Effects of Film-Mulched Rock Outcrops on Rainwater Redistribution and Maize Growth in the Cropland of a Rocky Karst Area
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Dye Tracer Tests
2.3. Image Analysis
2.4. Soil Volumetric Water Content Measurement
2.5. Growth Index Determination
2.6. Statistical Analysis
3. Results
3.1. Results of the Dye Tracer Test
3.2. Soil Water Content in Dyeing Plots
3.3. Crops Growth
4. Discussion
4.1. Effects on Rainwater Redistribution and Maize Growth
4.2. Implication of Film-Mulched Rock Outcrops
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Z.; Song, W. Spatiotemporal variations in cropland abandonment in the Guizhou-Guangxi karst mountain area, China. J. Clean. Prod. 2019, 238, 117888. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Abandoned cropland: Patterns and determinants within the Guangxi karst mountainous area, China. Appl. Geogr. 2020, 122, 102245. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.S.; Wang, L.M.; Rao, X.; Ran, W.J.; Xu, C.X. Monitoring and analysis of abandoned cropland in the Karst Plateau of eastern Yunnan, China based on Landsat time series images. Ecol. Indic. 2023, 146, 109828. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Zhao, L.; Shao, H.; Yang, Z. Effects of underground pore fissures on soil erosion and sediment yield on karst slopes. Land Degrad. Dev. 2017, 28, 1922–1932. [Google Scholar] [CrossRef]
- Jiang, M.; Lin, Y.; Chan, T.O.; Yao, Y.J.; Zheng, G.; Luo, S.Z.; Zhang, L.; Liu, D.P. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Sci. Rep. 2020, 10, 1440. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Chen, H.; Xu, Q.; Jia, J.; Wang, S.; Wang, K. Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: Implications of field rainfall simulation experiments. Hydrol. Process. 2016, 30, 795–811. [Google Scholar] [CrossRef]
- Li, G.J.; Rubinato, M.; Wan, L.; Wu, B.; Luo, J.f.; Fang, J.M.; Zhou, J.X. Preliminary Characterization of underground hydrological processes under multiple rainfall conditions and rocky desertification degrees in karst regions of southwest China. Water 2020, 12, 594. [Google Scholar] [CrossRef]
- Xiong, X.F.; Li, J.H.; Zhang, T.; Wang, S.N.; Huo, W.J. Simulation of coupled transport of soil moisture and heat in a typical karst rocky desertification area, Yunnan Province, Southwest China. Environ. Sci. Pollut. Res. 2020, 28, 4716–4730. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Shen, Y.X.; Jiang, R.H.; Wang, Q.H. Rock outcrops change infiltrability and water flow behavior in a karst soil. Vadose Zone J. 2020, 19, e20002. [Google Scholar] [CrossRef]
- Ning, J.; Liu, X.; Wu, X.; Yang, H.; Ma, J.; Cao, J.H. The effect of bedrock differences on plant water use strategies in typical karst areas of southwest China. Land 2023, 12, 12. [Google Scholar] [CrossRef]
- Wu, Z.; Behzad, H.M.; He, Q.F.; Wu, C.; Bai, Y.; Jiang, Y.J. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. J. Hydrol. 2021, 597, 126199. [Google Scholar] [CrossRef]
- Gao, J.B.; Jiang, Y.; Anker, Y. Contribution analysis on spatial tradeoff/synergy of Karst soil conservation and water retention for various geomorphological types: Geographical detector application. Ecol. Indic. 2021, 125, 107470. [Google Scholar] [CrossRef]
