Variability of Dry Days and Sequences of Dry Days in the Polish Carpathians in the Period 1986–2020
Abstract
:1. Introduction
2. Data and Methods
Na, Nc | —Types with an advection of air masses from the north; |
NEa, NEc | —Types with an advection of air masses from the northeast; |
Ea, Ec | —Types with an advection of air masses from the east; |
SEa, SEc | —Types with an advection of air masses from the southeast; |
Sa, Sc | —Types with an advection of air masses from the south; |
SWa, SWc | —Types with an advection of air masses from the southwest; |
Wa, Wc | —Types with an advection of air masses from the west; |
NWa, NWc | —Types with an advection of air masses from the northwest; |
Ca | —Central anticyclonic situation; |
Ka | —Anticyclonic wedge; |
Cc | —Central cyclonic situation; |
Bc | —Cyclonic trough; |
X | —Marks those situations which cannot be classified. |
3. Results
3.1. Annual Total of Dry Days
3.2. Sequences of Dry Days
3.3. Links Between Dry Days and Circulation Types
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Şen, Z.; Şişman, E.; Dabanli, I. Wet and dry spell feature charts for practical uses. Nat. Hazards 2020, 104, 1975–1986. [Google Scholar] [CrossRef]
- Twardosz, R. Charakterystyka okresów bezopadowych w Krakowie, 1863–1995. Przegląd Geogr. 1999, 71, 435–446. [Google Scholar]
- Niedźwiedź, T.; Ustrnul, Z. Change of Atmospheric Circulation. In Climate Change in Poland: Past, Present, Future; Falarz, M., Ed.; Springer Climate: Cham, Switzerland, 2021; pp. 123–150. [Google Scholar]
- Farat, R.; Kępińska-Kasprzak, M.; Kowalczyk, P.; Mager, P. Susza na obszarze Polski w latach 1951–1990. In Materiały Badawcze, Seria: Gospodarka Wodna i Ochrona Wód—16; Instytut Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 1995; Volume 16. [Google Scholar]
- Cebulska, M. Okresy bez opadów i ze słabymi opadami w polskich Karpatach (1984–2013). Pol. J. Agron. 2018, 34, 52–61. [Google Scholar]
- Twardosz, R. Anomalously warm months in 2018 in Poland in relation to airflow circulation patterns. Weather 2019, 74, 374–382. [Google Scholar] [CrossRef]
- Radzka, E. Ciągi dni bezopadowych w okresie wegetacyjnym w środkowo-wschodniej Polsce (1971–2005). Acta Agrophysica 2014, 21, 483–491. [Google Scholar]
- Bako, M.M.; Mashi, S.A.; Bello, A.A.; Adamu, J.I. Spatiotemporal analysis of dry spells for support to agriculture adaptation efforts in the Sudano-Sahelian region of Nigeria. SN Appl Sci. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Breinl, K.; Baldassarre, G.; Mazzoleni, M.; Lun, D.; Vico, G. Extreme dry and wet spells face changes in their duration and timing. Environ. Res. Lett. 2020, 15, 074040. [Google Scholar] [CrossRef]
- Chimimba, E.G.; Ngongondo, C.; Li, C.; Minoungou, B.; Monjerezi, M.; Eneya, L. Characterisation of dry spells for agricultural applications in Malawi. SN Appl. Sci. 2023, 5, 199. [Google Scholar] [CrossRef]
- Koźmiński, C.Z. Przestrzenny i czasowy rozkład okresów bezopadowych trwających ponad 15 dni na terenie Polski. Zesz. Probl. Postępów Nauk. Rol. 1986, 268, 17–36. [Google Scholar]
- Kundzewicz, Z.W.; Kozyra, J. Ograniczenie wpływu zagrożeń klimatycznych w odniesieniu do rolnictwa i obszarów wiejskich. Pol. J. Agron. 2011, 7, 68–81. [Google Scholar]
