Analysis of the Response of Shallow Groundwater Levels to Precipitation Based on Different Wavelet Scales—A Case Study of the Datong Basin, Shanxi
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Dataset
3. Method
3.1. Continuous Wavelet Transform (CWT)
3.2. Cross Wavelet Transform (XWT)
3.3. Wavelet Coherence Analysis (WTC)
4. Results
4.1. Temporal Variation Characteristics of Precipitation and Groundwater Levels
4.2. Multi-Scale Periodic Characteristics of Precipitation and Groundwater Levels
4.3. Analysis of Groundwater Level Response to Precipitation
4.4. Multi-Scale Response Patterns between Precipitation and Groundwater Levels
5. Discussion
5.1. Groundwater Level Depth
5.2. Precipitation Intensity
5.3. Groundwater Exploitation Intensity
5.4. Lithology of Aquifers
5.5. Limitations
6. Conclusions
- (1)
- We analyzed the continuous wavelet inverse transforms of groundwater level and precipitation signals at short, medium, and long wavelet scales (11.89 d, 134.56 d, and 359.22 d, respectively) and investigated the temporal phase angle changes between precipitation and groundwater levels during this study period. By analyzing the response relationships between rainfall and groundwater signals at different wavelet scales, we identified response patterns under varying precipitation conditions. Notably, groundwater level changes at the short wavelet scale are highly correlated with intense rainfall events, and the phase angle exhibits significant temporal variations. During each intense rainfall event, the phase angle increases over time, indicating that rainfall recharge is significantly dependent on prior conditions, and the groundwater level response to intense rainfall is almost instantaneous. At the medium wavelet scale, the phase angle differences between precipitation and groundwater levels in the Datong Basin are relatively small. The response patterns at monitoring wells W1-P1, W2-P2, and W3-P3 show characteristics of both rapid recovery and significant delays. At the long wavelet scale, the phase angles between precipitation and groundwater levels tend to be consistent. Throughout this study period, the phase angles of precipitation-groundwater level signals at wells W1-P1, W2-P2, and W3-P3 were approximately 10.85°, 144.32°, and 146.97°, respectively, with precipitation-groundwater level time lags of 11.18 days, 148.75 days, and 151.49 days. This indicates that the lag time of groundwater response to precipitation can vary across different spatiotemporal scales.
- (2)
- Key factors influencing the lag time between precipitation and groundwater recharge include groundwater depth, precipitation intensity, groundwater extraction intensity, as well as the spatial distribution and monitoring frequency of the wells.
- (3)
- Although these factors may introduce some uncertainty in assessing groundwater level responses, the combined use of continuous wavelet transform, cross wavelet transform, and wavelet coherence analysis remains highly effective. Particularly in regions with limited hydrological and geological data, these methods provide a multi-scale view of the response patterns of groundwater levels to precipitation in the Datong Basin.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zektser, I.S.; Everett, L.G. Groundwater and the Environment: Applications for the Global Community; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Xu, F.; Qu, Y.; Bento, V.A.; Song, H.; Qiu, J.; Qi, J.; Wan, L.; Zhang, R.; Miao, L.; Zhang, X. Understanding Climate Change Impacts on Drought in China over the 21st Century: A Multi-Model Assessment from CMIP6. Npj Clim. Atmos. Sci. 2024, 7, 32. [Google Scholar] [CrossRef]
