Using a Triple Sensor Collocation Approach to Evaluate Small-Holder Irrigation Scheme Performances in Northern Ethiopia
Abstract
:1. Introduction
2. Study Areas and Dataset
2.1. Study Area
2.2. Datasets
2.2.1. Field Survey
2.2.2. Climate Data
2.2.3. Soil Data
2.2.4. Crop Data and Irrigation Methods Management Practice
2.2.5. Remote Sensing-Based Data
3. Methodology
3.1. Sensor 1: Farmer In-Situ Observations
3.2. Sensor 2: Remote Sensing-Based CWP
- DMP(i) is the Dry Matter Production at dekad i, expressed in kgDM/ha/day, where 1 gC/m2/day (NPP) = 22.222 kgDM/ha/day (DMP).
- N(i) is the number of days within each dekadal, varying between 8 (end of February) &11.
3.3. Sensor 3: Model-Based CWP (AquaCrop)
3.4. Triple Collocation
- Calculate the sample 3 × 3 covariance matrix Q from the observations X1,X2, X3. For example, we used the sample data to calculate using the python code computation, as shown in the Appendix A. Equation (A2):
- 2.
- Use Q and Equation (5) to estimate R.
- 3.
- Sort R to obtain rankings.
- (1)
- Sensor 2 (highest)
- (2)
- Sensor 3 (middle)
- (3)
- Sensor 1 (lowest)
4. Results
4.1. Crop Water Productivity
4.2. Triple Collocation Analysis
5. Discussion
5.1. Evaluating the Crop Water Productivity
5.2. Estimation of the Best Sensors
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site Name | Depth (cm) | Soil Texture | Saturation Point (% v) | FC (% v) | PWP (% v) | AWC (m/m) | Ksat (m/h) | BD (kg × 103/m3) | MC (% v) | PD (kg × 103/m3) |
---|---|---|---|---|---|---|---|---|---|---|
Gojibere | 0–20 | Silt loam | 47.5 | 30.7 | 13.1 | 0.18 | 0.0139 | 1.21 | 14.3 | 2.61 |
20–40 | 48.0 | 32.1 | 14.7 | 0.17 | 0.0112 | 1.25 | 16.2 | 2.63 | ||
40–60 | 48.4 | 33.5 | 16.3 | 0.17 | 0.0922 | 1.27 | 18.5 | 2.65 | ||
60–80 | 61.3 | 38.0 | 18.6 | 0.19 | 0.0321 | 1.30 | 20.2 | 2.66 | ||
80–100 | 60.1 | 39.0 | 21.3 | 0.18 | 0.0233 | 1.32 | 18.5 | 2.66 | ||
Gereb hiwane | 0–20 | Silt loam | 59.9 | 38.4 | 20.5 | 0.18 | 0.0248 | 1.27 | 11.5 | 2.63 |
20–40 | Silt clay | 57.0 | 39.9 | 25.2 | 0.15 | 0.0123 | 1.31 | 12.7 | 2.60 | |
40–60 | 56.4 | 40.5 | 27.3 | 0.15 | 0.0095 | 1.33 | 8.45 | 2.66 | ||
60–80 | Clay | 55.9 | 40.7 | 28.3 | 0.30 | 0.0081 | 1.34 | 7.85 | 2.67 | |
80–100 | 55.6 | 41.0 | 29.5 | 0.11 | 0.0071 | 1.35 | 7.75 | 2.68 |
Year | Yield (ton/ha) | Difference | Pe (%) | WP (kg/m3) | Difference | Pe (%) | ||
---|---|---|---|---|---|---|---|---|
Maize | Obs. | Sim. | Obs. | Sim. | ||||
2019/20 | 3.11 | 3.58 | 0.47 | 15.1 | 0.85 | 1.14 | 0.02 | 2.6 |
2018/19 | 2.88 | 3.23 | 0.35 | 12.1 | 0.80 | 0.84 | 0.04 | 5.0 |
2017/18 | 2.89 | 3.26 | 0.37 | 12.8 | 0.80 | 0.83 | 0.02 | 2.4 |
Vegetables | ||||||||
2019/20 | 6.01 | 6.61 | 0.60 | 9.90 | 1.30 | 1.31 | 0.01 | 0.7 |
2018/19 | 4.97 | 5.50 | 0.53 | 10.7 | 1.17 | 1.22 | 0.05 | 4.3 |
2017/18 | 4.95 | 5.46 | 0.51 | 10.3 | 1.16 | 1.20 | 0.04 | 3.4 |
References
- Hagos, E. Development and Management of Irrigation Lands in Tigray, Ethiopia. Ph.D. Thesis, Wageningen University, and UNESCO-IHE, Delft, The Netherlands, 2005; pp. 1–12. [Google Scholar]
- Haile, G.G.; Kasa, A.K. Irrigation in Ethiopia: A Review. Acad. J. Agric. Res. 2015, 3, 264–269. [Google Scholar]
- Teka, D. Multi-Scale Analysis of Surface Runoff and Water-Harvesting Dams in a Semi-Arid Region: A Case Study in Tigray (Ethiopia). Ph.D. Thesis, UCL—Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2014. [Google Scholar]
- Yohannes, D.F.; Ritsema, C.J.; Solomon, H.; Froebrich, J.; van Dam, J.C. Irrigation Water Management: Farmers’ Practices, Perceptions and Adaptations at Gumselassa Irrigation Scheme, North Ethiopia. Agric. Water Manag. 2017, 191, 16–28. [Google Scholar] [CrossRef]