- Guo, Y.L.; Wu, Q.; Jiang, G.H.; Han, Z.W.; Tang, Q.J.; Quan, X.Q. Dynamic variation characteristics of water chemistries and isotopes in a typical karst aquiferous system and their implications for the local karst water cycle, Southwest China. Carbonates Evaporites 2019, 34, 987–1001. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Y.L. Multi-Scale anthropogenic driving forces of karst rocky desertification in southwest China. Land Degrad. Dev. 2015, 26, 193–200. [Google Scholar] [CrossRef]
- Akhtar, M.P.; Roy, L.B.; Vishwakarma, K.M. Assessment of agricultural potential of a river command using geo-spatial techniques: A case study of Himalayan river project in Northern India. Appl. Water Sci. 2020, 10, 81. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Tang, D.X.; Chau, H.W.; Feng, H. Soil water repellency decreasessummer maize growth. Agric. For. Meteorol. 2019, 266–267, 1–11. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H.; Ding, G.J.; Shi, D.M.; Li, C.L. Impact of vegetation restoration on soil properties in near-surface fissures located in karst rocky desertification regions. Soil Tillage Res. 2020, 200, 104620. [Google Scholar] [CrossRef]
- Zhou, L.G.; Wang, X.D.; Wang, Z.Y.; Zhang, X.M.; Chen, C.; Liu, H.F. The challenge of soil loss control and vegetation restoration in the karst area of southwestern China. Int. Soil Water Conserv. Res. 2020, 8, 26–34. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, K.L.; Zhang, Z.D.; Cao, Z.H.; Ke, Q.H. Response of soil water movement to rainfall under different land uses in karst regions. Environ. Earth Sci. 2023, 82, 50. [Google Scholar] [CrossRef]
- Wu, Q.L.; Xiong, K.N.; Li, R.; Xiao, J. Farmland hydrology cycle and agronomic measures in agroforestry for the efficient utilization of water resources under karst desertification environments. Forests 2023, 14, 453. [Google Scholar] [CrossRef]
- Fan, C.H.; Zhao, L.S.; Hou, R.; Fang, Q.; Zhang, J.X. Quantitative analysis of rainwater redistribution and soil loss at the surface and belowground on karst slopes at the microplot scale. Catena 2023, 227, 107113. [Google Scholar] [CrossRef]
- Zhao, X.P.; Wu, Y.Y.; Xing, D.K.; Li, H.T.; Zhang, F.R. Water metabolism of lonicera japonica and parthenocissus quinquefolia in response to heterogeneous simulated rock outcrop habitats. Plants 2023, 12, 2279. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Cheng, J.H.; Guan, N. Influence of rock fragments on preferential flow in stony soils of karst graben basin, southwest China. Catena 2023, 220, 106684. [Google Scholar] [CrossRef]
- Liu, H.Y.; Dai, J.Y.; Xu, C.Y.; Peng, J.; Wu, X.C.; Wang, H.Y. Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the karst critical zone of subtropical Southwest China. Prog. Phys. Geogr. Earth Environ. 2020, 45, 7–19. [Google Scholar] [CrossRef]
- Sohrt, J.; Ries, F.; Sauter, M.; Lange, J. Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena 2014, 123, 1–10. [Google Scholar] [CrossRef]
- Liu, T.T.; Peng, X.D.; Dai, Q.H.; Xu, S.B. Role of the preferential flow at rock-soil interface in the water leaking process in near-surface fissures filled with soils in the karst rock desertification area. Appl. Water Sci. 2022, 12, 208. [Google Scholar] [CrossRef]
- Yan, Y.J.; Yang, Y.Q.; Dai, Q.H. Effects of preferential flow on soil nutrient transport in karst slopes after recultivation. Environ. Res. Lett. 2023, 18, 034012. [Google Scholar] [CrossRef]
- Göransson, H.; Edwards, P.J.; Perreijn, K.; Smittenberg, R.H.; Olde Venterink, H. Rocks create nitrogen hotspots and N:P heterogeneity by funnelling rain. Biogeochemistry 2014, 121, 329–338. [Google Scholar] [CrossRef]
