Wetland Landscape Dynamics and Multi-Functional Assessment of Wuhan City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Research Framework
2.2. Wetland Landscape Classification
2.3. Ecological Model and Function Assessment
2.3.1. Carbon Sequestration Assessment
2.3.2. Biodiversity Conservation Assessment
2.3.3. Water Yield Assessment
2.3.4. Water Purification Assessment
2.4. Multi-Function Assessment
3. Results
3.1. Spatial and Temporal Changes of Wetland Landscapes from 2000 to 2020
3.2. Assessment of Four Ecological Functions
3.2.1. Carbon Sequestration
3.2.2. Biodiversity Conservation
3.2.3. Water Yield
3.2.4. Water Purification
3.3. Spatial–Temporal Multi-Function Score of Wetland Landscape
4. Discussion
4.1. Wetland Changes in Wuhan City from 2000 to 2020
4.2. Multi-Function Assessment and Its Change in Wuhan City
4.3. Suggestions and Implications for Enhancing Multi-Functions of Wetlands
4.4. Our Limitations and Uncurtains
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aslam, R.W.; Shu, H.; Javid, K.; Pervaiz, S.; Mustafa, F.; Raza, D.; Ahmed, B.; Quddoos, A.; Al-Ahmadi, S.; Hatamleh, W.A. Wetland identification through remote sensing: Insights into wetness, greenness, turbidity, temperature, and changing landscapes. Big Data Res. 2024, 35, 100416. [Google Scholar] [CrossRef]
- Junya, W. Functional Evolution and Development Response of the Rule of Law on Wetland Protection in China. China Land Sci. 2024, 38, 38–46. [Google Scholar] [CrossRef]
- Guozhuang, S.; Jingjuan, L. Review on Wetland Vegetation Biomass Inversion Using SAR Data. Remote Sens. Inf. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Jun, Y.; Liangshu, S.; Xiaoping, T. A Preliminary Analysis of Three Mainstream Wetland Definitions in Wetland Conservation and Management in China. Wetl. Sci. 2022, 20, 607–612. [Google Scholar] [CrossRef]
- GB24708-2009-T; Chinese National Standard for Wetland Classification. China Zhijian Publishing House: Beijing, China, 2009.
- Jin, G.; Guangyi, D.; Haibo, J.; Qiuying, M.; Yang, W.; Chunguang, H.; Yue, G.; Yingyue, C. Water quality management of micro swamp wetland based on the “source-transfer-sink” theory: A case study of Momoge Swamp Wetland in Songnen Plain, China. J. Clean. Prod. 2024, 446, 141450. [Google Scholar] [CrossRef]
- Tao, X.; Qiangsheng, S.; Yi, w.; Shengbang, S.; Zhiqiang, W.; Ming, Z. Progress and perspectives in the research of wetland ecosystem services. Chin. J. Ecol. 2022, 41, 1205–1212. [Google Scholar] [CrossRef]
- Weidong, W.; Ting, Y.; Weibing, G.; Weixi, P.; Ping, W.; Bin, Z.; Chundong, Z.; Qinghua, C.; Rongbin, Z.; Kewen, X.; et al. Ecological wetland paradigm drives water source improvement in the stream network of Yangtze River Delta. J. Environ. Sci. 2021, 110, 55–72. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, L.; Wang, Y.; Liu, C.; Zhou, Y.; Lei, G. Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. Sustainability 2020, 12, 1442. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Yan, K.; Chaudhary, S. Assessment of the ecosystem services provided by ponds in hilly areas. Sci. Total Environ. 2018, 642, 979–987. [Google Scholar] [CrossRef]