- Wan, L.; Bento, V.A.; Qu, Y.; Qiu, J.; Song, H.; Zhang, R.; Wu, X.; Xu, F.; Lu, J.; Wang, Q. Drought Characteristics and Dominant Factors across China: Insights from High-Resolution Daily SPEI Dataset between 1979 and 2018. Sci. Total Environ. 2023, 901, 166362. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhou, T.; Qu, Y.; Bento, V.A.; Qi, J.; Xu, Y.; Li, Y.; Wang, Q. An Improved Global Vegetation Health Index Dataset in Detecting Vegetation Drought. Sci. Data 2023, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Qi, J.; Leng, S.; Wang, Q. Long-Term Vegetation Phenology Changes and Responses to Preseason Temperature and Precipitation in Northern China. Remote Sens. 2022, 14, 1396. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, R.; Bento, V.A.; Leng, S.; Qi, J.; Zeng, J.; Wang, Q. The Effect of Drought on Vegetation Gross Primary Productivity under Different Vegetation Types across China from 2001 to 2020. Remote Sens. 2022, 14, 4658. [Google Scholar] [CrossRef]
- Tashie, A.M.; Mirus, B.B.; Pavelsky, T.M. Identifying Long-term Empirical Relationships between Storm Characteristics and Episodic Groundwater Recharge. Water Resour. Res. 2016, 52, 21–35. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Di Lorenzo, E. Sensitivity of Groundwater Recharge Assessment to Input Data in Arid Areas. Hydrology 2024, 11, 28. [Google Scholar] [CrossRef]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling Groundwater and Surface Water Interaction: An Overview of Current Status and Future Challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef] [PubMed]
- Nanditha, H.S.; Reshmidevi, T.V.; Simha, L.U.; Kunhikrishnan, P. Statistical Analysis of Rainfall and Groundwater Interaction in Bhadra Catchment. Environ. Dev. Sustain. 2023, 26, 16267–16287. [Google Scholar] [CrossRef]
- Abebe, S.A.; Qin, T.; Zhang, X.; Yan, D. Wavelet Transform-Based Trend Analysis of Streamflow and Precipitation in Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2022, 44, 101251. [Google Scholar] [CrossRef]
- Pal, L.; Ojha, C.S.P.; Chandniha, S.K.; Amit Kumar, A.K. Regional Scale Analysis of Trends in Rainfall Using Nonparametric Methods and Wavelet Transforms over a Semi-Arid Region in India. Intl J. Climatol. 2019, 39, 2737–2764. [Google Scholar] [CrossRef]
- Sharif, M.A.; Jafari, H. Estimation of Groundwater Recharge Lag Time in Mashhad-Chenaran Aquifer Using Cross-Correlation Method. Water Soil 2021, 35, 489–504. [Google Scholar]
- Sun, Q.; Liu, T.; Han, Z.; Liu, H.; Dong, H.; Qin, C. Multitemporal Scale Response of Vegetation Cover to Climate Change in Northern Tianshan by Remote Sensing Analysis. Trans. Chin. Soc. Agric. Eng. 2014, 30, 248–255. [Google Scholar]
- He, L.; Hou, M.; Chen, S.; Zhang, J.; Chen, J.; Qi, H. Construction of a Spatio-Temporal Coupling Model for Groundwater Level Prediction: A Case Study of Changwu Area, Yangtze River Delta Region of China. Water Supply 2021, 21, 3790–3809. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, T.; Lim, E.; Lopez-Benitez, M.; Ma, F.; Yu, L. A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities. IEEe Access 2022, 10, 58869–58903. [Google Scholar] [CrossRef]
- Grobbelaar, M.; Phadikar, S.; Ghaderpour, E.; Struck, A.F.; Sinha, N.; Ghosh, R.; Ahmed, M.Z.I. A Survey on Denoising Techniques of Electroencephalogram Signals Using Wavelet Transform. Signals 2022, 3, 577–586. [Google Scholar] [CrossRef]
- Wang, C.; Dai, F.; Liu, Y.; Wang, Y.; Li, H.; Qu, W. Shallow Groundwater Responses to Rainfall Based on Correlation and Spectral Analyses in the Heilonggang Region, China. Water 2023, 15, 1100. [Google Scholar] [CrossRef]
- Niu, S.; Shu, L.; Li, H.; Xiang, H.; Wang, X.; Opoku, P.A.; Li, Y. Identification of Preferential Runoff Belts in Jinan Spring Basin Based on Hydrological Time-Series Correlation. Water 2021, 13, 3255. [Google Scholar] [CrossRef]
- Yang, T.; Wang, G. Periodic Variations of Rainfall, Groundwater Level and Dissolved Radon from the Perspective of Wavelet Analysis: A Case Study in Tengchong, Southwest China. Environ. Earth Sci. 2021, 80, 492. [Google Scholar] [CrossRef]