- Łabędzki, L. Susze rolnicze, zarys problematyki oraz metody monitorowania i klasyfikacji. In Woda, Środowisko, Obszary Wiejskie; Wydawnictwo IMUZ: Falenty, Poland, 2006. [Google Scholar]
- Usman, M.T.; Reason, C.J.C. Dry spell frequencies and their variability over southern Africa. Clim. Res. 2004, 26, 199–211. [Google Scholar] [CrossRef]
- Yang, Y.; Gan, T.Y.; Tan, X. Recent changing characteristics of dry and wet spells in Canada. Clim. Chang. 2021, 165, 42. [Google Scholar] [CrossRef]
- Thoithi, W.; Blamey, R.C.; Reason, C.J.C. Dry spells, wet days, and their trends across Southern Africa during the summer rainy season. Geophys. Res. Lett. 2021, 48, e2020GL091041. [Google Scholar] [CrossRef]
- Zhi, L.; Yanping, L.; Xiaoping, S.; Jingjing, L. The characteristics of wet and dry spells for the diverse climate in China. Glob. Planet. Chang. 2017, 149, 14–19. [Google Scholar] [CrossRef]
- Zolina, O.; Simmer, C.; Belyaev, K.; Gulev, S.K.; Koltermann, P. Changes in the duration of European wet and dry spells during the last 60 years. J. Clim. 2013, 26, 2022–2047. [Google Scholar] [CrossRef]
- Ye, H. Changes in duration of dry and wet spells associated with air temperatures in Russia. Environ. Res. Lett. 2018, 13, 034036. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R. Analysis of the characteristics of dry and wet spells in a Mediterranean region. Environ. Process. 2020, 7, 691–701. [Google Scholar] [CrossRef]
- Bartolini, G.; Betti, G.; Gozzini, B.; Iannuccilli, M.; Magno, R.; Messeri, G.; Spolverini, N.; Torrigiani, T.; Vallorani, R.; Grifoni, D. Spatial and temporal changes in dry spells in a Mediterranean area: Tuscany (central Italy), 1955–2017. Int. J. Climatol. 2022, 42, 1670–1691. [Google Scholar] [CrossRef]
- Lana, X.; Martínez, M.D.; Burgueño, A.; Serra, C.; Martín-Vide, J.; Gómez, L. Distributions of long dry spells in the Iberian Peninsula, years 1951–1990. Int. J. Climatol. 2006, 26, 1999–2021. [Google Scholar] [CrossRef]
- Serra, C.; Burgueño, A.; Martínez, M.D.; Lana, X. Trends in Dry Spells across Catalonia (NE Spain) during the Second Half of the 20th Century. Theor. Appl. Climatol. 2006, 85, 165–183. [Google Scholar] [CrossRef]
- Cindrić, K.; Pasarić, Z.; Gajić-Čapka, M. Spatial and Temporal Analysis of Dry Spells in Croatia. Theor. Appl. Climatol. 2010, 102, 171–184. [Google Scholar] [CrossRef]
- Marinović, I.; Cindrić Kalin, K.; Güttler, I.; Pasarić, Z. Dry Spells in Croatia: Observed Climate Change and Climate Projections. Atmosphere 2021, 12, 652. [Google Scholar] [CrossRef]
- Niedźwiedź, T. Catalogue of Synoptic Situations and Circulation Indices in the Upper Vistula River Basin (1873–2007). Computer File Available at Department of Climatology, University of Silesia, ul. Będzińska 60, PL 41-200 Sosnowiec, Poland. 2024. Available online: https://klimat.wnoz.us.edu.pl/ (accessed on 1 May 2024).
- Twardosz, R.; Walanus, A.; Guzik, I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021, 178, 4021–4032. [Google Scholar] [CrossRef]
- Obrębska-Starklowa, B.; Hess, M.; Olecki, Z.; Trepińska, J.; Kowanetz, L. Klimat. In Karpaty Polskie, Przyroda, Człowiek i Jego Działalność; Warszyńska, J., Ed.; Wydawnictwo Uniwersytet Jagielloński: Kraków, Poland, 1995. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Jeneiová, K.; Kohnová, S.; Sabo, M. Detecting trends in the annual maximum discharges in the Vah River Basin, Slovakia. Acta Silv. Lign. Hung. 2014, 10, 133–144. [Google Scholar] [CrossRef]