- Jian, P.; Huiling, L.; Yanxu, L.; Xin, C.; Xiaoxu, H. International Research Progress and Perspectives on Multifunctional Landscape. Adv. Earth Sci. 2015, 30, 465–476. [Google Scholar] [CrossRef]
- Yujie, G.; Zhibin, R.; Yulin, D.; Peng, Z.; Chengcong, W.; Zijun, M.; Xingyuan, H. Multifunctionality can be promoted by increasing agriculture-dominated heterogeneous landscapes in an agro-forestry interlacing zone in northeast China. Landsc. Urban Plan. 2023, 238, 104832. [Google Scholar] [CrossRef]
- Jian, P.; Zhicong, L.; Yanxu, L. Research Progress on Assessing Multi-Functionality of Agriculture. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 1–8. [Google Scholar] [CrossRef]
- Qizheng, M.; Luyv, W.; Min, L.; Qinghai, G.; Chanjuan, H.; Yuanzheng, L. Landsenses Ecology effects of multi-functional green space landscape in urban residential area. Acta Ecol. Sin. 2021, 41, 7509–7520. [Google Scholar] [CrossRef]
- Xuewei, Z.; Chaohan, L.; Wei, R.; Xiangrong, W. Study on the Landscape Multifunctionality and Multi-subject Game in the Fuzhou West Lake Water Heritage. Chin. Landsc. Archit. 2023, 39, 36–42. [Google Scholar] [CrossRef]
- Hou, N.; Yang, X.; Wang, W.; Sardans, J.; Yin, X.; Jiang, F.; Song, Z.; Li, Z.; Tian, J.; Ding, X.; et al. Mangrove wetland recovery enhances soil carbon sequestration capacity of soil aggregates and microbial network stability in southeastern China. Sci. Total Environ. 2024, 951, 175586. [Google Scholar] [CrossRef]
- Kaifeng, P.; Weiguo, J.; Yue, D. Identification of wetland damage degree and analysis of its driving forces in Wuhan Urban Agglomeration. J. Nat. Resour. 2019, 34, 1694–1707. [Google Scholar] [CrossRef]
- Jiaoyang, X.; Yixue, W.; Mingjun, T.; Pengcheng, W.; Zhaogui, Y.; Hui, W. Ecosystem services of lake-wetlands exhibit significant spatiotemporal heterogeneity and scale effects in a multi-lake megacity. Ecol. Indic. 2023, 154, 110843. [Google Scholar] [CrossRef]
- Ru, C.; Chunbo, H. Landscape Evolution and It’s Impact of Ecosystem Service Value of the Wuhan City, China. Int. J. Environ. Res. Public Health 2021, 18, 13015. [Google Scholar] [CrossRef]
- Ou, J.; Li, J.; Li, X.; Zhang, J. Planning and Design Strategies for Green Stormwater Infrastructure from an Urban Design Perspective. Water 2023, 16, 29. [Google Scholar] [CrossRef]
- Weiguo, J.; Ze, Z.; Ziyan, L.; Yawen, D. Experience and future research trends of wetland protection and restoration in China. Acta Geogr. Sin. 2023, 78, 2223–2240. [Google Scholar] [CrossRef]
- Juan, D.; Shrestha, R.P.; Nitivattananon, V.; Nguyen, T.P.L.; Razzaq, A. Unveiling the Value of Nature: A Comprehensive Analysis of the Ecosystem Services and Ecological Compensation in Wuhan City’s Urban Lake Wetlands. Water 2023, 15, 2257. [Google Scholar] [CrossRef]
- Huifang, L.; Yujing, H.; Tao, W.; Zhihua, W.; Yanan, L.; Huanfeng, S. Evolution of urban morphological polycentricity and the thermal response in Wuhan from 2000 to 2020. Sustain. Cities Soc. 2024, 100, 105055. [Google Scholar] [CrossRef]
- Qipeng, L.; Zhe, W.; Chunbo, H. Green Infrastructure Offset the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2020, 17, 8077. [Google Scholar] [CrossRef] [PubMed]