- Villani, L.; Castelli, G.; Hagos, E.Y.; Bresci, E. Water Productivity Analysis of Sand Dams Irrigation Farming in Northern Ethiopia. J. Agric. Environ. Int. Dev. 2018, 112, 139–160. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.; Cheema, M.J.M. Basin-Wide Water Accounting Based on Remote Sensing Data: An Application for the Indus Basin. Hydrol. Earth Syst. Sci. 2013, 17, 2473–2486. [Google Scholar] [CrossRef]
- Blatchford, M.L.; Mannaerts, C.M.; Zeng, Y.; Nouri, H.; Karimi, P. Status of Accuracy in Remotely Sensed and In-Situ Agricultural Water Productivity Estimates: A Review. Remote Sens. Environ. 2019, 234, 111413. [Google Scholar] [CrossRef]
- Letseku, V.; Grové, B. Crop Water Productivity, Applied Water Productivity and Economic Decision Making. Water 2022, 14, 1598. [Google Scholar] [CrossRef]
- Behailu, M.; Nata, T. Monitoring Productivity of Water in Agriculture and Interacting Systems: The Case of Tekeze/Atbara River Basin in Ethiopia. In Proceedings of the East Africa Integrated River Basin Management, Morogoro, Tanzania, 7–9 March 2005. International Water Management Institute Conference Papers (No. h037543). [Google Scholar]
- Araya, A.; Keesstra, S.D.; Stroosnijder, L. Simulating Yield Response to Water of Teff (Eragrostis Tef) with FAO’s AquaCrop Model. Field Crops Res. 2010, 116, 196–204. [Google Scholar] [CrossRef]
- Raja, W.; Kanth, R.H.; Singh, P. Validating the AquaCrop Model for Maize under Different Sowing Dates. Water Policy 2018, 20, 826–840. [Google Scholar] [CrossRef]
- Ranjbar, A.; Rahimikhoob, A.; Ebrahimian, H.; Varavipour, M. Assessment of the AquaCrop Model for Simulating Maize Response to Different Nitrogen Stresses under Semi-Arid Climate. Commun. Soil Sci. Plant Anal. 2019, 50, 2899–2912. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Mejias Moreno, P. AquaCrop: FAO’s Crop Water Productivity and Yield Response Model. Environ. Mode. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Willems, P. Global Sensitivity Analysis of Yield Output from the Water Productivity Model. Environ. Model. Softw. 2014, 51, 323–332. [Google Scholar] [CrossRef]
- Alemayehu, T.; Bastiaanssen, S.; Bremer, K.; Cherinet, Y.; Chevalking, S.; Girma, M. Water Productivity Analyses Using WaPOR Database. In A Case Study of Wonji, Ethiopia; Water-PIP Technical Report Series; IHE Delft Institute for Water Education: Delft, The Netherlands, 2020. [Google Scholar]
- Blatchford, M.L.; Mannaerts, C.M.; Njuki, S.M.; Nouri, H.; Zeng, Y.; Pelgrum, H.; Wonink, S.; Karimi, P. Evaluation of WaPOR V2 Evapotranspiration Products across Africa. Hydrol. Process 2020, 34, 3200–3221. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Mul, M.L.; Van Der Zaag, P.; Van Halsema, G.; Mubaya, E.; Muchanga, E.; Den Besten, N.; Karimi, P. A Framework for Irrigation Performance Assessment Using WaPOR Data: The Case of a Sugarcane Estate in Mozambique. Hydrol. Earth Syst. Sci. Discuss. 2022, 26, 2759–2778. [Google Scholar] [CrossRef]
- Gemechu, M.G.; Huluka, T.A.; van Steenbergen, F.; Wakjira, Y.C.; Chevalking, S.; Bastiaanssen, S.W. Analysis of Spatio -Temporal Variability of Water Productivity in Ethiopian Sugar Estates: Using Open Access Remote Sensing Source. Ann. GIS 2020, 26, 395–405. [Google Scholar] [CrossRef]
- Safi, A.R.; Karimi, P.; Mul, M.; Chukalla, A.; de Fraiture, C. Translating Open-Source Remote Sensing Data to Crop Water Productivity Improvement Actions. Agric. Water Manag. 2022, 261, 107373. [Google Scholar] [CrossRef]
- Shen, Y.; Li, S.; Chen, Y.; Qi, Y.; Zhang, S. Estimation of Regional Irrigation Water Requirement and Water Supply Risk in the Arid Region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. [Google Scholar] [CrossRef]
- Karam, F.; Nangia, V. Improving Water Productivity in Semi-Arid Environments through Regulated Deficit Irrigation. Ann. Arid Zone 2016, 55, 79–87. [Google Scholar]
- Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent Advances in (Soil Moisture) Triple Collocation Analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Li, H.; Chai, L.; Crow, W.; Dong, J.; Liu, S.; Zhao, S. The Reliability of Categorical Triple Collocation for Evaluating Soil Freeze/Thaw Datasets. Remote Sens. Environ. 2022, 281, 113240. [Google Scholar] [CrossRef]
- McColl, K.A.; Roy, A.; Derksen, C.; Konings, A.G.; Alemohammed, S.H.; Entekhabi, D. Triple Collocation for Binary and Categorical Variables: Application to Validating Landscape Freeze/Thaw Retrievals. Remote Sens. Environ. 2016, 176, 31–42. [Google Scholar] [CrossRef]
- Scott, K.A. Assessment of Categorical Triple Collocation for Sea Ice/Open Water Observations: Application to the Gulf of Saint Lawrence. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2928452. [Google Scholar] [CrossRef]
- Lyu, H.; McColl, K.A.; Li, X.; Derksen, C.; Berg, A.; Black, T.A.; Euskirchen, E.; Loranty, M.; Pulliainen, J.; Rautiainen, K.; et al. Validation of the SMAP Freeze/Thaw Product Using Categorical Triple Collocation. Remote Sens. Environ. 2018, 205, 329–337. [Google Scholar] [CrossRef]
- Ataklti, Y.T. Assessing the Potential of Geonetcast Earth Observation and in Situ Data for Drought Early Warning and Monitoring in Tigray, Ethiopia. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2012. [Google Scholar]
- WaPOR. FAO’s Portal to Monitor Water Productivity through Open Access of Remotely Sensed Derived Data. Available online: https://wapor.apps.fao.org/home/WAPOR_2/1 (accessed on 6 December 2022).
- Mohammedshum, A.A.; Mannaerts, C.M.; Maathuis, B.H.P.; Teka, D. Integrating Socioeconomic Biophysical and Institutional Factors for Evaluating Small-Scale Irrigation Schemes in Northern Ethiopia. Sustainability 2023, 15, 1704. [Google Scholar] [CrossRef]
- Gebremedhin, M.A.; Lubczynski, M.W.; Maathuis, B.H.P.; Teka, D. Deriving Potential Evapotranspiration from Satellite-Based Reference Evapotranspiration, Upper Tekeze Basin, Northern Ethiopia. J. Hydrol. Reg. Stud. 2022, 41, 101059. [Google Scholar] [CrossRef]
- Devices, D. STE, Water Content, EC and Temperature Sensors: Operator’s Manual, Version 6; Decagon Devices Inc.: Pullman, WA, USA, 2010. [Google Scholar]
- FAO. WaPOR Database Methodology: Version 2 Release; FAO: Rome, Italy, 2020. [Google Scholar]
- FAO. WaPOR Database Methodology: Level 1. Remote Sensing for Water Productivity Technical Report: Methodology Series; FAO: Rome, Italy, 2018. [Google Scholar]
- FAO. WaPOR Quality Assessment. Technical Report on the Data Quality of the WaPOR FAO Database Version 1.0; FAO: Rome, Italy, 2019. [Google Scholar]
- FAO. WaPOR Database Methodology: Level 2 Data Using Remote Sensing in Support of Solutions To Reduce Agricultural Water Productivity Gaps; FAO: Rome, Italy, 2020. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the Conservative Behavior of Biomass Water Productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Chapter 1 FAO Crop-Water Productivity Model to Simulate Yield Response to Water AquaCrop Reference Manual August 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Mohammedshum, A.A.; Maathuis, B.H.P.; Mannaerts, C.M.; Teka, D. Mapping Small-Scale Irrigation Areas Using Expert Decision Rules and the Random Forest Classifier in Northern Ethiopia. Remote Sens. 2023, 15, 5647. [Google Scholar] [CrossRef]
- Shanono, N.J.; Abba, B.S.; Nasidi, N.M. Evaluation of Aqua-Crop Model Using Onion Crop under Deficit Irrigation and Mulch in Semi-Arid Nigeria. Turk. J. Agric. Eng. Res. 2022, 3, 131–145. [Google Scholar] [CrossRef]
- Mannaerts, C.M.; Maathuis, B.; Wehn, U.; Gerrets, T.; Riedstra, H.; Becht, R. FAO’s Portal to Monitor Water Productivity through Open Access of Remotely Sensed Derived Data. 2018. Available online: https://afrialliance.org/knowledge-hub/papers/constraints-and-opportunities-water-resources-monitoring-and-forecasting-using (accessed on 1 July 2024).