- Yang, W.; Peng, X.D.; Dai, Q.H.; Li, C.L.; Xu, S.B.; Liu, T.T. Storage infiltration of rock-soil interface soil on rock surface flow in the rocky desertification area. Geoderma 2023, 435, 116512. [Google Scholar] [CrossRef]
- Shen, Y.X.; Wang, D.J.; Chen, Q.Q.; Tang, Y.Y.; Chen, F.J. Large heterogeneity of water and nutrient supply derived from runoff of nearby rock outcrops in karst ecosystems in SW China. Catena 2019, 172, 125–131. [Google Scholar] [CrossRef]
- Wang, D.J.; Shen, Y.X.; Huang, J.; Li, Y.H. Rock outcrops redistribute water to nearby soil patches in karst landscapes. Environ. Sci. Pollut. Res. 2016, 23, 8610–8616. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Q.G.; Zhang, J.J.; Liu, Z.X.; Pan, L.D.; Huang, K.; Zhang, L.Q. Effects of organic mulch on soil moisture and nutrients in karst area of southwest China. Pol. J. Environ. Stud. 2020, 29, 4161–4174. [Google Scholar] [CrossRef]
- Nardini, A.; Petruzzellis, F.; Marusig, D.; Tomasella, M.; Natale, S.; Altobelli, A.; Calligaris, C.; Floriddia, G.; Cucchi, F.; Forte, E.; et al. Water ‘on the rocks’: A summer drink for thirsty trees? New Phytol. 2021, 229, 199–212. [Google Scholar] [CrossRef]
- Shen, Y.X.; Wang, Q.H.; Zhao, Z.M.; Yuan, C. Fine-scale effect of karst rock outcrops on adjacent soil and plant communities in Southwest China. Catena 2022, 219, 106592. [Google Scholar] [CrossRef]
- Wu, C.X.; Xiong, K.N.; Luo, D.; Gu, X.P. Progress of study on interception of soil mulching with an insight into karst soil leakage control: A review. Land 2022, 11, 1984. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Wang, Q.H. Effect of film-mulched rock outcrops on preferential flow at rock-soil interfaces in rocky karst areas. Water 2023, 15, 1775. [Google Scholar] [CrossRef]
- Jiang, X.J.; Li, X.G. Assessing the effects of plastic film fully mulched ridge–furrow on rainwater distribution in soil using dye tracer and simulated rainfall. Soil Tillage Res. 2015, 152, 67–73. [Google Scholar] [CrossRef]
- Wright, S.N.; Novakowski, K.S. Numerical analysis of midwinter infiltration along the soil-rock interface: A pathway for enhanced bedrock recharge. Adv. Water Resour. 2022, 166, 10426. [Google Scholar] [CrossRef]
- Wang, Z.H.; Luo, D.; Xiong, K.N.; Gu, X.; Zhu, Z.Z. Studies on hydrological processes on karst slopes for control of soil and water loss. Sustainability 2022, 14, 5789. [Google Scholar] [CrossRef]
- Arbel, Y.; Greenbaum, N.; Lange, J.; Inbar, M. Infiltration processes and flow rates in developed karst vadose zone using tracers in cave drips. Earth Surf. Process. Landf. 2010, 35, 1682–1693. [Google Scholar] [CrossRef]
- Canton, Y.; Villagarcia, L.; Moro, M.J.; Serrano-Ortiz, P.; Were, A.; Alcala, F.J.; Kowalski, A.S.; Sole-Benet, A.; Lazaro, R.; Domingo, F. Temporal dynamics of soil water balance components in a karst range in southeastern Spain: Estimation of potential recharge. Hydrol. Sci. J. 2010, 55, 737–753. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Shen, Y.X.; Wang, Q.H.; Jiang, R.H. The temporal stability of soil moisture spatial pattern and its influencing factors in rocky environments. Catena 2020, 187, 104418. [Google Scholar] [CrossRef]
- Hussain, M.; Latif, A.; Hassan, W.; Farooq, S.; Hussain, S.; Ahmad, S.; Nawaz, A. Maize hybrids with well-developed root system perform better under deficit supplemental irrigation. Soil Envron. 2019, 38, 203–213. [Google Scholar] [CrossRef]
- Khatibi, A.; Omrani, S.; Omrani, A.; Shojaei, S.H.; Mousavi, S.M.N.; Illes, A.; Bojtor, C.; Nagy, J. Response of maize hybrids in drought-stress using drought tolerance indices. Water 2022, 14, 1012. [Google Scholar] [CrossRef]