- Shuangshuang, L.; Qipeng, L.; Mingzhu, X.; Dengyue, Z.; Chunbo, H. Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2022, 19, 3594. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. Invest User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington County, VA, USA; World Wildlife Fund: Gland, Switzerland, 2018. [Google Scholar]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom %J Science of the Total Environment. Sci. Total Environ. 2018, 610, 666–677. [Google Scholar] [CrossRef]
- Bangshuai, H.; Andie, R.; Aihua, L. Modeling nutrient release with compiled data in a typical Midwest watershed. Ecol. Indic. 2021, 121, 107213. [Google Scholar] [CrossRef]
- Chunbo, H.; Dengyue, Z.; Xin, F.; Chao, L.; Guosong, Z. Landscape dynamics facilitated non-point source pollution control and regional water security of the Three Gorges Reservoir area, China. Environ. Impact Assess. Rev. 2022, 92, 106696. [Google Scholar] [CrossRef]
- Lu, C.; Sidai, G.; Yangli, L. Discerning changes and drivers of water yield ecosystem service: A case study of Chongqing-Chengdu District, Southwest China. Ecol. Indic. 2024, 160, 111767. [Google Scholar] [CrossRef]
- Chao, W.; Le, M.; Yan, Z.; Nengcheng, C.; Wei, W. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: A case study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef]
- Chao, L.; Yuan, L.; Yajin, Z.; Shuangshuang, L.; Chunbo, H. Simulation and Analysis of the Effects of Land Use and Climate Change on Carbon Dynamics in the Wuhan City Circle Area. Int. J. Environ. Res. Public Health 2021, 18, 11617. [Google Scholar] [CrossRef]
- Jing, C.; Shuangshuan, L.; Chunbo, H.; Lunche, W.; Zelin, L.; Changhui, P. Impacts of environmental and socioeconomic factors on gross ecosystem product of the Three Gorges reservoir area, China. Land Degrad. Dev. 2024, 35, 2824–2839. [Google Scholar] [CrossRef]
- Yanwen, L.; Chengwu, L.; Zongyi, H.; Xia, Z.; Binghua, H.; Hanzhou, H. Spatial-temporal evolution of ecological land and influence factors in Wuhan urban agglomeration based on geographically weighted regression model. Chin. J. Appl. Ecol. 2020, 31, 987–998. [Google Scholar] [CrossRef]
- Yu, C.; Kun, L.; Yao, D.; Teng, M. Identification of Degradation Process of Chenhu Wetland over Last 50 Years. Earth Sci. 2021, 46, 661–670. [Google Scholar] [CrossRef]
- Yansheng, G.; Yuenan, L.; Shucheng, X.; Hongfu, Y. On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution. Earth Sci. 2023, 48, 3193–3204. [Google Scholar] [CrossRef]
- Yonglin, Z.; Jiaojiao, R.; Wen, W.; Mingyao, Z.; Mingquan, L.; Shengjun, W. Response of Water Quality in Small Reservoirs to Landscape Composition, Landscape Configuration, and Reservoir Characteristics in the Upper Reaches of the Yangtze River During Dry Season. Environ. Sci. 2023, 44, 2528–2538. [Google Scholar] [CrossRef]
- Shengfu, Y.; Wenjie, F. Performance Evaluation and Determinants of Land Supply in Wuhan. Econ. Geogr. 2021, 41, 185–193. [Google Scholar] [CrossRef]
- Qiuyue, Y.; Da, G.; Deyong, S.; Yi, L. Environmental regulation, pollution reduction and green innovation: The case of the Chinese Water Ecological Civilization City Pilot policy. Econ. Syst. 2021, 45, 100911. [Google Scholar] [CrossRef]
- Kui, M.; Chen, Z. Research on coupling coordination developm ent of inland port logistics and regional industry—Taking Wuhan new port as an example. Prices Mon. 2021, 1, 80–87. [Google Scholar] [CrossRef]
