scholar] [CrossRef]
- Cifci, D.I.; Sensoy, O.; Gunes, E.; Gunes, Y. Treatment of a textile wastewater using sulfate and hydroxyl radicals based oxidation under the UV light: A Comparision between UV/H2O2, UV/PS and UV/PMS. Environ. Eng. Manag. J. 2023, 22, 17–26. [Google Scholar] [CrossRef]
- Calaixo, M.R.C.; Ribeirinho-Soares, S.; Madeira, L.M.; Nunes, O.C.; Rodrigues, C.S.D. Catalyst-free persulfate activation by UV/visible radiation for secondary urban wastewater disinfection. J. Environ. Manag. 2023, 348, 12. [Google Scholar] [CrossRef] [PubMed]
Regions | Number of Publications | Starting Year | Citation Number |
---|---|---|---|
China | 408 | 2006 | 20,704 |
Iran | 97 | 2005 | 3256 |
USA | 87 | 2004 | 10,729 |
Spain | 53 | 2005 | 1931 |
Taiwan, China | 39 | 2009 | 1416 |
India | 37 | 2006 | 1644 |
South Korea | 27 | 2009 | 991 |
Turkey | 23 | 2013 | 917 |
France | 22 | 2009 | 1300 |
Pakistan | 17 | 2013 | 1490 |
Citation | Centrality | First Author | Year of Publication | Source Journal | Title of the Articles | References |
---|---|---|---|---|---|---|
108 | 0.03 | Wang JL | 2018 | CHEM ENG J | Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants | [48] |
74 | 0.06 | Waclawek S | 2017 | CHEM ENG J | Chemistry of persulfates in water and wastewater treatment: A review | [51] |
72 | 0.03 | Xie PC | 2015 | WATER RES | Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals | [49] |
64 | 0.02 | Matzek LW | 2016 | CHEMOSPHERE | Activated persulfate for organic chemical degradation: A review | [52] |
64 | 0.02 | Ghanbari F | 2017 | CHEM ENG J | Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review | [53] |
Oxidizing Agent | Chemical Formula | Molecular Mass | Solubility/(g/L) | Redox Potential/V | -O-O- Key Length/Å | Bond Energy/(kJ/mol) | Activation Method |
---|---|---|---|---|---|---|---|
PMS | HSO5 | 114.07 | >250 | 1.82 | 1.453 | 140~213.3 | transition metal, heating, UV, ultrasonic, and carbon-based materials |
PDS | H2S2O8 | 194.13 | >520 | 2.01 | 1.497 | 140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ji, Z.; Liu, R.; Hu, H.; Sun, W. Bibliometric Analysis of Research Status, Hotspots, and Prospects of UV/PS for Environmental Pollutant Removal. Water 2024, 16, 3024. https://doi.org/10.3390/w16213024
Wang H, Ji Z, Liu R, Hu H, Sun W. Bibliometric Analysis of Research Status, Hotspots, and Prospects of UV/PS for Environmental Pollutant Removal. Water. 2024; 16(21):3024. https://doi.org/10.3390/w16213024
Chicago/Turabian StyleWang, Hanying, Zheng Ji, Ruiqian Liu, Hongfeng Hu, and Wanting Sun. 2024. "Bibliometric Analysis of Research Status, Hotspots, and Prospects of UV/PS for Environmental Pollutant Removal" Water 16, no. 21: 3024. https://doi.org/10.3390/w16213024
APA StyleWang, H., Ji, Z., Liu, R., Hu, H., & Sun, W. (2024). Bibliometric Analysis of Research Status, Hotspots, and Prospects of UV/PS for Environmental Pollutant Removal. Water, 16(21), 3024. https://doi.org/10.3390/w16213024