- Yang, W.W.; Pallas, B.; Durand, J.B.; Martinez, S.; Han, M.Y.; Costes, E. The impact of long-term water stress on tree architecture and production is related to changes in transitions between vegetative and reproductive growth in the ‘Granny Smith’ apple cultivar. Tree Physiol. 2016, 36, 1369–1381. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Y.J.; Long, M.Z.; Gao, M.; Zhang, Y.D.; Lin, J.Y.; Li, X.N. Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness. Plant Soil 2020, 475, 153–168. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Ma, T.S.; Deng, X.W.; Chen, L.; Xiang, W.H. The soil properties and their effects on plant diversity in different degrees of rocky desertification. Sci. Total Environ. 2020, 736, 139667. [Google Scholar] [CrossRef]
- Ma, J.; Weng, B.S.; Bi, W.X.; Xu, D.; Xu, T.; Yan, D.M. Impact of climate change on the growth of typical crops in karst areas: A case study of Guizhou province. Adv. Meteorol. 2019, 2019, 1401402. [Google Scholar] [CrossRef]
Soil Horizon | Depth (cm) | Soil Particle Composition (%) | Soil Texture (USDA System) | Bulk Density (g·cm−3) | Initial Water Content (% vol.) | ||
---|---|---|---|---|---|---|---|
2~0.05 mm | 0.05~0.002 mm | <0.002 mm | |||||
A | 0~14 | 17.32 | 47.60 | 35.08 | Silty clay loam | 1.18 ± 0.07 b | 10.05 ± 0.74 b |
B | >14 | 5.12 | 46.40 | 48.48 | Silty clay | 1.26 ± 0.06 a | 12.13 ± 1.66 a |
Application Amounts (mL) | Dyeing Depth (cm) | Dyeing Coverage (%) | Preferential Flow Fraction (%) | Soil Water Content (%vol.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AR | CR | CFMR | AR | CR | CFMR | AR | CR | CFMR | AR | CR | CFMR | |
850 | 6.93 ± 1.64 c | 15.37 ± 1.46 a | 10.27 ± 2.32 b | 9.83 ± 0.41 c | 17.88 ± 1.76 b | 22.75 ± 3.17 a | 12.31 ± 4.26 c | 35.78 ± 6.54 a | 24.93 ± 2.13 b | 23.13 ± 1.85 c | 26.63 ± 0.80 b | 30.47 ± 1.35 a |
1700 | 10.83 ± 2.38 c | 18.97 ± 0.54 a | 15.90 ± 1.77 b | 16.32 ± 3.95 c | 35.23 ± 9.31 b | 36.30 ± 2.14 a | 22.73 ± 4.95 c | 45.18 ± 5.89 a | 34.84 ± 2.87 b | 30.30 ± 1.86 c | 33.13 ± 1.27 b | 36.43 ± 2.04 a |
3400 | 14.00 ± 0.76 c | 20.00 ± 0.00 a | 18.00 ± 1.06 b | 27.43 ± 3.32 c | 35.99 ± 2.82 b | 50.90 ± 2.76 a | 37.15 ± 7.64 c | 55.54 ± 3.19 s | 39.62 ± 3.40 b | 37.73 ± 1.19 c | 40.10 ± 0.81 b | 46.03 ± 0.99 a |
Summary of ANOVA (F values) | ||||||||||||
PT | 18.24 *** | 16.604 *** | 14.684 *** | 59.324 *** | ||||||||
AA | 14.044 *** | 21.034 *** | 12.384 *** | 64.924 *** | ||||||||
PT × AA | 0.35 ns | 1.20 ns | 0.35 ns | 0.18 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Deng, J.; Zhang, J.; Shen, Y. Effects of Film-Mulched Rock Outcrops on Rainwater Redistribution and Maize Growth in the Cropland of a Rocky Karst Area. Water 2024, 16, 254. https://doi.org/10.3390/w16020254
Zhao Z, Deng J, Zhang J, Shen Y. Effects of Film-Mulched Rock Outcrops on Rainwater Redistribution and Maize Growth in the Cropland of a Rocky Karst Area. Water. 2024; 16(2):254. https://doi.org/10.3390/w16020254
Chicago/Turabian StyleZhao, Zhimeng, Jiabin Deng, Jin Zhang, and Youxin Shen. 2024. "Effects of Film-Mulched Rock Outcrops on Rainwater Redistribution and Maize Growth in the Cropland of a Rocky Karst Area" Water 16, no. 2: 254. https://doi.org/10.3390/w16020254
APA StyleZhao, Z., Deng, J., Zhang, J., & Shen, Y. (2024). Effects of Film-Mulched Rock Outcrops on Rainwater Redistribution and Maize Growth in the Cropland of a Rocky Karst Area. Water, 16(2), 254. https://doi.org/10.3390/w16020254