- Weiguo, J.; Xiaoya, W.; Zhuo, L.; Ziyan, L.; Yawen, D. Processes and future research trends of sustainable development of wetland cities. J. Nat. Resour. 2024, 39, 1241–1261. [Google Scholar] [CrossRef]
- Jing, C.; Chunbo, H.; Xintao, G.; Changhui, P.; Lei, D. Can forest carbon sequestration offset industrial CO2 emissions? A case study of Hubei Province, China. J. Clean. Prod. 2023, 426, 139147. [Google Scholar] [CrossRef]
- Shuilin, Q.; Jie, P.; Leshan, J. Value Realization Mechanism of Ecological Goods in Natural Resources: An Analytical Framework of the Regime Complex. China Land Sci. 2021, 35, 10–17+25. [Google Scholar] [CrossRef]
- Chunbo, H.; Dengyue, Z.; Chao, L.; Qipeng, L. Integrating territorial pattern and socioeconomic development into ecosystem service value assessment. Environ. Impact Assess. Rev. 2023, 100, 107088. [Google Scholar] [CrossRef]
- Qingbo, L.; Rui, L.; Zhiqi, B. Real-time discrimination of contamination source composed of multiple pollutants in surface water based on deep learning and UV–Vis spectral abundance estimation methodology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 307, 123635. [Google Scholar] [CrossRef]
- Jing, Z.; Tianyuan, Z.; Yuequn, L. Novel method for industrial sewage outfall detection: Water pollution monitoring based on web crawler and remote sensing interpretation techniques. J. Clean. Prod. 2021, 312, 127640. [Google Scholar] [CrossRef]
- Yiyan, C.; Ye, L.; Cunjin, L. Electronic agriculture, blockchain and digital agricultural democratization: Origin, theory and application. J. Clean. Prod. 2020, 268, 122071. [Google Scholar]
- Huang, C.; Gan, X.; Wan, Y.; Jin, L.; Teng, J.; Li, Z. China contributed to low-carbon development: Carbon emission increased but carbon intensity decreased. Front. Ecol. Evol. 2024, 12, 1338742. [Google Scholar] [CrossRef]
- Hongjuan, Z.; Zhicheng, Z.; Kang, L.; Chunbo, H.; Guanpeng, D. Integrating land use management with trade-offs between ecosystem services: A framework and application. Ecol. Indi Cators 2023, 149, 110193. [Google Scholar] [CrossRef]
- Jieling, L.; Hui, F. Construct the future wetland ecological security pattern with multi-scenario simulation. Ecological Indicators. 2023, 153, 110473. [Google Scholar] [CrossRef]
- Chen, W.; Di, K.; Cai, Q.; Li, D.; Liu, C. Research on Motivational Mechanisms and Pathways for Promoting Public Participation in Environmental Protection Behavior. Int. J. Environ. Res. Public Health 2023, 20, 5084. [Google Scholar] [CrossRef]
- Di, W.; Liang, Z.; Ying, W.; Jian, G.; Jiangfeng, L.; Qian, C. Dynamics in construction land patterns and its impact on water-related ecosystem services in Chengdu-Chongqing urban agglomeration, China: A multi-scale study. J. Clean. Prod. 2024, 469, 143022. [Google Scholar] [CrossRef]
- Pingping, Z.; Md Ali, Z.; Ahmad, Y. Developing indicators for sustainable urban regeneration in historic urban areas: Delphi method and Analytic Hierarchy Process (AHP). Sustain. Cities Soc. 2023, 99, 104990. [Google Scholar] [CrossRef]