- Yanfang, S.; Zhonggen, W.; Changming, L.I.U. Research Progress on the Time Series Analysis Methods in Hydrology. Prog. Geogr. 2013, 32, 20–30. [Google Scholar] [CrossRef]
- Liu, A.; Xu, Y.; Liu, C.; Ercheng, P. Geological Characteristics and Tectonic Evolution of Datong Basin. Geoscience 2021, 35, 1296. [Google Scholar]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Rezaei, A.; Gurdak, J.J. Large-Scale Climate Variability Controls on Climate, Vegetation Coverage, Lake and Groundwater Storage in the Lake Urmia Watershed Using SSA and Wavelet Analysis. Sci. Total Environ. 2020, 724, 138273. [Google Scholar] [CrossRef]
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet Analysis of Ecological Time Series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Karakouzian, M. Relationship between Sunspot Numbers and Mean Annual Precipitation: Application of Cross-Wavelet Transform—A Case Study. J—Multidiscip. Sci. J. 2020, 3, 67–78. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J. Cross Wavelet Analysis: Significance Testing and Pitfalls. Nonlinear Process. Geophys. 2004, 11, 505–514. [Google Scholar] [CrossRef]
- Yu, H.-L.; Lin, Y.-C. Analysis of Space–Time Non-Stationary Patterns of Rainfall–Groundwater Interactions by Integrating Empirical Orthogonal Function and Cross Wavelet Transform Methods. J. Hydrol. 2015, 525, 585–597. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.; Tan, K.; Shen, Y.; Yang, L. Rainfall Intensity Affects the Recharge Mechanisms of Groundwater in a Headwater Basin of the North China Plain. Appl. Geochem. 2023, 155, 105742. [Google Scholar] [CrossRef]
- Cai, P.; Li, R.; Guo, J.; Xiao, Z.; Fu, H.; Guo, T.; Wang, T.; Zhang, X.; Song, X. Spatiotemporal Dynamics of Groundwater in Henan Province, Central China and Their Driving Factors. Ecol. Indic. 2024, 166, 112372. [Google Scholar] [CrossRef]
- Venkatesan, G.; Subramani, T.; Karunanidhi, D.; Sathya, U.; Li, P. Impact of Precipitation Disparity on Groundwater Fluctuation in a Semi-Arid Region (Vellore District) of Southern India Using Geospatial Techniques. Environ. Sci. Pollut. Res. 2021, 28, 18539–18551. [Google Scholar] [CrossRef] [PubMed]
- Boas, T.; Mallants, D. Episodic Extreme Rainfall Events Drive Groundwater Recharge in Arid Zone Environments of Central Australia. J. Hydrol. Reg. Stud. 2022, 40, 101005. [Google Scholar] [CrossRef]
- Brookfield, A.E.; Zipper, S.; Kendall, A.D.; Ajami, H.; Deines, J.M. Estimating Groundwater Pumping for Irrigation: A Method Comparison. Groundwater 2024, 62, 15–33. [Google Scholar] [CrossRef]
- Ruud, N.; Harter, T.; Naugle, A. Estimation of Groundwater Pumping as Closure to the Water Balance of a Semi-Arid, Irrigated Agricultural Basin. J. Hydrol. 2004, 297, 51–73. [Google Scholar] [CrossRef]
- Entezari, M.; Karimi, H.; Gholam Heidari, H.; Jafari Aghdam, M. Estimation of Groundwater Recharge Level in Karstic Aquifers Using Modified APLIS Model. Arab. J. Geosci. 2020, 13, 198. [Google Scholar] [CrossRef]
- Nagaraj, S.; Purushothaman, P. Assessment of Influencing Level of Rainfall and Physical Factors on Groundwater Level for a Semi-Arid Flat Terrain Watershed Using Grid-Based Geospatial Analysis: A Case Study from Lower Palar Basin, Tamil Nadu, India. Environ. Monit. Assess. 2023, 195, 1159. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.A.; Szabó, N.P.; Szűcs, P. Exploring Hydrogeological Parameters by Integration of Geophysical and Hydrogeological Methods in Northern Khartoum State, Sudan. Groundw. Sustain. Dev. 2023, 20, 100891. [Google Scholar] [CrossRef]
- Zheng, G.; Cao, J.R.; Cheng, X.S.; Ha, D.; Wang, F.J. Experimental Study on the Artificial Recharge of Semiconfined Aquifers Involved in Deep Excavation Engineering. J. Hydrol. 2018, 557, 868–877. [Google Scholar] [CrossRef]
- Analysis of Rainfall Infiltration and Its Influence on Groundwater in Rain Gardens|Environmental Science and Pollution Research. Available online: https://link.springer.com/article/10.1007/s11356-019-05622-z (accessed on 3 October 2024).