- Blain, G.C. The influence of nonlinear trends on the power of the trend-free pre-whitening approach. Acta Sci. Agron. 2015, 37, 21–28. [Google Scholar] [CrossRef]
- Niedźwiedź, T. Sytuacje Synoptyczne i Ich Wpływ na Zróżnicowanie Przestrzenne Wybranych Elementów Klimatu w Dorzeczu Górnej Wisły; Rozprawy Habilitacyjne UJ: Kraków, Poland, 1981; Volume 58, p. 165. [Google Scholar]
- Kaszewski, B.M. Typy cyrkulacji a typy pogody w Polsce. In Rozprawy Habilitacyjne Wydal; UMCS: Lublin, France, 1992; Volume 220. [Google Scholar]
- Walanus, A.; Cebulska, M.; Twardosz, R. Long-term variability pattern of monthly and annual atmospheric precipitation in the Polish Carpathian Mountains and their foreland (1881–2018). Pure Appl. Geophys. 2021, 178, 633–650. [Google Scholar] [CrossRef]
- Jarrett, U.; Miller, S.; Mohtadi, H. Dry spells and global crop production: A multi-stressor and multi-timescale analysis. Ecol. Econ. 2023, 203, 107627. [Google Scholar] [CrossRef]
- Hoy, A.; Hansel, S.; Skalak, P.; Ustrnul, Z.; Bochnicek, O. The extreme European summer of 2015 in a long term perspective. Int. J. Climatol. 2016, 37, 943–962. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W. Prolonged dry episodes over the conterminous United States: New tendencies emerging during the last 40 years. J. Clim. 2008, 21, 1850–1862. [Google Scholar] [CrossRef]
- Wainwright, C.M.; Allan, R.P.; Black, E. Consistent trends in dry spell length in recent observations and future projections. Geophys. Res. Lett. 2022, 49, e2021GL097231. [Google Scholar] [CrossRef]
- Motamedi, A.; Gohari, A.; Haghighi, A.T. Three-decade assessment of dry and wet spells change across Iran, a fingerprint of climate change. Sci. Rep. 2023, 13, 2888. [Google Scholar] [CrossRef] [PubMed]
- Wibig, J. Dry spells and droughts in Poland, 1951–2006 Extended Abstracts, In Proceedings of the Ninth European Conference on Applied Meteorology, Toulouse, France, 28 September–2 October 2009; European Meteorological Society, EMS2009-141; Volume 6.
- Falarz, M.; Bednorz, E. Snow Cover Change. In Climate Change in Poland: Past, Present, Future; Falarz, M., Ed.; Springer Climate: Cham, Switzerland, 2021; pp. 375–390. [Google Scholar]
- Łupikasza, E.; Małarzewski, Ł. Precipitation Change. In Climate Change in Poland: Past, Present, Future; Falarz, M., Ed.; Springer Climate: Cham, Switzerland, 2021; pp. 349–373. [Google Scholar]
- Walanus, A.; Twardosz, R.; Cebulska, M.; Płachta, A. In search of periodicity in the annual precipitation in Europe (1881–2020). Water 2022, 14, 2026. [Google Scholar] [CrossRef]
- Serra, C.; Martínez, M.D.; Lana, X.; Burgueño, A. European dry spell regimes (1951–2000): Clustering process and time trends. Atmos. Res. 2014, 144, 151–174. [Google Scholar] [CrossRef]
- Herrera-Lormendez, P.; Douville, H.; Matschullat, J. European summer synoptic circulations and their observed 2022 and projected influence on hot extremes and dry spells. Geophys. Res. Lett. 2023, 50, e2023GL104580. [Google Scholar] [CrossRef]
Meteorological Station | Mann–Kendall Statistic (Z) | p-Value | R2 | Slope (Number of Days/Year) | |
---|---|---|---|---|---|
Number | Name | ||||
8 | Kasprowy Wierch | 2.286 *** | 0.022 | 0.1536 | 0.657 ± 0.268 |
12 | Tylicz | −2.911 *** | 0.004 | 0.2624 | −1.292 ± 0.371 |