- Wang, S.; Shentu, H.; Yu, H.; Wang, L.; Wang, J.; Ma, J.; Zheng, H.; Huang, S.; Dong, L.; Wei, J. Impact of urbanization and land use on wetland water quality: A case study in Mengxi town. Urban Clim. 2024, 55, 101855. [Google Scholar] [CrossRef]
Wetland | Definition and Description | |
---|---|---|
Artificial wetland | Paddy fields | Paddy field is a typically artificial wetland, which is created for agricultural planting. Although paddy field has many wetland characteristics, such as maintaining water and providing habitats for various animals and plants, it may be different from natural wetland in ecological function and biodiversity. |
Pools | Pools, typically man-made bodies of water, serve as an essential facility in water resource management, crucially ensuring the supply of water resources, supporting agricultural production, and playing a significant role in improving the ecological environment. | |
Natural wetland | Rivers | Rivers, being an integral part of wetlands, result from rainwater or groundwater that, influenced by gravity, emerges onto the ground at lower elevations, forming a continuous or periodic flow within the depressions. |
Lakes | Lake, a type of surface water and a large body of water typically formed naturally or artificially, is surrounded by land and characterized by its relative stillness or slow movement and can vary in size, shape, and salinity, being either freshwater or saltwater. | |
Tidal flats | Tidal flat is an area of land that experiences submersion during high tide and exposure during low tide, alternatively known as a mudflat or sandflat. As a significant wetland ecosystem, it provides essential habitats for a diverse array of organisms, encompassing birds, crustaceans, fish, and various other aquatic life forms. |
Land Use Type | Habitat Quality Score | Threat Factor | ||
---|---|---|---|---|
Paddy Field | Dry Land | Built-Up Land | ||
Natural wetlands | 0.3 | 1 | 0 | 0.9 |
Built-up land | 0 | 0 | 0 | 0 |
Bare land | 0 | 0 | 0 | 0.4 |
Paddy field | 0.3 | 0 | 1 | 0.6 |
Dry land | 0.3 | 1 | 0 | 0.5 |
Arboreal forestland | 1 | 0.5 | 0.8 | 0.5 |
Shrubland | 0.9 | 0.5 | 0.8 | 0.7 |
Grassland | 0.8 | 0.7 | 0.6 | 0.5 |
Threat | Max Impact Distance | Weight | Distance Decay Function |
---|---|---|---|
Farmland | 0.5 | 0.5 | Exponential |
Built-up land | 5.8 | 0.73 | Linear |
Wetland | 2000 | 2005 | 2010 | 2015 | 2020 | 2000~2020 |
---|---|---|---|---|---|---|
Paddy field | 3346.95 | 3261.81 | 3043.25 | 2953.84 | 2890.86 | −0.68 |
River | 248.45 | 286.59 | 284.66 | 285.01 | 281.17 | 0.66 |
Lake | 904.37 | 916.25 | 827.09 | 826.01 | 814.69 | −0.50 |
Pool | 410.56 | 427.74 | 525.87 | 529.23 | 507.96 | 1.19 |
Tidal flat | 167.00 | 114.04 | 197.76 | 194.99 | 201.92 | 1.05 |
Wetland | 5077.33 | 5006.43 | 4878.64 | 4789.09 | 4696.60 | −0.37 |
Wetland | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Paddy field | 226.48 ± 100.82 | 271.00 ± 86.11 | 239.66 ± 67.52 | 289.71 ± 77.53 | 283.61 ± 76.89 |
River | 74.31 ± 100.58 | 114.92 ± 119.66 | 100.22 ± 97.73 | 133.05 ± 126.90 | 131.40 ± 127.06 |
Lake | 83.68 ± 102.21 | 111.57 ± 113.95 | 91.30 ± 96.09 | 120.99 ± 123.18 | 112.17 ± 115.91 |
Pool | 155.54 ± 107.43 | 221.88 ± 89.37 | 185.60 ± 76.04 | 237.72 ± 89.032 | 230.61 ± 86.03 |
Tidal flat | 160.47 ± 129.27 | 216.89 ± 121.57 | 174.68 ± 93.75 | 221.63 ± 108.41 | 220.71 ± 112.91 |