- Han, X.; Liu, J.; Srivastava, P.; Mitra, S.; He, R. Effects of Critical Zone Structure on Patterns of Flow Connectivity Induced by Rainstorms in a Steep Forested Catchment. J. Hydrol. 2020, 587, 125032. [Google Scholar] [CrossRef]
- Schiavo, M. Entropy, Fractality, and Thermodynamics of Groundwater Pathways. J. Hydrol. 2023, 623, 129824. [Google Scholar] [CrossRef]
Well ID | Longitude (°) | Latitude (°) | Ground Elevation (m) | Depth (m) | Soil Type |
---|---|---|---|---|---|
W1 | 112.78 | 39.32 | 1052.60 | 2.18 | Gley Soil |
W2 | 112.86 | 39.68 | 1072.24 | 28.82 | Luvisol |
W3 | 113.73 | 39.74 | 1112.32 | 31.90 | Brown Soil |
Monitoring Point | Phase Angle (°) | Time Lag (Days) |
---|---|---|
P1-W1 | 10.85° | 11.18 |
P2-W2 | 144.32° | 148.75 |
P3-W3 | 146.97° | 151.49 |
Wavelet Scale | Amplitude | P1-W1 | P2-W2 | P3-W3 |
---|---|---|---|---|
11.89 d | Amplitude of the reconstructed groundwater level signal | (−2, 2) | (−0.4, 0.4) | (−0.4, 0.4) |
Amplitude of the reconstructed precipitation signal | (−4, 4) | (−4, 4) | (−4, 4) | |
Angle (°) | (−180°, 180°) | (−180°, 180°) | (−180°, 180°) | |
134.56 d | Amplitude of the reconstructed groundwater level signal | (−4, 4) | (−2, 2) | (−2, 2) |
Amplitude of the reconstructed precipitation signal | (−2, 2) | (−3, 3) | (−3, 3) | |
Angle (°) | (−180°, 180°) | (−180°, 180°) | (−180°, 180°) | |
359.22 d | Amplitude of the reconstructed groundwater level signal | (−10, 10) | (−8, 8) | (−6, 6) |
Amplitude of the reconstructed precipitation signal | (−6, 6) | (−6, 6) | (−6, 6) | |
Angle (°) | (8°, 12°) | (140°, 175°) | (125°, 150°) |
Well ID | Location | Phase Angle (°) | Groundwater Level Depth (m) | Time Lag (Days) |
---|---|---|---|---|
W1 | alluvial plain area | 10.85° | 2.18 | 11.18 |
W2 | alluvial plain area | 144.32° | 28.82 | 148.75 |
W3 | alluvial inclined plain | 146.97° | 31.90 | 151.49 |
alluvial inclined plain | 40.29° | 10.32 | 41.53 | |
alluvial plain area | 98.73° | 20.38 | 101.76 | |
alluvial inclined plain | 175.66 | 50.15 | 181.06 |
Monitoring Well | Location | Phase Angle (°) | Groundwater Depth (m) | Lag Time (Days) |
---|---|---|---|---|
alluvial inclined plain | 12.25° | 10.32 | 12.63 | |
alluvial plain area | 37.26° | 11.52 | 38.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Rui, X.; Zhou, Y.; Sun, W.; Xie, W.; Gao, C.; Ren, Y. Analysis of the Response of Shallow Groundwater Levels to Precipitation Based on Different Wavelet Scales—A Case Study of the Datong Basin, Shanxi. Water 2024, 16, 2920. https://doi.org/10.3390/w16202920
Zhang H, Rui X, Zhou Y, Sun W, Xie W, Gao C, Ren Y. Analysis of the Response of Shallow Groundwater Levels to Precipitation Based on Different Wavelet Scales—A Case Study of the Datong Basin, Shanxi. Water. 2024; 16(20):2920. https://doi.org/10.3390/w16202920
Chicago/Turabian StyleZhang, Hongyue, Xiaoping Rui, Ye Zhou, Wen Sun, Weiyi Xie, Chaojie Gao, and Yingchao Ren. 2024. "Analysis of the Response of Shallow Groundwater Levels to Precipitation Based on Different Wavelet Scales—A Case Study of the Datong Basin, Shanxi" Water 16, no. 20: 2920. https://doi.org/10.3390/w16202920
APA StyleZhang, H., Rui, X., Zhou, Y., Sun, W., Xie, W., Gao, C., & Ren, Y. (2024). Analysis of the Response of Shallow Groundwater Levels to Precipitation Based on Different Wavelet Scales—A Case Study of the Datong Basin, Shanxi. Water, 16(20), 2920. https://doi.org/10.3390/w16202920