17 | Teleśnica | −3.139 *** | 0.002 | 0.2876 | −1.033 ± 0.283 |
Oszwarowa | |||||
13 | Gorlice | −1.676 ** | 0.094 | 0.095 | −0.552 ± 0.297 |
16 | Cisna | −3.139 ** | 0.052 | 0.111 | −0.639 ± 0.315 |
No of Station | 2–7 Days | 8–14 Days | 15–21 Days | >21 Days | Max Length of the Sequence (Days) | Date of Occurrence | ||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | |||
1 | 1184 | 66.4 | 120 | 19.1 | 7 | 2.0 | 2 | 0.8 | 30 | 26.10–24.11.2011 |
2 | 1142 | 66.2 | 112 | 18.3 | 7 | 2.0 | 1 | 0.6 | 34 | 27.10–29.11.2011 |
3 | 1084 | 65.1 | 105 | 18.0 | 10 | 2.7 | 1 | 0.5 | 26 | 26.10–20.11.2011 |
4 | 1189 | 64.7 | 130 | 20.4 | 9 | 2.3 | 3 | 1.3 | 35 | 21.10–24.11.2011 |
5 | 1155 | 63.6 | 126 | 20.0 | 19 | 4.9 | - | - | 20 | 10.11–29.11.2011 |
6 | 1225 | 62.0 | 142 | 20.5 | 7 | 5.0 | 3 | 1.3 | 40 | 26.10–4.12.2011 |
7 | 1170 | 66.4 | 100 | 16.6 | 7 | 2.0 | 1 | 0.4 | 25 | 26.10–19.11.2011 |
8 | 1013 | 66.3 | 72 | 14.2 | 5 | 1.7 | - | - | 20 | 6.11–25.11.2011 |
9 | 1150 | 62.3 | 140 | 21.9 | 14 | 3.6 | 1 | 0.4 | 35 | 21.10–24.11.2011 |
10 | 1140 | 60.9 | 144 | 22.2 | 15 | 4.0 | 3 | 1.1 | 23 | 26.10–17.11.2011 |
11 | 1176 | 62.9 | 147 | 22.6 | 12 | 3.1 | 2 | 0.8 | 31 | 26.10–25.11.2011 |
12 | 1192 | 66.4 | 103 | 16.9 | 11 | 3.0 | 1 | 0.4 | 23 | 3.10–25.10.2000 |
13 | 1205 | 61.5 | 153 | 22.3 | 15 | 3.7 | 4 | 1.5 | 33 | 23.09–25.10.2000 |
14 | 1055 | 61.5 | 120 | 19.7 | 17 | 5.0 | 1 | 0.6 | 33 | 23.09–25.10.2000 |
15 | 1170 | 61.3 | 148 | 22.2 | 16 | 4.1 | 4 | 1.6 | 33 | 23.09–25.10.2000 |
16 | 1105 | 57.0 | 161 | 23.9 | 25 | 6.2 | 4 | 1.9 | 40 | 24.04–7.06.1991 |
17 | 1130 | 58.2 | 175 | 25.6 | 17 | 4.3 | 2 | 0.8 | 33 | 23.09–25.10.2000 |
Meteorological Station | Mann–Kendall Statistic (Z) | p-Value | R2 | Slope (Number of Days/Year) | |
---|---|---|---|---|---|
Number | Name | ||||
10 | Białka Tatrzańska | −3.423 *** | 0.001 | 0.341 | −0.3241 ± 0.078 |
11 | Półrzeczki | −2.798 *** | 0.005 | 0.263 | −0.2448 ± 0.071 |
12 | Tylicz | −3.096 *** | 0.002 | 0.2327 | −0.2462 ± 0.078 |
13 | Gorlice | −2.159 *** | 0.031 | 0.1259 | −0.1532 ± 0.070 |
15 | Szczawne | −3.238 *** | 0.001 | 0.3025 | −0.2734 ± 0.072 |
17 | Teleśnica Oszwarowa | −2.272 *** | 0.023 | 0.1621 | −0.1827 ± 0.070 |
Meteorological Station | Mann–Kendall Statistic (Z) | p-Value | R2 | Slope (Number of Days/Year) | |
---|---|---|---|---|---|
Number | Name | ||||
8 | Kasprowy Wierch | 2.386 *** | 0.017 | 0.1694 | 0.0152 ± 0.006 |
9 | Węglówka | 1.676 ** | 0.094 | 0.0979 | 0.0151 ± 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebulska, M.; Twardosz, R. Variability of Dry Days and Sequences of Dry Days in the Polish Carpathians in the Period 1986–2020. Water 2024, 16, 2982. https://doi.org/10.3390/w16202982
Cebulska M, Twardosz R. Variability of Dry Days and Sequences of Dry Days in the Polish Carpathians in the Period 1986–2020. Water. 2024; 16(20):2982. https://doi.org/10.3390/w16202982
Chicago/Turabian StyleCebulska, Marta, and Robert Twardosz. 2024. "Variability of Dry Days and Sequences of Dry Days in the Polish Carpathians in the Period 1986–2020" Water 16, no. 20: 2982. https://doi.org/10.3390/w16202982
APA StyleCebulska, M., & Twardosz, R. (2024). Variability of Dry Days and Sequences of Dry Days in the Polish Carpathians in the Period 1986–2020. Water, 16(20), 2982. https://doi.org/10.3390/w16202982