Wetland | 185.69 ± 119.13 | 227.45 ± 116.06 | 197.91 ± 97.75 | 242.77 ± 115.29 | 236.33 ± 114.06 |
Wetland | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Paddy field | 0.13 ± 0.09 | 0.13 ± 0.09 | 0.12 ± 0.09 | 0.12 ± 0.09 | 0.11 ± 0.09 |
River | 0.12 ± 0.10 | 0.10 ± 0.10 | 0.09 ± 0.09 | 0.08 ± 0.09 | 0.07 ± 0.09 |
Lake | 0.12 ± 0.10 | 0.12 ± 0.10 | 0.13 ± 0.11 | 0.13 ± 0.11 | 0.12 ± 0.11 |
Pool | 0.09 ± 0.09 | 0.08 ± 0.09 | 0.09 ± 0.09 | 0.09 ± 0.09 | 0.09 ± 0.09 |
Tidal flat | 0.11 ± 0.09 | 0.08 ± 0.09 | 0.09 ± 0.10 | 0.10 ± 0.10 | 0.10 ± 0.10 |
Wetland | 0.13 ± 0.09 | 0.12 ± 0.09 | 0.12 ± 0.09 | 0.11 ± 0.09 | 0.11 ± 0.09 |
Wetland | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Paddy field | 1.62 ± 0.52 | 1.64 ± 0.38 | 3.86 ± 1.25 | 3.03 ± 0.99 | 5.60 ± 1.37 |
River | 0.06 ± 0.85 | 0.06 ± 0.85 | 1.05 ± 1.54 | 0.44 ± 1.25 | 2.75 ± 1.63 |
Lake | 0.00 ± 0.00 | 0.00 ± 0.00 | 2.12 ± 1.42 | 0.98 ± c1.00 | 4.14 ± 1.63 |
Pool | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.85 ± 0.97 | 0.30 ± 0.54 | 2.92 ± 1.36 |
Tidal flat | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.52 ± 1.58 | 0.71 ± 1.28 | 3.65 ± 1.61 |
Wetland | 1.07 ± 0.89 | 1.07 ± 0.86 | 2.98 ± 1.75 | 2.13 ± 1.52 | 4.81 ± 1.80 |
Wetland | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Paddy field | 145.67 ± 65.67 | 145.89 ± 66.11 | 144.89 ± 64.78 | 145.78 ± 65.22 | 145.00 ± 65.56 |
River | 44.67 ± 61.11 | 42.33 ± 58.56 | 40.11 ± 55.56 | 40.00 ± 55.33 | 40.44 ± 56.22 |
Lake | 32.78 ± 47.11 | 32.22 ± 45.78 | 33.00 ± 46.56 | 32.11 ± 45.00 | 31.78 ± 45.33 |
Pool | 42.78 ± 59.89 | 44.00 ± 61.00 | 39.11 ± 56.22 | 38.67 ± 55.56 | 38.89 ± 55.67 |
Tidal flat | 31.78 ± 48.44 | 36.89 ± 56.11 | 40.67 ± 58.22 | 40.44 ± 57.67 | 40.00 ± 57.11 |
Wetland | 110.00 ± 80.11 | 109.44 ± 80.56 | 105.67 ± 79.89 | 105.22 ± 80.44 | 104.78 ± 80.44 |
Wetland | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Paddy field | 0.41 ± 0.12 | 0.43 ± 0.13 | 0.45 ± 0.11 | 0.47 ± 0.12 | 0.51 ± 0.12 |
River | 0.33 ± 0.12 | 0.36 ± 0.13 | 0.36 ± 0.12 | 0.36 ± 0.13 | 0.41 ± 0.14 |
Lake | 0.36 ± 0.12 | 0.36 ± 0.11 | 0.41 ± 0.13 | 0.41 ± 0.13 | 0.46 ± 0.14 |
Pool | 0.36 ± 0.13 | 0.41 ± 0.12 | 0.41 ± 0.12 | 0.44 ± 0.12 | 0.49 ± 0.12 |
Tidal flat | 0.39 ± 0.14 | 0.43 ± 0.14 | 0.42 ± 0.14 | 0.44 ± 0.14 | 0.50 ± 0.16 |
Wetland | 0.39 ± 0.13 | 0.42 ± 0.13 | 0.44 ± 0.12 | 0.45 ± 0.12 | 0.49 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Gan, X.; Zhao, Y.; Liao, Q.; Huang, C. Wetland Landscape Dynamics and Multi-Functional Assessment of Wuhan City, China. Water 2024, 16, 2914. https://doi.org/10.3390/w16202914
Yan Y, Gan X, Zhao Y, Liao Q, Huang C. Wetland Landscape Dynamics and Multi-Functional Assessment of Wuhan City, China. Water. 2024; 16(20):2914. https://doi.org/10.3390/w16202914
Chicago/Turabian StyleYan, Yuelin, Xintao Gan, Yajin Zhao, Qipeng Liao, and Chunbo Huang. 2024. "Wetland Landscape Dynamics and Multi-Functional Assessment of Wuhan City, China" Water 16, no. 20: 2914. https://doi.org/10.3390/w16202914
APA StyleYan, Y., Gan, X., Zhao, Y., Liao, Q., & Huang, C. (2024). Wetland Landscape Dynamics and Multi-Functional Assessment of Wuhan City, China. Water, 16(20), 2914. https://doi.org/10.3390/w16202914