- Ahmadi, S.H.; Reis Ghorra, M.R.; Sepaskhah, A.R. Parameterizing the AquaCrop Model for Potato Growth Modeling in a Semi-Arid Region. Field Crops. Res. 2022, 288, 108680. [Google Scholar] [CrossRef]
- Kallel, A.; Mura, M.D.; Fakhfakh, S.; Romdhane, N. Ben Physics-Based Fusion of Sentinel-2 and Sentinel-3 for Higher Resolution Vegetation Monitoring. IEEE Trans. Geosci. Remote Sens. 2023, 61, 3257219. [Google Scholar] [CrossRef]
- Abedinpour, M.; Sarangi, A.; Rajput, T.B.S.; Singh, M.; Pathak, H.; Ahmad, T. Performance Evaluation of AquaCrop Model for Maize Crop in a Semi-Arid Environment. Agric. Water Manag. 2012, 110, 55–66. [Google Scholar] [CrossRef]
Scheme Type | Year | Maize | Vegetables | ||
---|---|---|---|---|---|
Yield (kg/ha) | Average Water Use (m3/ha) | Yield (kg/ha) | Average Water Use (m3/ha) | ||
Traditional diversion | 2017/18 | 2843 | 7850 | 5732 | 9800 |
2018/19 | 1862 | 5622 | |||
2019/20 | 2086 | 5594 | |||
Dam | 2017/18 | 2462 | 5180 | 6237 | 7390 |
2018/19 | 2250 | 4333 | |||
2019/20 | 2229 | 4877 | |||
Modern diversion | 2017/18 | 1997 | 5220 | 3870 | 7840 |
2018/19 | 2133 | 4445 | |||
2019/20 | 1973 | 3541 |
Crop | Rank | Traditional Diversion | Modern Diversion | Dam |
---|---|---|---|---|
Maize (Vegetables) | R1 | 0.992 (1.000) | 0.996 (1.000) | 0.991 (0.960) |
R2 | 0.998 (1.000) | 1.001 (0.992) | 1.008 (0.897) | |
R3 | 1.001 (0.999) | 0.999 (1.000) | 0.921 (1.031) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammedshum, A.A.; Maathuis, B.H.P.; Mannaerts, C.M.; Teka, D. Using a Triple Sensor Collocation Approach to Evaluate Small-Holder Irrigation Scheme Performances in Northern Ethiopia. Water 2024, 16, 2638. https://doi.org/10.3390/w16182638
Mohammedshum AA, Maathuis BHP, Mannaerts CM, Teka D. Using a Triple Sensor Collocation Approach to Evaluate Small-Holder Irrigation Scheme Performances in Northern Ethiopia. Water. 2024; 16(18):2638. https://doi.org/10.3390/w16182638
Chicago/Turabian StyleMohammedshum, Amina Abdelkadir, Ben H. P. Maathuis, Chris M. Mannaerts, and Daniel Teka. 2024. "Using a Triple Sensor Collocation Approach to Evaluate Small-Holder Irrigation Scheme Performances in Northern Ethiopia" Water 16, no. 18: 2638. https://doi.org/10.3390/w16182638
APA StyleMohammedshum, A. A., Maathuis, B. H. P., Mannaerts, C. M., & Teka, D. (2024). Using a Triple Sensor Collocation Approach to Evaluate Small-Holder Irrigation Scheme Performances in Northern Ethiopia. Water, 16(18), 2638. https://doi.org/10.3390/w16182638